Applications & Pathways
Measurement Challenges for Hydrogen Vehicles
Apr 2019
Publication
Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot do so due to a lack of available methods and standards. This paper outlines the four biggest measurement challenges that are faced by the hydrogen industry including flow metering quality assurance quality control and sampling.
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications
Jan 2022
Publication
This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs) battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). However there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed acceleration and roadway grade as input variables. The mode accurately estimates energy consumption generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation respectively. Furthermore this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation respectively. The results demonstrate that transportation engineers policy makers automakers and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.
Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile
Dec 2021
Publication
The paper presents a complete value chain for the use of green hydrogen in a port facility. The main objective was to propose the sizing of the main components that make up green hydrogen to ensure the supply of 1 MWe in replacing the diesel generator. The energy demand required for the port was determined by establishing the leading small and large-scale conventional energyconsuming equipment. Hence 60 kgH2 was required to ensure the power supply. The total electrical energy to produce all the hydrogen was generated from photovoltaic solar energy considering threegeneration scenarios (minimum maximum and the annual average). In all cases the energy supply in the electrolyzer was 3.08 MWe. In addition the effect of generating in the port facility using a diesel generator and a fuel cell was compared. The cost of 1 kgH2 could be 4.09 times higher than the cost of 1 L of diesel meaning that the output kWh of each system is economically similar. In addition the value of electrical energy through a Power Purchase Agreement (PPA) was a maximum of 79.79 times the value of a liter of diesel. Finally the Levelized Cost of Energy (LCOE) was calculated for two conditions in which the MWe was obtained from the fuel cell without and with the photovoltaic solar plant.
Progress in Power-to-Gas Energy Systems
Dec 2022
Publication
Hydrogen is expected to become a key component in the decarbonized energy systems of the future. Its unique chemical characteristics make hydrogen a carbon-free fuel that is suitable to be used as broadly as fossil fuels are used today. Since hydrogen can be produced by splitting water molecules using electricity as the only energy input needed hydrogen offers the opportunity to produce a fully renewable fuel if the electricity input also only stems from renewable sources. Once renewable electricity is converted into hydrogen it can be stored over long periods of time and transported over long even intercontinental distances. Underground hydrogen storage pipelines compressors liquefaction-units and transportation ships are infrastructures and suitable technologies to establish a global hydrogen energy system. Several chemical synthesis routes exist to produce more complex products from green hydrogen to fulfil the demands of various end-users and industries. One exemplary power-to-gas product is methane which can be used as a natural gas substitute. Furthermore ammonia alcohols kerosene and all other important products from hydrocarbon chemistry can be synthesized using green hydrogen.
Digital Navigation of Energy–structure–function Maps for Hydrogen-bonded Porous Molecular Crystals
Feb 2021
Publication
Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites as well as their number has a profound influence on the shape of the resulting ESF maps revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps an important goal for closed-loop autonomous searches for molecular crystals with useful functions.
Electric and Hydrogen Buses: Shifting from Conventionally Fuelled Cars in the UK
May 2020
Publication
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A Modelling Study for the Integration of a PEMFC Micro-CHP in Domestic Building Services Design
May 2018
Publication
Fuel cell based micro-combined heat and power (CHP) units used for domestic applications can provide significant cost and environmental benefits for end users and contribute to the UK’s 2050 emissions target by reducing primary energy consumption in dwellings. Lately there has been increased interest in the development of systematic methods for the design of such systems and their smoother integration with domestic building services. Several models in the literature whether they use a simulation or an optimisation approach ignore the dwelling side of the system and optimise the efficiency or delivered power of the unit. However the design of the building services is linked to the choice of heating plant and its characteristics. Adding the dwelling’s energy demand and temperature constraints in a model can produce more general results that can optimise the whole system not only the micro-CHP unit. The fuel cell has various heat streams that can be harvested to satisfy heat demand in a dwelling and the design can vary depending on the proportion of heat needed from each heat stream to serve the energy demand. A mixed integer non-linear programming model (MINLP) that can handle multiple heat sources and demands is presented in this paper. The methodology utilises a process systems engineering approach. The model can provide a design that integrates the temperature and water flow constraints of a dwelling’s heating system with the heat streams within the fuel cell processes while optimising total CO2 emissions. The model is demonstrated through different case studies that attempt to capture the variability of the housing stock. The predicted CO2 emissions reduction compared to a conventionally designed building vary from 27% to 30% and the optimum capacity of the fuel cell ranges between 1.9 kW and 3.6 kW. This research represents a significant step towards an integrated fuel cell micro-CHP and dwelling design.
Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen
Dec 2021
Publication
This is article presents the results of the testing of the addition of a hydrogen-to-nitrogen-rich natural gas of the Lw group and its influence on the operation of selected gas-fired domestic appliances. The tests were performed on appliances used for the preparation of meals and hot water production for hygienic and heating purposes. The characteristics of the tested gas appliances are also presented. The burners and their controllers with which the tested appliances were equipped were adapted for the combustion of Lw natural gas. The tested appliances reflected the most popular designs for domestic gas appliances in their group used both in Poland and in other European countries. The tested appliances were supplied with nitrogen-rich natural gas of the Lw group and a mixture of this gas with hydrogen at 13.2% content. The article presents the approximate percentage compositions of the gases used during the tests and their energy parameters. The research was focused on checking the following operating parameters and the safety of the tested appliances: the rated heat input thermal efficiency combustion quality ignition flame stability and transfer. The article contains an analysis of the test results referring in detail to the issue of decreasing the heat input of the appliances by lowering the energy parameters of the nitrogen-rich natural gas of the Lw group mixture with a hydrogen addition and how it influenced the thermal efficiency achieved by the appliances. The conclusions contain an explanation regarding among other things how the design of an appliance influences the thermal efficiency achieved by it in relation to the heat input decrease. In the conclusions on the basis of the research results answers have been provided to the following questions: (1) Whether the hydrogen addition to the nitrogen-rich natural gas of the Lw group will influence the safe and proper operation of domestic gas appliances; (2) What hydrogen percentage can be added to the nitrogen-rich natural gas of the Lw group in order for the appliances adapted for combusting it to operate safely and effectively without the need for modifying them?
Living Carbon Free – Exploring What a Net-zero Target Means for Households
Jun 2019
Publication
The Energy Systems Catapult (ESC) explored the role of households in a net-zero emissions society to accompany the CCC’s Net Zero report looking at opportunities and challenges for households to reduce emissions from today’s levels and to support the stretch from an 80% emissions reduction to a net-zero greenhouse gas target. As well as describing a net-zero emissions world for households of different types the ESC looked at average household emissions under different decarbonisation scenarios and the options households can take to contribute to the decarbonisation effort.
This supported the Net Zero Technical report.
This supported the Net Zero Technical report.
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Study on the Explosion of the Hydrogen Fuel Tank of Fuel Cell Electric Vehicles in Semi-Enclosed Spaces
Dec 2022
Publication
The rise in hydrogen fuel cell electric vehicles (FCEVs) is expected to pose a variety of hazards on the road. Vehicles using hydrogen could cause significant damage owing to hydrogen vapor cloud explosions jet fires caused by leakage or hydrogen tank explosions. This risk is expected to further increase in semi-enclosed spaces such as underground parking lots and road tunnels. Therefore it is necessary to study the fire safety of hydrogen vehicles in semi-enclosed spaces. In this study an experiment on hydrogen tank explosion was performed. In addition the CFD numerical model was verified using the experimental results and the damaging effect due to pressure propagation during hydrogen tank explosions in underground parking lots and road tunnels was analyzed using numerical analysis. From the experiment results the hydrogen tank exploded at about 80 Mpa a maximum incident pressure is generated 267 kPa at a distance of 1.9 m. As a result of numerical analysis based on the experimental results the limit distance that can cause serious injury due to the explosion of a hydrogen tank in a road tunnel or underground parking lot was analyzed up to about 20 m from the point of explosion.
Local Degradation Effects in Automotive Size Membrane Electrode Assemblies Under Realistic Operating Conditions
Dec 2019
Publication
In automotive applications the operational parameters for fuel cell (FC) systems can vary over a wide range. To analyze their impact on fuel cell degradation an automotive size single cell was operated under realistic working conditions. The parameter sets were extracted from the FC system modelling based on on-road customer data. The parameter variation included simultaneous variation of the FC load gas pressures cell temperature stoichiometries and relative humidity. Current density distributions and the overall cell voltage were recorded in real time during the tests. The current densities were low at the geometric anode gas outlet and high at the anode gas inlet. After electrochemical tests post mortem analysis was conducted on the membrane electrode assemblies using scanning electron microscopy. The ex-situ analysis showed significant cathode carbon corrosion in areas associated with low current densities. This suggests that fuel starvation close to the anode outlet is the origin of the cathode electrode degradation. The results of the numerical simulations reveal high relative humidity at that region and therefore water flooding is assumed to cause local anode fuel starvation. Even though the hydrogen oxidation reaction has low kinetic overpotentials “local availability” of H2 plays a significant role in maintaining a homogeneous current density distribution and thereby in local degradation of the cathode catalyst layer. The described phenomena occurred while the overall cell voltage remained above 0.3 V. This indicates that only voltage monitoring of fuel cell systems does not contain straightforward information about this type of degradation.
Everything About Hydrogen Podcast: Is This the End of the Diesel Train?
Jan 2020
Publication
For this show the team are taking a dive into the world of hydrogen trains and who better to speak to this space than Mike Muldoon Head of Business Development and Marketing for Alstom UK&I. Alstom have been the pioneers of hydrogen powered rail and in addition to two operating trains in Germany have secured over Eur500 million of orders for hydrogen trains. On the show we talk to Mike about why Alstom see hydrogen as a key part of the evolution of the rail industry towards zero emissions and why hydrogen today is such a compelling proposition for operators and investors.
The podcast can be found on their website
The podcast can be found on their website
Optimized Operation Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Dec 2022
Publication
The cost reduction of hydrogen refueling stations (HRSs) is very important for the popularization of hydrogen vehicles. This paper proposes an optimized operation algorithm based on hydrogen energy demand estimation for on-site hydrogen refueling stations. Firstly the user’s hydrogen demand was estimated based on the simulation of their hydrogenation behavior. Secondly mixed integer linear programming method was used to optimize the operation of the hydrogen refueling station to minimize the unit hydrogen energy cost by using the peak–valley difference of the electricity price. We then used three typical scenario cases to evaluate the optimized operation method. The results show that the optimized operation method proposed in this paper can effectively reduce the rated configuration of electrolyzer and storage tank for HRS and can significantly reduce the unit hydrogen energy cost considering the construction cost compared with the traditional method. Therefore the optimization operation method of a local hydrogen production and hydrogen refueling station proposed in this paper can reduce the cost of a hydrogen refueling station and accelerate the popularization of hydrogen energy vehicles. Finally the scope of application of the proposed optimization method and the influence of the variation of the electricity price curve and the unit cost of the electrolyzer are discussed.
Effect of Hydrogen-diesel Fuel Co-combustion on Exhaust Emissions with Verification Using an Inecylinder Gas Sampling Technique
Aug 2014
Publication
The paper presents an experimental investigation of hydrogen-diesel fuel co-combustion carried out on a naturally aspirated direct injection diesel engine. The engine was supplied with a range of hydrogen-diesel fuel mixture proportions to study the effect of hydrogen addition (aspirated with the intake air) on combustion and exhaust emissions. The tests were performed at fixed diesel injection periods with hydrogen added to vary the engine load between 0 and 6 bar IMEP. In addition a novel inecylinder gas sampling technique was employed to measure species concentrations in the engine cylinder at two inecylinder locations and at various instants during the combustion process. The results showed a decrease in the particulates CO and THC emissions and a slight increase in CO2 emissions with the addition of hydrogen with fixed diesel fuel injection periods. NOx emissions increased steeply with hydrogen addition but only when the combined diesel and hydrogen co-combustion temperatures exceeded the threshold temperature for NOx formation. The inecylinder gas sampling results showed higher NOx levels between adjacent spray cones in comparison to sampling within an individual spray cone.
Optimal Scheduling of Electricity-Hydrogen Coupling Virtual Power Plant Considering Hydrogen Load Response
Mar 2024
Publication
With the rapid development of hydrogen production by water electrolysis the coupling between the electricity-hydrogen system has become closer providing an effective way to consume surplus new energy generation. As a form of centralized management of distributed energy resources virtual power plants can aggregate the integrated energy production and consumption segments in a certain region and participate in electricity market transactions as a single entity to enhance overall revenue. Based on this this paper proposes an optimal scheduling model of an electricity-hydrogen coupling virtual power plant (EHC-VPP) considering hydrogen load response relying on hydrogen to ammonia as a flexibly adjustable load-side resource in the EHC-VPP to enable the VPP to participate in the day-ahead energy market to maximize benefits. In addition this paper also considers the impact of the carbon emission penalty to practice the green development concept of energy saving and emission reduction. To validate the economy of the proposed optimization scheduling method in this paper the optimization scheduling results under three different operation scenarios are compared and analyzed. The results show that considering the hydrogen load response and fully exploiting the flexibility resources of the EHC-VPP can further reduce the system operating cost and improve the overall operating efficiency.
Decarbonizing Vehicle Transportation with Hydrogen from Biomass Gasification: An Assessment in the Nigerian Urban Environment
Apr 2022
Publication
Tailpipe emissions from vehicles consist of CO2 and other greenhouse gases which con‐ tribute immensely to the rise in global temperatures. Green hydrogen produced from the gasification of biomass can reduce the amount of CO2 emissions to zero. This study aims to provide a modelling framework to optimize the production of hydrogen from biomass waste obtained from different cities for use in the road transport sector in Nigeria. A gasification model with post‐treatment shift conversion and CO2 removal by adsorption is proposed. In this study six cities are simulated based on technical and environmental considerations using the Aspen Plus software package. The results revealed that Kaduna has the highest hydrogen generation potential of 0.148 million metric tons per year which could reduce CO2 emissions to 1.60 and 1.524 million metric tons by the dis‐ placement of an equivalent volume of gasoline and diesel. This amounts to cost savings of NGN 116 and 161.8 billion for gasoline and diesel respectively. In addition the results of the sensitivity analysis revealed that the steam‐to‐biomass ratio and the temperature of gasification are positively correlated with the amount of avoided CO2 emissions while the equivalence ratio shows a negative correlation.
A Coupled Transient Gas Flow Calculation with a Simultaneous Calorific-value-gradient Improved Hydrogen Tracking
Apr 2022
Publication
Gas systems can provide considerable flexibility in integrated energy systems to accommodate hydrogen produced from Power-to-Hydrogen units using excess volatile renewable energy generation. To use the flexibility in integrated energy systems while ensuring a secure and reliable system operation gas system operators need to accurately and easily analyze the effects of varying hydrogen levels on the dynamic gas behavior and vice versa. Existing methods for hydrogen tracking however either solve the hydrogen propagation and dynamic gas behavior separately or must cope with a large inaccuracy. Hence existing methods do not allow an accurate and coupled analysis of gas systems in integrated energy systems considering varying hydrogen levels. This paper proposes a calorific-value-gradient method which can accurately track the propagation of varying hydrogen levels in a gas system even with large simulation time increments of up to one hour. The new method is joined and simultaneously solved with an implicit finite difference scheme describing the transient gas behavior in a single equation system in a coupled Newton–Raphson gas flow calculation. As larger simulation time increments can be chosen without reducing the accuracy the computation time can be strongly reduced compared to existing Euler-based methods. With its high accuracy and its coupled approach this paper provides gas system operators a method to accurately analyze how the propagation of hydrogen affects the entire gas system. With its coupled approach the presented method can enhance the investigation of integrated energy systems as the transient gas behavior and varying hydrogen propagation of the gas system can be easily included in such analyses.
Effect of Hydrogen–diesel Dual-fuel Usage on Performance, Emissions and Diesel Combustion in Diesel Engines
Jul 2016
Publication
Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0% 25% and 50% of total fuel energy where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750 900 1100 1400 1750 and finally 2100 r/min engine speed. Variation in engine performance emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.
Energy Essentials: A Guide to Hydrogen
Jan 2020
Publication
Climate change and air quality concerns have pushed clean energy up the global agenda. As we switch over to new cleaner technologies and fuels our experience of using power heat and transport are going to change transforming the way we live work and get from A to B. Explore this guide to find out what hydrogen is how it is made transported and used what the experience would be like in the home for transport and for businesses and discover what the future of hydrogen might be.
Visit the Energy Institute website for more information
Visit the Energy Institute website for more information
Compact Heat Exchangers for Hydrogen-fueled Aero Engine Intercooling and Recuperation
Jan 2024
Publication
This study investigates the application of compact heat exchangers for the purpose of intercooling and recuperation systems for short-to-medium range aircraft equipped with hydrogen-fueled turbofan engines. The primary objective is to assess the potential effects of engine-integrated compact heat exchangers on fuel consumption and emissions. The paper encompasses the conceptual design of integrated heat exchangers and associated ducts followed by aerodynamic optimization studies to identify suitable designs that minimize air-side pressure losses and ensure flow uniformity at the inlet of the high-pressure compressor. Pressure drop correlations are then established for selected duct designs and incorporated into a system-level performance model allowing for a comparison of their impact on specific fuel consumption NOx emissions and fuel burn against an uncooled baseline engine. The intercooled-recuperated engine resulted in the most significant improvement in take-off specific fuel consumption with a reduction of up to 7.7% compared to the baseline uncooled engine whereas the best intercooled engine resulted in an improvement of about 4%. Furthermore the best configuration demonstrated a decrease in NOx emissions by up to 37% at take-off and a reduction in mission fuel burn by 5.5%. These enhancements were attributed to reduced compression work pre-heating of the hydrogen fuel and lower high-pressure compressor outlet temperatures.
Fundamental Study on Hydrogen Low-NOx Combustion Using Exhaust Gas Self-Recirculation
Jan 2022
Publication
Hydrogen is expected to be a next-generation energy source that does not emit carbon dioxide but when used as a fuel the issue is the increase in the amount of NOx that is caused by the increase in flame temperature. In this study we experimentally investigated NOx emissions rate when hydrogen was burned in a hydrocarbon gas burner which is used in a wide temperature range. As a result of the experiments the amount of NOx when burning hydrogen in a nozzle mixed burner was twice as high as when burning city gas. However by increasing the flow velocity of the combustion air the amount of NOx could be reduced. In addition by reducing the number of combustion air nozzles rather than decreasing the diameter of the air nozzles a larger recirculation flow could be formed into the furnace and the amount of NOx could be reduced by up to 51%. Furthermore the amount of exhaust gas recirculation was estimated from the reduction rate of NOx and the validity was confirmed by the relationship between adiabatic flame temperature and NOx calculated from the equilibrium calculation by chemical kinetics simulator software.
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Sustainable Power Supply Solutions for Off-Grid Base Stations
Sep 2015
Publication
The telecommunication sector plays a significant role in shaping the global economy and the way people share information and knowledge. At present the telecommunication sector is liable for its energy consumption and the amount of emissions it emits in the environment. In the context of off-grid telecommunication applications off-grid base stations (BSs) are commonly used due to their ability to provide radio coverage over a wide geographic area. However in the past the off-grid BSs usually relied on emission-intensive power supply solutions such as diesel generators. In this review paper various types of solutions (including in particular the sustainable solutions) for powering BSs are discussed. The key aspects in designing an ideal power supply solution are reviewed and these mainly include the pre-feasibility study and the thermal management of BSs which comprise heating and cooling of the BS shelter/cabinets and BS electronic equipment and power supply components. The sizing and optimization approaches used to design the BSs’ power supply systems as well as the operational and control strategies adopted to manage the power supply systems are also reviewed in this paper.
Hy4Heat Understanding Commercial Appliances - Work Package 5
Nov 2020
Publication
The 'Hydrogen for Heat' (Hy4Heat) programme aims to support the UK Government in its ambitions to decarbonise the UK energy sector in line with the targets of the Climate Change Act 2008 by attempting to evaluate and de-risk the natural gas to hydrogen network conversion option. The impact on the commercial sector is an important factor in understanding the feasibility of utilising hydrogen to decarbonise heat in the UK. The overall objective of the market research study Work Package 5 (WP5) was to determine if it is theoretically possible to successfully convert the commercial sector to hydrogen. This work will contribute to the understanding of the scale type and capacity of gas heating appliances within the sector providing a characterisation of the market and determining the requirements and feasibility for successfully transitioning them to hydrogen in the future.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Hy4Heat Conversion of Industrial Heating Equipment to Hydrogen - Work Package 6
Jan 2020
Publication
The study focuses on converting current industrial natural gas heating technologies to use 100% hydrogen considering the evidence which must be available before a decision on the UK’s decarbonisation pathway for heating could be made. The aim of the study is to assess the technical requirements and challenges associated with industrial hydrogen conversion and estimate the associated costs and timeframes.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Combustion Analysis of Hydrogen-diesel Dual Fuel Engine with Water Injection Technique
Dec 2018
Publication
In this paper the effect of direct diesel injection timing and engine speed on the performance and emissions of CI engine operating on RCCI (H2/diesel mixture) coupled with water injection have been numerically investigated and validated. The simulation have been carried out using GT-Power professional software. A single cylinder dual fuel compression ignition model has been built. The diesel fuel was injected directly to the cylinder. The hydrogen and water were injected to the engine intake manifold and engine port with constant mass flow rate and constant temperature for all engine speed. During the simulation the engine speed was varied from 1000 to 5000 rpm and the diesel injection timing was varied from (−5° to −25° CAD). In addition the optimized diesel injection timing for specific engine operation parameters has also been performed. The results show that for specific injection timing and constant hydrogen and water mass flow rate the increase of engine speed results in an increase in the cylinder temperature engine brake power brake specific fuel consumption and NO emissions; but decreases brake thermal efficiency. Moreover the analysis performed shows that the advanced injection timing decreases the engine power brake thermal efficiency and CO emissions; but increases NO emissions.
Medium-Energy Synthesis Gases from Waste as an Energy Source for an Internal Combustion Engine
Dec 2021
Publication
The aim of the presented article is to analyse the influence of synthesis gas composition on the power economic and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3 ) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane hydrogen and carbon monoxide) as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically for the operating speed of the micro-cogeneration unit (1500 L/min) the decrease in power parameters was in the range of 7.1–23.5%; however the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6% which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.
Challenges in the Use of Hydrogen for Maritime Applications
Jan 2021
Publication
Maritime shipping is a key factor that enables the global economy however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods and in this work we discuss the storage of hydrogen at high pressure in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.
Path to Hydrogen Competitiveness: A Cost Perspective
Jan 2020
Publication
This latest Hydrogen Council report shows that the cost of hydrogen solutions will fall sharply within the next decade – and sooner than previously expected. As scale up of hydrogen production distribution equipment and component manufacturing continues cost is projected to decrease by up to 50% by 2030 for a wide range of applications making hydrogen competitive with other low-carbon alternatives and in some cases even conventional options.
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
- Strong fall in the cost of producing low carbon and renewable hydrogen;
- Lower distribution and refuelling costs thanks to higher load utilisation and scale effect on infrastructure utilisation; and
- Dramatic drop in the cost of components for end-use equipment under scaling up of manufacturing.
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
Study on Fuel Cells Hydrogen Trucks
Dec 2020
Publication
Fuel cell and hydrogen (FCH) technology is a very promising zero-emission powertrain solution for the heavy-duty trucking industry. The FCH 2 JU subcontracted this study to analyse the state-of-the-art of the technology its surrounding policy and regulatory regime ongoing trial and demonstrations projects and its total cost of ownership and market potential. Furthermore specific case studies and industry experts identified remaining technological and non-technological barriers for FCH technology in different trucking use cases.
The study projects a potential fuel cell trucks sales share of approx. 17% of new trucks sold in 2030 based on a strong technology cost-reduction trajectory. With scaled-up production of FCH trucks and hydrogen offered below 6 EUR/kg FCH heavy-duty trucks (FCH HDT) provide the operational performance most comparable to diesel trucks regarding daily range refuelling time payload capacity and TCO. Nine case studies were developed as first tangible business opportunity blueprints for the industry. They also provide a view on current limitations of real-life operations. In conclusion 22 barriers have been identified that successfully tackled will unlock the full commercial potential of FCH HDT for the trucking and logistics industry. The study proposes tailored R&I projects and policy recommendations that address such remaining barriers in the short-term.
The study projects a potential fuel cell trucks sales share of approx. 17% of new trucks sold in 2030 based on a strong technology cost-reduction trajectory. With scaled-up production of FCH trucks and hydrogen offered below 6 EUR/kg FCH heavy-duty trucks (FCH HDT) provide the operational performance most comparable to diesel trucks regarding daily range refuelling time payload capacity and TCO. Nine case studies were developed as first tangible business opportunity blueprints for the industry. They also provide a view on current limitations of real-life operations. In conclusion 22 barriers have been identified that successfully tackled will unlock the full commercial potential of FCH HDT for the trucking and logistics industry. The study proposes tailored R&I projects and policy recommendations that address such remaining barriers in the short-term.
UKERC Research Atlas Landscape – Fuel Cells
Dec 2013
Publication
This UKERC Research Atlas Landscape provides an overview of the competencies and publicly funded activities in fuel cell research development and demonstration (RD&D) in the UK. It covers the main funding streams research providers infrastructure networks and UK participation in international activities.
Recent Progress in Ammonia Fuel Cells and their Potential Applications
Nov 2020
Publication
Conventional technologies are largely powered by fossil fuel exploitation and have ultimately led to extensive environmental concerns. Hydrogen is an excellent carbon-free energy carrier but its storage and long-distance transportation remain big challenges. Ammonia however is a promising indirect hydrogen storage medium that has well-established storage and transportation links to make it an accessible fuel source. Moreover the notion of ‘green ammonia’ synthesised from renewable energy sources is an emerging topic that may open significant markets and provide a pathway to decarbonise a variety of applications reliant on fossil fuels. Herein a comparative study based on the chosen design working principles advantages and disadvantages of direct ammonia fuel cells is summarised. This work aims to review the most recent advances in ammonia fuel cells and demonstrates how close this technology type is to integration with future applications. At present several challenges such as material selection NOx formation CO2 tolerance limited power densities and long term stability must still be overcome and are also addressed within the contents of this review.
How EU Legislation Can Drive an Uptake of Sustainable Advanced Fuels in Aviation
Jul 2020
Publication
The report calls for a focus on new advanced alternative fuels in particular synthetic kerosene (efuels) which have the capacity to substantially reduce emissions and be scaled up to meet the fuel demands of the sector.
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
Oct 2019
Publication
As energy systems transition from fossil-based to low-carbon they face many challenges particularly concerning energy security and flexibility. Hydrogen may help to overcome these challenges with potential as a transport fuel for heating energy storage conversion to electricity and in industry. Despite these opportunities hydrogen has historically had a limited role in influential global energy scenarios. Whilst more recent studies are beginning to include hydrogen the role it plays in different scenarios is extremely inconsistent. In this perspective paper reasons for this inconsistency are explored considering the modelling approach behind the scenario scenario design and data assumptions. We argue that energy systems are becoming increasingly complex and it is within these complexities that new technologies such as hydrogen emerge. Developing a global energy scenario that represents these complexities is challenging and in this paper we provide recommendations to help ensure that emerging technologies such as hydrogen are appropriately represented. These recommendations include: using the right modelling tools whilst knowing the limits of the model; including the right sectors and technologies; having an appropriate level of ambition; and making realistic data assumptions. Above all transparency is essential and global scenarios must do more to make available the modelling methods and data assumptions used.
The Ten Point Plan for a Green Industrial Revolution: Building Back Better, Supporting Green Jobs, and Accelerating Our Path to Net Zero
Nov 2020
Publication
As the world looks to recover from the impact of coronavirus on our lives livelihoods and economies we have the chance to build back better: to invest in making the UK a global leader in green technologies.
The plan focuses on increasing ambition in the following areas:
The plan focuses on increasing ambition in the following areas:
- advancing offshore wind
- driving the growth of low carbon hydrogen
- delivering new and advanced nuclear power
- accelerating the shift to zero emission vehicles
- green public transport cycling and walking
- ‘jet zero’ and green ships
- greener buildings
- investing in carbon capture usage and storage
- protecting our natural environment
- green finance and innovation
Transport Energy Air Pollution Model
May 2019
Publication
The transport sector remains at the centre of any debates around energy conservation exaggerated by the stubborn and overwhelming reliance on fossil fuels by its motorised forms whether passenger and freight road rail sea and air.<br/>The very slow transition to alternative fuel sources to date has resulted in this sector being increasingly and convincingly held responsible for the likely failure of individual countries including the UK to meet their obligations under consecutive international climate change agreements.<br/>Electrification of transport is largely expected to take us down the path to a ‘zero carbon future’ (CCC 2019; DfT 2018). But there are serious concerns about future technology performance availability costs and uptake by consumers and businesses. There are also concerns about the increasing gap between lab and ‘real world’ performance of energy use carbon and air pollution emissions. Recently the role of consumer ‘lifestyles’ has increased in prominence (e.g. IPCC 2018) but as yet has not been taken seriously by the DfT BEIS or even the CCC (2019).
Measuring Accuracy and Computational Capacity Trade-offs in an Hourly Integrated Energy System Model
Feb 2021
Publication
Improving energy system modelling capabilities can directly affect the quality of applied studies. However some modelling trade-offs are necessary as the computational capacity and data availability are constrained. In this paper we demonstrate modelling trade-offs resulting from the modification in the resolution of four modelling capabilities namely transitional scope European electricity interconnection hourly demand-side flexibility description and infrastructure representation. We measure the cost of increasing resolution in each capability in terms of computational time and several energy system modelling indicators notably system costs emission prices and electricity import and export levels. The analyses are performed in a national-level integrated energy system model with a linear programming approach that includes the hourly electricity dispatch with European nodes. We determined that reducing the transitional scope from seven to two periods can reduce the computational time by 75% while underestimating the objective function by only 4.6%. Modelers can assume a single European Union node that dispatches electricity at an aggregated level which underestimates the objective function by 1% while halving the computational time. Furthermore the absence of shedding and storage flexibility options can increase the curtailed electricity by 25% and 8% respectively. Although neglecting flexibility options can drastically decrease the computational time it can increase the sub-optimality by 31%. We conclude that an increased resolution in modelling flexibility options can significantly improve the results. While reducing the computational time by half the lack of electricity and gas infrastructure representation can underestimate the objective function by 4% and 6% respectively.
HYDRIDE4MOBILITY: An EU HORIZON 2020 Project on Hydrogen Powered Fuel Cell Utility Vehicles Using Metal Hydrides in Hydrogen Storage and Refuelling Systems
Feb 2021
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Vladimir Linkov,
Sivakumar Pasupathi,
Moegamat Wafeeq Davids,
Gojmir Radica,
Roman V. Denys,
Jon Eriksen,
José Bellosta von Colbe,
Klaus Taube,
Giovanni Capurso,
Martin Dornheim,
Fahmida Smith,
Delisile Mathebula,
Dana Swanepoel,
Suwarno Suwarno and
Ivan Tolj
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells together with the systems for their refuelling at industrial customers facilities. For these applications high specific weight of the metallic hydrides has an added value as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level simplification of the design and reducing the system cost together with improvement of the efficiency of system “MH store-FC” is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway Germany Croatia) and two partner countries (South Africa and Indonesia).<br/>The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.<br/>This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicles that use hydrogen in a mixture with natural gas or gasoline were considered. In all cases hydrogen produced by wind power electrolysis was assumed. The resultant life-cycle profiles were benchmarked against those of a compressed natural gas car and a hybrid electric vehicle fed with natural gas. Vehicle infrastructure was identified as the main source of environmental burdens. Nevertheless the three pure hydrogen vehicles were all found to be excellent decarbonisation solutions whereas vehicles that use hydrogen mixed with natural gas or gasoline represent good opportunities to encourage the use of hydrogen in the short term while reducing emissions compared to ordinary vehicles.
Fuel Cell Electric Vehicles and Hydrogen Balancing 100 Percent Renewable and Integrated National Transportation and Energy Systems
Feb 2021
Publication
Future national electricity heating cooling and transport systems need to reach zero emissions. Significant numbers of back-up power plants as well as large-scale energy storage capacity are required to guarantee the reliability of energy supply in 100 percent renewable energy systems. Electricity can be partially converted into hydrogen which can be transported via pipelines stored in large quantities in underground salt caverns to overcome seasonal effects and used as electricity storage or as a clean fuel for transport. The question addressed in this paper is how parked and grid-connected hydrogen-fuelled Fuel Cell Electric Vehicles might balance 100 per cent renewable electricity heating cooling and transport systems at the national level in Denmark Germany Great Britain France and Spain? Five national electricity heating cooling and transport systems are modeled for the year 2050 for the five countries assuming only 50 percent of the passenger cars to be grid-connected Fuel Cell Electric Vehicles the remaining Battery Electric Vehicles. The grid-connected Fuel Cell Electric Vehicle fleet can always balance the energy systems and their usage is low having load factors of 2.1–5.5 percent corresponding to an average use of 190–480 h per car per year. At peak times occurring only a few hours per year 26 to 43 percent of the grid-connected Fuel Cell Electric Vehicle are required and in particular for energy systems with high shares of solar energy such as Spain balancing by grid-connected Fuel Cell Electric Vehicles is mainly required during the night which matches favorably with driving usage.
Review of the Current Status of Ammonia-Blended Hydrogen Fuel Engine Development
Jan 2022
Publication
As fossil fuels continue to be extracted and used issues such as environmental pollution and energy scarcity are surfacing. For the transportation industry the best way to achieve the goal of “carbon neutrality” is to research efficient power systems and develop new alternative fuels. As the world’s largest product of chemicals ammonia is a new renewable fuel with good combustion energy. It can be used as an alternative fuel to reduce carbon emissions because of its proven production process low production and transportation costs safe storage the absence of carbon-containing compounds in its emissions and its future recyclability. This paper firstly introduces the characteristics of ammonia fuel engine and its problems; then it summarizes the effects of various ammonia-blended fuels on the combustion and emission characteristics of the engine from the combustion problem of ammonia-blended engine; then the fuel storage of ammonia-blended hydrogen is discussed the feasibility of hydrogen production instead of hydrogen storage is introduced.
Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking
Mar 2021
Publication
Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO2) emissions. Hydrogen (H2) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H2 is produced via electrolysis using fossil-free electricity. However electrolysis is an electricity-intensive process. Therefore it is preferable that H2 is predominantly produced during times of low electricity prices which is enabled by the storage of H2. This work compares the integration of H2 storage in four liquid carriers methanol (MeOH) formic acid (FA) ammonia (NH3) and perhydro-dibenzyltoluene (H18-DBT) in H-DR processes. In contrast to conventional H2 storage methods these carriers allow for H2 storage in liquid form at moderate overpressures reducing the storage capacity cost. The main downside to liquid H2 carriers is that thermochemical processes are necessary for both the storage and release processes often with significant investment and operational costs. The carriers are compared using thermodynamic and economic data to estimate operational and capital costs in the H-DR context considering process integration options. It is concluded that the use of MeOH is promising compared to the other considered carriers. For large storage volumes MeOH-based H2 storage may also be an attractive option to the underground storage of compressed H2. The other considered liquid H2 carriers suffer from large thermodynamic barriers for hydrogenation (FA) or dehydrogenation (NH3 H18-DBT) and higher investment costs. However for the use of MeOH in an H-DR process to be practically feasible questions regarding process flexibility and the optimal sourcing of CO2 and heat must be answered
Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors
Mar 2024
Publication
Decarbonizing the current steel and power sectors through the development of the hydrogen direct-reduction iron ore–electric arc furnace route and the 100% hydrogen-fired gas turbine cycle is crucial. The current study focuses on three clusters of research works. The first cluster covers the investigation of the mass and energy balance of the route and the subsequent application of these values in experiments to optimize the reduction yield of iron ore. In the second cluster the existing gas turbine unit was selected for the complete replacement of natural gas with hydrogen and for finding the most optimal mass and energy balance in the cycle through an Aspen HYSYS model. In addition the chemical kinetics in the hydrogen combustion process were simulated using Ansys Chemkin Pro to research the emissions. In the last cluster a comparative economic analysis was conducted to identify the levelized cost of production of the route and the levelized cost of electricity of the cycle. The findings in the economic analysis provided good insight into the details of the capital and operational expenditures of each industrial sector in understanding the impact of each kg of hydrogen consumed in the plants. These findings provide a good basis for future research on reducing the cost of hydrogen-based steel and power sectors. Moreover the outcomes of this study can also assist ongoing large-scale hydrogen and ammonia projects in Uzbekistan in terms of designing novel hydrogen-based industries with cost-effective solutions.
Five Minute Guide to Hydrogen
Feb 2016
Publication
Hydrogen is an emerging energy vector many components of which are mature technologies. Current hydrogen technology is already able to provide advantages over other energy vectors and many of its challenges are being actively addressed by research and development.<br/><br/>Hydrogen can be derived stored and converted through various processes each of which represents different levels of carbon intensity efficiency and end use functionality. Our latest five minute guide looks at this energy vector in brief including public perception transportation and storage as well as using hydrogen as a solution.
Comparison of Hydrogen and Battery Electric Trucks
Jul 2020
Publication
Only emissions-free vehicles which include battery electric (BEVs) and hydrogen fuel cell trucks (FCEVs) can provide for a credible long-term pathway towards the full decarbonisation of the road freight sector. This document lays out the methodology and assumptions which were used to calculate the total cost of ownership (TCO) of the two vehicle technologies for regional delivery and long-haul truck applications. It also discusses other criteria such as refuelling and recharging times as well as potential payload losses.
Link to Document Download on Transport & Environment website
Link to Document Download on Transport & Environment website
Is Hydrogen the Fuel of the Future?
Jul 2019
Publication
Global warming and melting of the ice on both poles of the Earth is caused by the greenhouse effect which is the result of CO2 production. This gas is considered as the main gas causing the greenhouse effect although not the only one. To reduce the total amount of CO2 emitted to the atmosphere mankind looks for an alternative fuel with no carbon present in its molekules. Hydrogen is such a fuel although emissions are produced also during the fuel production process. To compare hydrogen fuel with fossil fuels more aspects have to be considered.
Hydrogen an Enabler of the Grand Transition Future Energy Leader Position Paper
Jan 2018
Publication
A major transformation and redesign of the global energy system is required towards decarbonisation and to achieve the Paris Agreement targets. This Grand Transition is a complex pressing issue where global joint efforts and system solutions are essential; with hydrogen being one of them.<br/>Hydrogen has the potential to be a powerful effective accelerator towards a low-carbon energy system capable of addressing multiple energy challenges: from facilitating the massive integration of renewables and decarbonisation of energy production to energy transportation in a zero-carbon energy economy to electrification of end uses.
Hydrogen: A Critical Part of Heat Decarbonisation
Feb 2021
Publication
The use of clean hydrogen is likely to form a key part of a net-zero emissions future and has the potential to replace natural gas for end use heating. As part of BDR Thermea Group Baxi Heating UK are at the forefront of hydrogen boiler development. Working with the Hy4Heat programme hydrogen fuelled boilers have been produced for inclusion in trial sites across the UK. This presentation will explore progress to date together with the hydrogen-ready boiler concept.
No more items...