Applications & Pathways
Enabling the Scale Up of Green Hydrogen in Ireland by Decarbonising the Haulage Sector
Jul 2022
Publication
The current research on green hydrogen can focus from the perspective of production but understanding the demand side is equally important to the initial creation of a hydrogen ecosystem in countries with low industrial activities that can utilise large amounts of hydrogen in the short term. Early movers in these countries must create a demand market in parallel with the green hydrogen plant commissioning. This paper presents research that explores the heavy-duty transport sector as a market-of-interest for early deployment of green hydrogen in Ireland. Conducting a survey-based market research amongst this sector indicate significant interest in hydrogen on the island of Ireland and the barriers the participants presented have been overcome in other jurisdictions. The study develops a model to estimate 1.) the annual hydrogen demand and 2.) the corresponding delivery cost to potential hydrogen consumers either directly or to central hydrogen fuelling hubs.
Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-economic Assessment
Nov 2022
Publication
This paper aims to present a pre-feasibility study of a power-to-fuel plant configuration designed for the production of 500 kg/h of renewable methanol (e-methanol) from green hydrogen and captured carbon dioxide. Hydrogen is obtained by water electrolysis employing the overproduction of renewable electricity. Carbon dioxide is assumed to be separated from the flue gas of a conventional power station by means of an amine-based CO2 absorption system. A comprehensive process model has been developed with the support of Aspen Plus tool to simulate all the plant sections and the overall system. After the process optimization a detailed economic analysis – based on capital and operating costs derived from commercial-scale experience and assuming a 20- year lifetime – has been performed to calculate a levelized cost of methanol (LCoM) of 960 €/t (about 175 €/MWh). The analysis confirms that today the technology is still not competitive from the economic point of view being LCoM more than double than the current methanol price in the international market (450 €/t). However it indicates that the process is expected to become competitive in a mid-term future as a consequence of the new European policies. The study also reveals that LCoM is mainly affected by the electricity price and the electrolyser capital cost as well as the capacity factor of the plant.
Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology
Dec 2022
Publication
The energy sector is nowadays facing new challenges mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm which involves the application of small-scale energy generation systems. In this scenario systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances such as fresh water and hydrogen are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar wind biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature medium and large-scale systems are the most investigated; nevertheless more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore this paper provides a comprehensive review of the technology operation performance and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems designs/modeling approaches and tools and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration hybridization and applications.
Hydrogen Refueling Stations and Carbon Emission Reduction of Coastal Expressways: A Deployment Model and Multi-Scenario Analysis
Jul 2022
Publication
Hydrogen is considered to the ultimate solution to achieve carbon emission reduction due to its wide sources and high calorific value as well as non-polluting renewable and storable advantages. This paper starts from the coastal areas uses offshore wind power hydrogen production as the hydrogen source and focuses on the combination of hydrogen supply chain network design and hydrogen expressway hydrogen refueling station layout optimization. It proposes a comprehensive mathematical model of hydrogen supply chain network based on cost analysis which determined the optimal size and location of hydrogen refueling stations on hydrogen expressways in coastal areas. Under the multi-scenario and multi-case optimization results the location of the hydrogen refueling station can effectively cover the road sections of each case and the unit hydrogen cost of the hydrogen supply chain network is between 11.8 and 15.0 USD/kgH2 . Meanwhile it was found that the transportation distance and the number of hydrogen sources play a decisive role on the cost of hydrogen in the supply chain network and the location of hydrogen sources have a decisive influence on the location of hydrogen refueling stations. In addition carbon emission reduction results of hydrogen supply chain network show that the carbon emission reduction per unit hydrogen production is 15.51 kgCO2/kgH2 at the production side. The CO2 emission can be reduced by 68.3 kgCO2/km and 6.35 kgCO2/kgH2 per unit mileage and per unit hydrogen demand at the application side respectively. The layout planning utilization of hydrogen energy expressway has a positive impact on energy saving and emission reduction.
Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives
Jul 2022
Publication
Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines ammonia can be successfully used in dual-fuel mode with diesel. On the contrary an increase in NOx and the unburned NH3 at the exhaust require the installation of apposite aftertreatment systems. Therefore the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels.
Multi-Time Scale Optimal Scheduling Model of Wind and Hydrogen Integrated Energy System Based on Carbon Trading
Jan 2023
Publication
In the context of carbon trading energy conservation and emissions reduction are the development directions of integrated energy systems. In order to meet the development requirements of energy conservation and emissions reduction in the power grid considering the different responses of the system in different time periods a wind-hydrogen integrated multi-time scale energy scheduling model was established to optimize the energy-consumption scheduling problem of the system. As the scheduling model is a multiobjective nonlinear problem the artificial fish swarm algorithm–shuffled frog leaping algorithm (AFS-SFLA) was used to solve the scheduling model to achieve system optimization. In the experimental test process the Griewank benchmark function and the Rosenbrock function were selected to test the performance of the proposed AFS-SFL algorithm. In the Griewank environment compared to the SFLA algorithm the AFS-SFL algorithm was able to find a feasible solution at an early stage and tended to converge after 110 iterations. The optimal solution was −4.83. In the test of total electric power deviation results at different time scales the maximum deviation of early dispatching was 14.58 MW and the minimum deviation was 0.56 MW. The overall deviation of real-time scheduling was the minimum and the minimum deviation was 0 and the maximum deviation was 1.89 WM. The integrated energy system adopted real-time scale dispatching with good system stability and low-energy consumption. Power system dispatching optimization belongs to the objective optimization problem. The artificial fish swarm algorithm and frog algorithm were innovatively combined to solve the dispatching model which improved the accuracy of power grid dispatching. The research content provides an effective reference for the efficient use of clean and renewable energy.
Recent Development of Fuel Cell Core Components and Key Materials: A Review
Feb 2023
Publication
Fuel cells as key carriers for hydrogen energy development and utilization provide a vital opportunity to achieve zero-emission energy use and have thus attracted considerable attention from fundamental research to industrial application levels. Considering the current status of fuel cell technology and the industry this paper presents a systematic elaboration of progress and development trends in fuel cell core components and key materials such as stacks bipolar plates membrane electrodes proton exchange membranes catalysts gas diffusion layers air compressors and hydrogen circulation systems. In addition some proposals for the development of fuel cell vehicles in China are presented based on the analysis of current supporting policies standards and regulations along with manufacturing costs in China. The fuel cell industry of China is still in the budding stage of development and thus suffers some challenges such as lagging fundamental systems imperfect standards and regulations high product costs and uncertain technical safety and stability levels. Therefore to accelerate the development of the hydrogen energy and fuel cell vehicle industry it is an urgent need to establish a complete supporting policy system accelerate technical breakthroughs transformations and applications of key materials and core components and reduce the cost of hydrogen use.
Jet Zero Strategy: Delivering Net Zero Aviation by 2050
Jul 2022
Publication
The Jet Zero strategy sets out how we will achieve net zero aviation by 2050.<br/>It focuses on the rapid development of technologies in a way that maintains the benefits of air travel whilst maximising the opportunities that decarbonisation can bring to the UK.<br/>The Jet Zero strategy includes a 5-year delivery plan setting out the actions that will need to be taken in the coming years to support the delivery of net zero aviation by 2050. We will be monitoring progress and reviewing and updating our strategy every 5 years.<br/>The strategy is informed by over 1500 responses to the Jet Zero consultation and the Jet Zero further technical consultation to which we have issued a summary of responses and government response.<br/>The Jet Zero investment flightpath is part of a series of roadmaps to be published over the course of 2022 for each sector of the Prime Minister’s Ten point plan for a green industrial revolution.<br/>It showcases the UK’s leading role in the development and commercialisation of new low and zero emission aviation technologies. It also highlights investment opportunities across systems efficiencies sustainable aviation fuels and zero emission aircraft.
HydroGenerally - Episode 5: Hydrogen for Glass Production
May 2022
Publication
In this fifth episode Steffan Eldred and Neelam Mughal from Innovate UK KTN discuss how the glass industry is driving new hydrogen developments and research and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Ireson Innovation and Partnerships Manager at Glass Futures Ltd.
The podcast can be found on their website
The podcast can be found on their website
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
Optimising Fuel Supply Chains within Planetary Boundaries: A Case Study of Hydrogen for Road Transport in the UK
Jul 2020
Publication
The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap here we apply the concept of planetary boundaries (PBs) i.e. a set of biophysical limits critical for operating the planet safely to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP) we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level i.e. while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance CO2 concentration and ocean acidification PBs heavily i.e. five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially i.e. reductions of 9–86% depending on the case. However it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail which would require as much as 37 TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.
Impact of Hydrogen in the Road Transport Sector for Portugal 2010-2050
Nov 2014
Publication
This paper presents an analysis of the potential economic-wide energy and CO2 emissions implications of hydrogen vehicle penetration into the Portuguese road transport over the time-horizon 2010-2050. The energy and emissions implications are obtained using PATTS (Projections for Alternative Transportation Technologies Simulation) an excel spreadsheet model based on forecast scenarios. Historical data and trends of gasoline versus diesel share fleet scrappadge representative light-duty vehicle technologies life cycle energy and emission factors are used to estimate on a yearly basis the total fleet life cycle energy consumption CO2 emissions and air quality related impact. The macroeconomic effects are assessed with a Computable General Equilibrium model that is solved as a non-linear optimization problem formulated in GAMS software capable of dealing with substitution between labour capital stock electric energy and non-electric energy factors of production. It integrates parameter inputs obtained from PATTS tool where the transportation sector becomes hydrogen driven and a wide hydrogen refuelling infrastructure is deployed. The simulation experiments show that "hydrogen technologies" are likely to become economically viable. Household consumption real GDP and investment increase from baseline. The positive impact upon the economic variables is supplemented by energy costs reductions of just -0.1 to -0.3 percent per annum in both high-price and low-price cases. The economy grows faster in the low-price case where the reductions in energy costs are also more pronounced. CO2 avoided emissions due to hydrogen economy reach a maximum of 2 kton/km in 2050 if the natural gas steam reforming production method is adopted.
A Review of Key Components of Hydrogen Recirculation Subsystem for Fuel Cell Vehicles
Jul 2022
Publication
Hydrogen energy and fuel cell technology are critical clean energy roads to pursue carbon neutrality. The proton exchange membrane fuel cell (PEMFC) has a wide range of commercial application prospects due to its simple structure easy portability and quick start-up. However the cost and durability of the PEMFC system are the main barriers to commercial applications of fuel cell vehicles. In this paper the core hydrogen recirculation components of fuel cell vehicles including mechanical hydrogen pumps ejectors and gas–water separators are reviewed in order to understand the problems and challenges in the simulation design and application of these components. The types and working characteristics of mechanical pumps used in PEMFC systems are summarized. Furthermore corresponding design suggestions are given based on the analysis of the design challenges of the mechanical hydrogen pump. The research on structural design and optimization of ejectors for adapting wide power ranges of PEMFC systems is analyzed. The design principle and difficulty of the gas–water separator are summarized and its application in the system is discussed. In final the integration and control of hydrogen recirculation components controlled cooperatively to ensure the stable pressure and hydrogen supply of the fuel cell under dynamic loads are reviewed.
The Effect of Hydrogen Addition on the Pollutant Emissions of a Marine Internal Combustion Engine Genset
Sep 2022
Publication
Hydrogen as a maritime fuel is one of the solutions that will assist the shipping sector in addressing the challenges regarding decarbonization taking into consideration the targets set for 2030 and 2050. The extensive utilization of hydrogen requires massive production of green hydrogen and the development of proper infrastructure to support a sustainable supply chain. An alternative solution is based on the on-board production of hydrogen where production units are installed on-board the vessel. Along these lines the HYMAR project aims to test the utilization of a hydrogen production unit for on-board use. The article deals with the use of hydrogen as a fuel for internal combustion engines taking into consideration reports from literature and the preliminary results of the HYMAR project focusing on the environmental impact and the reduction in emissions. Experimental investigation on a marine auxiliary engine for power generation under the HYMAR project leads to promising results regarding the environmental footprint of the internal combustion engine when hydrogen is added in the fuel mix with increasing percentages.
On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process
Feb 2019
Publication
The hydrogen storage pressure in fuel cell vehicles has been increased from 35 MPa to 70 MPa in order to accommodate longer driving range. On the downside such pressure increase results in significant temperature rise inside the hydrogen tank during fast filling at a fueling station which may pose safety issues. Installation of a chiller often mitigates this concern because it cools the hydrogen gas before its deposition into the tank. To address both the energy efficiency improvement and safety concerns this paper proposed an on-board cold thermal energy storage (CTES) system cooled by expanded hydrogen. During the driving cycle the proposed system uses an expander instead of a pressure regulator to generate additional power and cold hydrogen gas. Moreover CTES is equipped with phase change materials (PCM) to recover the cold energy of the expanded hydrogen gas which is later used in the next filling to cool the high-pressure hydrogen gas from the fueling station.
Introduction of Hydrogen in the Kosovo Transportation Sector
Oct 2022
Publication
Based on the energy strategy of the Republic of Kosovo from 2017–2026 the increase in the integration of renewable energy sources (RES) in the national energy system was aimed at. However the hydrogen potential was not mentioned. In this work a roadmap toward the introduction of hydrogen in the energy system with the main focus on the transportation sector through three phases is proposed. In the first phase (until 2024) the integration of hydrogen in the transportation sector produced via water electrolysis from the grid electricity with the increase of up to a 0.5% share of fuel cell vehicles is intended. In the second phase (2025–2030) the hydrogen integration in the transportation sector is increased by including renewable hydrogen where the share of fuel cell electric vehicles (FCEVs) will be around 4% while in the third phase (2031–2050) around an 8% share of FCEVs in the transportation was planned. The technical and environmental analysis of hydrogen integration is focused on both the impact of hydrogen in the decarbonization of the transportation sector and the energy system. To model the Kosovo energy system the hourly deterministic EnergyPLAN model was used. This research describes the methodology based on EnergyPLAN modeling that can be used for any energy system to provide a clear path of RES and hydrogen implementation needed to achieve a zero-emission goal which was also set by various other countries. The predicted decrease in GHG emissions from 8 Mt in the referent year 2017 amounts to 7 Mt at the end of the first phase 2024 and 4.4 Mt at the end of the second phase 2030 to achieve 0 Mt by 2050. In order to achieve it the required amount of hydrogen by 2030 resulted in 31840 kg/year and by 2050 around 89731 kg/year. The results show the concrete impact of hydrogen on transport system stabilization and its influence on greenhouse gas (GHG) emissions reduction.
The Effect of a Nuclear Baseload in a Zero-carbon Electricity System: An Analysis for the UK
Jan 2023
Publication
This paper explores the effect of having a nuclear baseload in a 100% carbon-free electricity system The study analyses numerous 8 scenarios based on different penetrations of conventional nuclear wind and solar PV power different levels of overgeneration 9 and different combinations between medium and long duration energy stores (hydrogen and compressed air respectively) to 10 determine the configuration that achieves the lowest total cost of electricity (TCoE). 11 At their current cost new baseload nuclear power plants are too expensive. Results indicate the TCoE is minimised when demand 12 is supplied entirely by renewables with no contribution from conventional nuclear. 13 However small modular reactors may achieve costs of ~£60/MWh (1.5x current wind cost) in the future. With such costs 14 supplying ~80% of the country’s electricity demand with nuclear power could minimise the TCoE. In this scenario wind provides 15 the remaining 20% plus a small percentage of overgeneration (~2.5%). Hydrogen in underground caverns provides ~30.5 TWh (81 16 days) of long-duration energy storage while CAES systems provide 2.8 TWh (~8 days) of medium-duration storage. This 17 configuration achieves costs of ~65.8 £/MWh. Batteries (required for short duration imbalances) are not included in the figure. 18 The TCoE achieved will be higher once short duration storage is accounted for.
One-dimensional Numerical Investigation on Multi-cylinder Gasoline Engine Fueled by Micro-emulsions, CNG, and Hydrogen in Dual Fuel Mode
Aug 2022
Publication
This research work is the novel state-of-the-art technology performed on multi-cylinder SI engine fueled compressed natural gas emulsified fuel and hydrogen as dual fuel. This work predicts the overall features of performance combustion and exhaust emissions of individual fuels based on AVL Boost simulation technology. Three types of alternative fuels have been compared and analyzed. The results show that hydrogen produces 20% more brake power than CNG and 25% more power than micro-emulsion fuel at 1500 r/min which further increases the brake power of hydrogen CNG and micro-emulsions in the range of 25% 20% and 15% at higher engine speeds of 2500–4000 r/min respectively. In addition the brake-specific fuel consumption is the lowest for 100% hydrogen followed by CNG 100% and then micro-emulsions at 1500 r/min. At 2500– 5000 r/min there is a significant drop in brake-specific fuel consumption due to a lean mixture at higher engine speeds. The CO HC and NOx emissions significantly improve for hydrogen CNG and micro-emulsion fuel. Hydrogen fuel shows zero CO and HC emissions and is the main objective of this research to produce 0% carbon-based emissions with a slight increase in NOx emissions and CNG shows 30% lower CO emissions than micro-emulsions and 21.5% less hydrocarbon emissions than micro-emulsion fuel at stoichiometric air/fuel ratio.
A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation
Oct 2022
Publication
The energy transition with transformation into predominantly renewable sources requires technology development to secure power production at all times despite the intermittent nature of the renewables. Micro gas turbines (MGTs) are small heat and power generation units with fast startup and load-following capability and are thereby suitable backup for the future’s decentralized power generation systems. Due to MGTs’ fuel flexibility a range of fuels from high-heat to lowheat content could be utilized with different greenhouse gas generation. Developing micro gas turbines that can operate with carbon-free fuels will guarantee carbon-free power production with zero CO2 emission and will contribute to the alleviation of the global warming problem. In this paper the redevelopment of a standard 100-kW micro gas turbine to run with methane/hydrogen blended fuel is presented. Enabling micro gas turbines to run with hydrogen blended fuels has been pursued by researchers for decades. The first micro gas turbine running with pure hydrogen was developed in Stavanger Norway and launched in May 2022. This was achieved through a collaboration between the University of Stavanger (UiS) and the German Aerospace Centre (DLR). This paper provides an overview of the project and reports the experimental results from the engine operating with methane/hydrogen blended fuel with various hydrogen content up to 100%. During the development process the MGT’s original combustor was replaced with an innovative design to deal with the challenges of burning hydrogen. The fuel train was replaced with a mixing unit new fuel valves and an additional controller that enables the required energy input to maintain the maximum power output independent of the fuel blend specification. This paper presents the test rig setup and the preliminary results of the test campaign which verifies the capability of the MGT unit to support intermittent renewable generation with minimum greenhouse gas production. Results from the MGT operating with blended methane/hydrogen fuel are provided in the paper. The hydrogen content varied from 50% to 100% (volume-based) and power outputs between 35 kW to 100kW were tested. The modifications of the engine mainly the new combustor fuel train valve settings and controller resulted in a stable operation of the MGT with NOx emissions below the allowed limits. Running the engine with pure hydrogen at full load has resulted in less than 25 ppm of NOx emissions with zero carbon-based greenhouse gas production.
Charting a Course for Decarbonizing Maritime Transport
Apr 2021
Publication
As the backbone of global trade international maritime transport connects the world and facilitates economic growth and development especially in developing countries. However producing around three percent of global greenhouse gas (GHG) emissions and emitting around 15 percent of some of the world’s major air pollutants shipping is a major contributor to climate change and air pollution. To mitigate its negative environmental impact shipping needs to abandon fossil-based bunker fuels and turn to zero-carbon alternatives. This report the “Summary for Policymakers and Industry” summarizes recent World Bank research on decarbonizing the maritime sector. The analysis identifies green ammonia and hydrogen as the most promising zero-carbon bunker fuels within the maritime industry at present. These fuels strike the most advantageous balance of favorable features relating to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. The analysis also identifies that LNG will likely only play a limited role in shipping’s energy transition due to concerns over methane slip and stranded assets. Crucially the research reveals that decarbonizing maritime transport offers unique business and development opportunities for developing countries. Developing countries with large renewable energy resources could take advantage of the new and emerging future zero-carbon bunker fuel market estimated at over $1 trillion to establish new export markets while also modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to hasten the sector’s energy transition.
Design and Analysis of Cryogenic Cooling System for Electric Propulsion System Using Liquid Hydrogen
Jan 2023
Publication
As the demand for eco-friendly energy increases hydrogen energy and liquid hydrogen storage technologies are being developed as an alternative. Hydrogen has a lower liquefaction point and higher thermal conductivity than nitrogen or neon used in general cryogenic systems. Therefore the application of hydrogen to cryogenic systems can increase efficiency and stability. This paper describes the design and analysis of a cryogenic cooling system for an electric propulsion system using liquid hydrogen as a refrigerant and energy source. The proposed aviation propulsion system (APS) consists of a hydrogen fuel cell a battery a power distribution system and a motor. For a lab-scale 5 kW superconducting motor using a 2G high-temperature superconducting (HTS) wire the HTS motor and cooling system were analyzed for electromagnetic and thermal characteristics using a finite element method-based analysis program. The liquid hydrogen-based cooling system consists of a pre-cooling system a hydrogen liquefaction system and an HTS coil cooling system. Based on the thermal load analysis results of the HTS coil the target temperature for hydrogen gas pre-cooling the number of buffer layers and the cryo-cooler capacity were selected to minimize the thermal load of the hydrogen liquefaction system. As a result the hydrogen was stably liquefied and the temperature of the HTS coil corresponding to the thermal load of the designed lab-scale HTS motor was maintained at 30 K.
A Green Hydrogen Energy System: Optimal Control Strategies for Integrated Hydrogen Storage and Power Generation with Wind Energy
Jul 2022
Publication
The intermittent nature of renewable energy resources such as wind and solar causes the energy supply to be less predictable leading to possible mismatches in the power network. To this end hydrogen production and storage can provide a solution by increasing flexibility within the system. Stored hydrogen as compressed gas can either be converted back to electricity or it can be used as feed-stock for industry heating for built environment and as fuel for vehicles. This research is the first to examine optimal strategies for operating integrated energy systems consisting of renewable energy production and hydrogen storage with direct gas-based use-cases for hydrogen. Using Markov decision process theory we construct optimal policies for day-to-day decisions on how much energy to store as hydrogen or buy from or sell to the electricity market and on how much hydrogen to sell for use as gas. We pay special emphasis to practical settings such as contractually binding power purchase agreements varying electricity prices different distribution channels green hydrogen offtake agreements and hydrogen market price uncertainties. Extensive experiments and analysis are performed in the context of Northern Netherlands where Europe’s first Hydrogen Valley is being formed. Results show that gains in operational revenues of up to 51% are possible by introducing hydrogen storage units and competitive hydrogen market-prices. This amounts to a e126000 increase in revenues per turbine per year for a 4.5 MW wind turbine. Moreover our results indicate that hydrogen offtake agreements will be crucial in keeping the energy transition on track.
Optimized Design and Control of an Off Grid solar PV/hydrogen Fuel Cell Power System for Green Buildings
Sep 2017
Publication
Modelling simulation optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction low emissions and low cost of energy. The goal is to manage the energy consumption of the building reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system 73% is produced from the solar PV 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable economically viable and environmentally friendly: High renewable fraction (66.1%) low levelized cost of energy (92 $/MWh) and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies
Mar 2023
Publication
In recent years the problem of environmental pollution especially the emission of greenhouse gases has attracted people’s attention to energy infrastructure. At present the fuel consumed by transportation mainly comes from fossil energy and the strong traffic demand has a great impact on the environment and climate. Fuel cell electric vehicles (FCEVs) use hydrogen energy as a clean alternative to fossil fuels taking into account the dual needs of transportation and environmental protection. However due to the low power density and high manufacturing cost of hydrogen fuel cells their combination with other power supplies is necessary to form a hybrid power system that maximizes the utilization of hydrogen energy and prolongs the service life of hydrogen fuel cells. Therefore the hybrid power system control mode has become a key technology and a current research hotspot. This paper first briefly introduces hydrogen fuel cells then summarizes the existing hybrid power circuit topology categorizes the existing technical solutions and finally looks forward to the future for different scenarios of hydrogen fuel cell hybrid power systems. This paper provides reference and guidance for the future development of renewable hydrogen energy and hydrogen fuel cell hybrid electric vehicles.
Net Hydrogen Consumption Minimization of Fuel Cell Hybrid Trains Using a Time-Based Co-Optimization Model
Apr 2022
Publication
With increasing concerns on transportation decarbonization fuel cell hybrid trains (FCHTs) attract many attentions due to their zero carbon emissions during operation. Since fuel cells alone cannot recover the regenerative braking energy (RBE) energy storage devices (ESDs) are commonly deployed for the recovery of RBE and provide extra traction power to improve the energy efficiency. This paper aims to minimize the net hydrogen consumption (NHC) by co-optimizing both train speed trajectory and onboard energy management using a time-based mixed integer linear programming (MILP) model. In the case with the constraints of speed limits and gradients the NHC of co-optimization reduces by 6.4% compared to the result obtained by the sequential optimization which optimizes train control strategies first and then the energy management. Additionally the relationship between NHC and employed ESD capacity is studied and it is found that with the increase of ESD capacity the NHC can be reduced by up to 30% in a typical route in urban railway transit. The study shows that ESDs play an important role for FCHTs in reducing NHC and the proposed time-based co-optimization model can maximize the energy-saving benefits for such emerging traction systems with hybrid energy sources including both fuel cells and ESD.
Prospects of Fuel Cell Combined Heat and Power Systems
Aug 2020
Publication
Combined heat and power (CHP) in a single and integrated device is concurrent or synchronized production of many sources of usable power typically electric as well as thermal. Integrating combined heat and power systems in today’s energy market will address energy scarcity global warming as well as energy-saving problems. This review highlights the system design for fuel cell CHP technologies. Key among the components discussed was the type of fuel cell stack capable of generating the maximum performance of the entire system. The type of fuel processor used was also noted to influence the systemic performance coupled with its longevity. Other components equally discussed was the power electronics. The thermal and water management was also noted to have an effect on the overall efficiency of the system. Carbon dioxide emission reduction reduction of electricity cost and grid independence were some notable advantages associated with fueling cell combined heat and power systems. Despite these merits the high initial capital cost is a key factor impeding its commercialization. It is therefore imperative that future research activities are geared towards the development of novel and cheap materials for the development of the fuel cell which will transcend into a total reduction of the entire system. Similarly robust systemic designs should equally be an active research direction. Other types of fuel aside hydrogen should equally be explored. Proper risk assessment strategies and documentation will similarly expand and accelerate the commercialization of this novel technology. Finally public sensitization of the technology will also make its acceptance and possible competition with existing forms of energy generation feasible. The work in summary showed that proton exchange membrane fuel cell (PEM fuel cell) operated at a lower temperature-oriented cogeneration has good efficiency and is very reliable. The critical issue pertaining to these systems has to do with the complication associated with water treatment. This implies that the balance of the plant would be significantly affected; likewise the purity of the gas is crucial in the performance of the system. An alternative to these systems is the PEM fuel cell systems operated at higher temperatures.
Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective
Mar 2023
Publication
The present day energy supply scenario is unsustainable and the transition towards a more environmentally friendly energy supply system of the future is inevitable. Hydrogen is a potential fuel that is capable of assisting with this transition. Certain technological advancements and design challenges associated with hydrogen generation and fuel cell technologies are discussed in this review. The commercialization of hydrogen-based technologies is closely associated with the development of the fuel cell industry. The evolution of fuel cell electric vehicles and fuel cell-based stationary power generation products in the market are discussed. Furthermore the opportunities and threats associated with the market diffusion of these products certain policy implications and roadmaps of major economies associated with this hydrogen transition are discussed in this review.
Spatially-resolved Analysis of the Challenges and Opportunities of Power-to-Gas (PtG) in Baden-Württemberg until 2040
Mar 2017
Publication
The increasing penetration of renewable energies will make new storage technologies indispensable in the future. Power-to-Gas (PtG) is one long-term storage technology that exploits the existing gas infrastructure. However this technology faces technical economic environmental challenges and questions. This contribution presents the final results of a large research project which attempted to address and provide answers to some of these questions for Baden-Württemberg (south west Germany). Three energy scenarios out to 2040 were defined one oriented towards the Integrated Energy and Climate Protection Concept of the Federal State Government and two alternatives. Timely-resolved load profiles for gas and electricity for 2015 2020 2030 and 2040 have been generated at the level of individual municipalities. The profiles include residential and industrial electrical load gas required for heating (conventional and current-controlled CHP) as well as gas and electricity demand for mobility. The installation of rooftop PV-plants and wind power plants is projected based on bottom up cost-potential analyses which account for some social acceptance barriers. Residential load profiles are derived for each municipality. In times with negative residual load the PtG technology could be used to convert electricity into hydrogen or methane. The detailed analysis of four structurally-different model regions delivered quite different results. While in large cities no negative residual load is likely due to the continuously high demand and strong networks rural areas with high potentials for renewables could encounter several thousand hours of negative residual load. A cost-effective operation of PtG would only be possible under favorable conditions including high full load hours a strong reduction in costs and a technical improvement of efficiency. Whilst these conditions are not expected to appear in the short to mid-term but may occur in the long term in energy systems with very high shares of renewable energy sources
Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and Circulation System
Jul 2022
Publication
A proton exchange membrane fuel cell (PEMFC) system requires an adequate hydrogen supply and circulation to achieve its expected performance and operating life. An ejector-based hydrogen circulation system can reduce the operating and maintenance costs noise and parasitic power consumption by eliminating the recirculation pump. However the ejector’s hydrogen entrainment capability restricted by its geometric parameters and flow control variability can only operate properly within a relatively narrow range of fuel cell output power. This research introduced the optimal design and operation control methods of a dual-ejector hydrogen supply/circulation system to support the full range of PEMFC system operations. The technique was demonstrated on a 70 kW PEMFC stack with an effective hydrogen entrainment ratio covering 8% to 100% of its output power. The optimal geometry design ensured each ejector covered a specific output power range with maximized entrainment capability. Furthermore the optimal control of hydrogen flow and the two ejectors’ opening and closing times minimized the anode gas pressure fluctuation and reduced the potential harm to the PEMFC’s operation life. The optimizations were based on dedicated computational fluid dynamics (CFD) and system dynamics models and simulations. Bench tests of the resulting ejector-based hydrogen supply/circulation system verified the simulation and optimization results.
Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools
Jul 2020
Publication
Driven by concerns regarding the sustainability of aviation and the continued growth of air traffic increasing interest is given to emerging aircraft technologies. Although new technologies such as battery-electric propulsion systems have the potential to minimise in-flight emissions and noise environmental burdens are possibly shifted to other stages of the aircraft’s life cycle and new socio-economic challenges may arise. Therefore a life-cycle-oriented sustainability assessment is required to identify these hotspots and problem shifts and to derive recommendations for action for aircraft development at an early stage. This paper proposes a framework for the modelling and assessment of future aircraft technologies and provides an overview of the challenges and available methods and tools in this field. A structured search and screening process is used to determine which aspects of the proposed framework are already addressed in the scientific literature and in which areas research is still needed. For this purpose a total of 66 related articles are identified and systematically analysed. Firstly an overview of statistics of papers dealing with life-cycle-oriented analysis of conventional and emerging aircraft propulsion systems is given classifying them according to the technologies considered the sustainability dimensions and indicators investigated and the assessment methods applied. Secondly a detailed analysis of the articles is conducted to derive answers to the defined research questions. It illustrates that the assessment of environmental aspects of alternative fuels is a dominating research theme while novel approaches that integrate socio-economic aspects and broaden the scope to battery-powered fuel-cell-based or hybrid-electric aircraft are emerging. It also provides insights by what extent future aviation technologies can contribute to more sustainable and energy-efficient aviation. The findings underline the need to harmonise existing methods into an integrated modelling and assessment approach that considers the specifics of upcoming technological developments in aviation.
Fuzzy Logic-based Energy Management System for Grid-connected Residential DC Microgrids with Multi-stack Fuel Cell Systems: A Multi-objective Approach
Aug 2022
Publication
Hybrid energy storage systems (HESS) are considered for use in renewable residential DC microgrids. This architecture is shown as a technically feasible solution to deal with the stochasticity of renewable energy sources however the complexity of its design and management increases inexorably. To address this problem this paper proposes a fuzzy logic-based energy management system (EMS) for use in grid-connected residential DC microgrids with HESS. It is a hydrogen-based HESS composed of batteries and multi-stack fuel cell system. The proposed EMS is based on a multivariable and multistage fuzzy logic controller specially designed to cope with a multi-objective problem whose solution increases the microgrid performance in terms of efficiency operating costs and lifespan of the HESS. The proposed EMS considers the power balance in the microgrid and its prediction the performance and degradation of its subsystems as well as the main electricity grid costs. This article assesses the performance of the developed EMS with respect to three reference EMSs present in the literature: the widely used dual-band hysteresis and two based on multi-objective model predictive control. Simulation results show an increase in the performance of the microgrid from a technical and economic point of view.
Techno-economic Study of Power-to-Power Renewable Energy Storage Based on the Smart Integration of Battery, Hydrogen, and Micro Gas Turbine Technologies
Mar 2023
Publication
This paper deals with the integration of a Power-to-Power Energy Storage System (P2P-ESS) based on a hydrogen driven micro gas turbine (mGT) for an off-grid application with a continuous demand of 30 kWe for three European cities: Palermo Frankfurt and Newcastle. In the first part of the analysis the results show that the latitude of the location is a very strong driver in determining the size of the system (hence footprint) and the amount of seasonal storage. The rated capacity of the PV plant and electrolyzer are 37%/41% and 58%/64% higher in Frankfurt and Newcastle respectively as compared to the original design for Palermo. And not only this but seasonal storage also increases largely from 3125 kg H2 to 5023 and 5920 kg H2 . As a consequence of this LCOE takes values of 0.86 e/kWh 1.26 e/kWh and 1.5 e/kWh for the three cities respectively whilst round-trip efficiency is approximately 15.7% for the three designs at the 3 cities. Finally with the aim to reduce the footprint and rating of the different systems a final assessment of the system hybridised with battery storage shows a 20% LCOE reduction and a 10% higher round-trip efficiency.
How to Reduce the Greenhouse Gas Emissions and Air Pollution Caused by Light and Heavy Duty Vehicles with Battery-electric, Fuel Cell-electric and Catenary Trucks
Mar 2021
Publication
The reduction of greenhouse gas emissions is one of the greatest global challenges through 2050. Besides greenhouse gas emissions air pollution such as nitrogen oxide and particulate matter emissions has gained increasing attention in agglomerated areas with transport vehicles being one of the main sources thereof. Alternative fuels that fulfill the greenhouse gas reduction goals also offer the possibility of solving the challenge of rising urban pollution. This work focuses on the electric drive option for heavy and light duty vehicle freight transport. In this study fuel cell-electric vehicles battery-electric vehicles and overhead catenary line trucks were investigated taking a closer look at their potential to reduce greenhouse gas emissions and air pollution and also considering the investment and operating costs of the required infrastructure. This work was conducted using a bottom-up transport model for the federal state of North Rhine-Westphalia in Germany. Two scenarios for reducing these emissions were analyzed at a spatial level. In the first of these selected federal highways with the highest traffic volume were equipped with overhead catenary lines for the operation of diesel-hybrid overhead trucks on them. For the second spatial scenario the representative urban area of the city of Cologne was investigated in terms of air pollution shifting articulated trucks to diesel-hybrid overhead trucks and rigid trucks trailer trucks and light duty vehicles to battery-electric or fuel cell-electric drives. For the economic analysis the building up of a hydrogen infrastructure in the cases of articulated trucks and all heavy duty vehicles were also taken into account. The results showed that diesel-hybrid overhead trucks are only a cost-efficient solution for highways with high traffic volume whereas battery overhead trucks have a high uncertainty in terms of costs and technical feasibility. In general the broad range of costs for battery overhead trucks makes them competitive with fuel cell-electric trucks. Articulated trucks have the highest potential to be operated as overhead trucks. However the results indicated that air pollution is only partially reduced by switching conventional articulated trucks to electric drive models. The overall results show that a comprehensive approach such as fuel cell-electric drives for all trucks would most likely be more beneficial.
Thermodynamic Analysis of Hydrogen Utilization as Alternative Fuel in Cement Production
Jul 2022
Publication
Growing attention to the environmental aspect has urged the effort to reduce CO2 emission as one of the greenhouse gases. The cement industry is one of the biggest CO2 emitters in this world. Alternative fuel is one of the challenging issues in cement production due to the limited fossil fuel resources and environmental concerns. Meanwhile hydrogen (H2) has been reported as a promising non-carbon fuel with ammonia (NH3) as the main candidate for chemical storage methods. In this work an integrated system of cement production with an alternative H2-based fuel is proposed consisting of the dehydrogenation process of NH3 and the H2 combustion to provide the required thermal energy for clinker production. Different catalysts are employed and evaluated to analyze the specific energy input (SEI). The result shows that the conversion rate strongly determines the SEI with minimum SEI (3829.8 MJ t-clinker-1 ) achieved by Ni-Pt-based catalyst at a reaction temperature of 600 ºC. Compared to the conventional fuel of coal the H2-based integrated cement production system shows a significant decrease of 44% in CO2 emission due to carbon-free combustion using H2 as the fuel. The current study on the proposed integrated system of H2-based cement production also provides an initial thermodynamic analysis and basic observation for the adoption of non-carbon-based H2 including the storage system of NH3 in the cement production process.
Carbon Footprint and Energy Transformation Analysis of Steel Produced via a Direct Reduction Plant with an Integrated Electric Melting Unit
Aug 2022
Publication
The production of fat steel products is commonly linked to highly integrated sites which include hot metal generation via the blast furnace basic oxygen furnace (BOF) continuous casting and subsequent hot-rolling. In order to reach carbon neutrality a shift away from traditional carbon-based metallurgy is required within the next decades. Direct reduction (DR) plants are capable to support this transition and allow even a stepwise reduction in CO2 emissions. Nevertheless the implementation of these DR plants into integrated metallurgical plants includes various challenges. Besides metallurgy product quality and logistics special attention is given on future energy demand. On the basis of carbon footprint methodology (ISO 14067:2019) diferent scenarios of a stepwise transition are evaluated and values of possible CO2equivalent (CO2eq) reduction are coupled with the demand of hydrogen electricity natural gas and coal. While the traditional blast furnace—BOF route delivers a surplus of electricity in the range of 0.7 MJ/kg hot-rolled coil; this surplus turns into a defcit of about 17 MJ/ kg hot-rolled coil for a hydrogen-based direct reduction with an integrated electric melting unit. On the other hand while the product carbon footprint of the blast furnace-related production route is 2.1 kg CO2eq/kg hot-rolled coil; this footprint can be reduced to 0.76 kg CO2eq/kg hot-rolled coil for the hydrogen-related route provided that the electricity input is from renewable energies. Thereby the direct impact of the processes of the integrated site can even be reduced to 0.15 kg CO2eq/ kg hot-rolled coil. Yet if the electricity input has a carbon footprint of the current German or European electricity grid mix the respective carbon footprint of hot-rolled coil even increases up to 3.0 kg CO2eq/kg hot-rolled coil. This underlines the importance of the availability of renewable energies.
Optimizing an Integrated Hybrid Energy System with Hydrogen-based Storage to Develop an Off-grid Green Community for Sustainable Development in Bangladesh
Dec 2024
Publication
An integrated renewable system that utilizes solid waste-based biogas is important steps towards the sustainable energy solutions to rural off-grid communities in Bangladesh. In this study a hybrid energy system consisting of photovoltaic modules wind turbines biogas generators fuel cells and electrolyzer-hydrogen tank-based energy storage is optimized using non-dominated sorting genetic algorithm (NSGA-II). The hybrid system is optimized based on the cost of energy and human health damage as objective functions and a fuzzy decision-making technique is employed to determine the optimal solution to the multi-objective approach. Additionally several economic ecological and social indicators are also investigated while meeting a certain load reliability. An energy management strategy has been developed in the MATALB environment to satisfy the community load and the battery-driven electric vehicle load. Results from this comprehensive analysis suggest that the optimal configuration of PV/WT/FC/BG has an energy cost of 0.1634 $/kWh and an ecosystem damage of 0.00098 species.year. The human health damage and the human development index of the optimized system are 0.1732 DALYs and 0.696 DALYs respectively. Additionally the proposed system has a lifecycle emission of 123730 kg CO2-eq/year carbon emission penalties of $1856/year a job creation potential of 30 jobs/MW over the 25 years of project lifetime. The hybrid system oversees solid waste management solutions and provides the community with sustainable energy and vehicle recharge.
Coordinated Volt-Var Control of Reconfigurable Microgrids with Power-to-Hydrogen Systems
Dec 2024
Publication
The integration of electrolyzers and fuel cells can cause voltage fluctuations within microgrids if not properly scheduled. Therefore controlling voltage and reactive power becomes crucial to mitigate the impact of fluctuating voltage levels ensuring system stability and preventing damage to equipment. This paper therefore seeks to enhance voltage and reactive power control within reconfigurable microgrids in the presence of innovative power-to-hydrogen technologies via electrolyzers and hydrogen-to-power through fuel cells. Specifically it focuses on the simultaneous coordination of an electrolyzer hydrogen storage and a fuel cell alongside on-load tap changers smart photovoltaic inverters renewable energy sources diesel generators and electric vehicle aggregation within the microgrid system. Additionally dynamic network reconfiguration is employed to enhance microgrid flexibility and improve the overall system adaptability. Given the inherent unpredictability linked to resources the unscented transformation method is employed to account for these uncertainties in the proposed voltage and reactive power management. Finally the model is formulated as a convex optimization problem and is solved through GUROBI version 11 which leads to having a time-efficient model with high accuracy. To assess the effectiveness of the model it is eventually examined on a modified 33-bus microgrid in several cases. Through the results of the under-study microgrid the developed model is a great remedy for the simultaneous operation of diverse resources in reconfigurable microgrids with a flatter voltage profile across the microgrid.
Two-stage Operation Optimization Strategy of Park Integrated Energy System Cluster Coupled with Hydrogen Energy Storage
Jan 2025
Publication
In response to the issues of insufficient flexibility in the operation of hydrogen storage and hydrogen production equipment with poor economic viability when operated independently in the park firstly a comprehensive energy system model for hydrogen storage and power generation which considering the multi-operational conditions of alkaline electrolyzers (ELE) is constructed. This model is integrated into the comprehensive en ergy system of the park as a multi-energy supply device. Multiple park comprehensive energy systems are then interconnected to form a park comprehensive energy system cluster through the sharing of electric energy. Subsequently an operational optimization strategy is proposed to address the issues of electric energy sharing and profit settlement in the park cluster system. This strategy consists of two stages. In the first stage the alternating direction method of multipliers with dynamic step size (DSS-ADMM) is employed to solve the electric energy transaction volume among parks. In the second stage based on the operating costs of the park cluster system under different degrees of electric energy sharing the Shapley value method from cooperative game theory is used to settle park profits. Finally the results indicate that the operational mode of hydrogen storage which considering the multi-operational conditions of alkaline ELE effectively enhances the flexibility in pre paring hydrogen during electrolysis meeting various energy supply needs within the park. The sharing of electric energy among parks promotes the reduction of park operating costs resulting in a 6.05 % decrease in the total cost of the park cluster system. Meanwhile the Shapley value method effectively settles park profits with in dividual parks receiving profits of 1652.9583 ¥ 404.2334 ¥ and 734.7739 ¥ respectively
Multi‑Criteria Optimization and Techno‑Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy‑EDAS Models
Aug 2025
Publication
Hydrogen offers an effective pathway for the large‑scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein the wind–solar–hydrogen stand‑alone and grid‑connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno‑economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi‑criteria decision anal‑ ysis models. The system is composed of 5588 kW solar photovoltaic panels an 800 kW wind turbine a 1600 kW electrolyzer a 421 kWh battery and a 50 kW fuel cell. In addi‑ tion to meeting the power requirements for system operation the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen‑fueled buses. The stand‑alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year with an NPC of USD 8.15 million an LCOE of USD 0.43/kWh and an LCOH of USD 5.26/kg. The grid‑connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million its LCOE is USD 0.11/kWh and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable en‑ ergy systems which will develop the hydrogen economy and create low‑carbon‑emission energy systems.
Modelling Studies of the Hazards Posed by Liquid Hydrogen Use in Civil Aviation
Sep 2021
Publication
As part of the ENABLEH2 project modelling studies have been carried out to examine liquid hydrogen release and dispersion behaviour for different LH2 aircraft and airport infrastructure leak/spill accident scenarios. The FLACS CFD model has been used to simulate the potential hazard effects following an accidental LH2 leak including the extent of the flammable LH2 clouds formed magnitude of explosion overpressures and pool fire radiation hazards. A comparison has also been made between the relative hazard consequences of using LH2 with conventional Jet A/A-1 fuel. The results indicate that in the event of accidental fuel leak/spill LH2 has some safety advantages over Jet A/A-1 but will also introduce additional hazards not found with Jet A/A-1 that will need to be carefully managed and mitigated against.
Techno-economic Assessment of Hydrogen-based Energy Storage Systems in Determining the Optimal Configuration of the Nuclear-renewable Hybrid Energy System
Apr 2024
Publication
Population growth and economic development have significantly increased global energy demand. Hence it has raised concerns about the increase in the consumption of fossil fuels and climate change. The present work introduced a new approach to using carbon-free energy sources such as nuclear and renewable to meet energy demand. The idea of using the Nuclear-Renewable Hybrid Energy System (N-R HES) is suggested as a leading solution that couples a nuclear power plant with renewable energy and hydrogen-based storage systems. For this purpose using a meta-heuristic method based on Newton’s laws the configuration of the N-R HES is optimized from an economic and reliability point of view. The optimal system is selected from among six cases with different subsystems such as wind turbine photovoltaic panel nuclear reactor electrolysis fuel cell and hydrogen storage tank. Furthermore the performance of hydrogen-based energy storage systems such as hightemperature electrolysis (HTE) and low-temperature electrolysis (LTE) is evaluated from technical and economic aspects. The results of this work showed that using nuclear energy to supply the base load increases the reliability of the system and reduces the loss of power supply probability to zero. More than 70 % of the power is produced by nuclear reactors which includes more than 80 % of the system costs. The key findings showed that despite HTE’s higher efficiency using LTE as a storage system in N-R HES is more cost-effective. Finally due to recent developments and the safer design of nuclear reactors they can play an important role in combination with renewable energies to support carbon-free energy sectors especially in remote areas for decades to come.
Development of a Method for Evaluating H2-Filling Stations
Nov 2024
Publication
To expedite the development of the infrastructural expansion for hydrogen applications the research project “THEWA” was founded. Within this project the development of hydrogen-refueling stations is being advanced so that the hydrogen strategy for mobility in Germany can move forward. One development point of the project is to develop an evaluation model that recommends a concept for hydrogen-refueling stations for initial individual situations. In this work an evaluation method is developed that provides an appropriate recommendation. For this purpose basics such as the general structure of hydrogen-refueling stations their classification into functional areas and alreadyexisting evaluation methods for multi-criteria decisions are shown. The method for the evaluation of hydrogen-refueling stations will be developed in a component-based manner for which a selection of influencing factors of hydrogen-refueling stations will be explained and categorized. With the help of an expert workshop these are scaled so that the result is an evaluation method based on an expert assessment and the consideration of individual customer requirements. In addition the method is implemented in a tool so that it can be used more easily.
An Optimal Standalone Wind-photovoltaic Power Plant System for Green Hydrogen Generation: Case Study for Hydrogen Refueling Station
May 2024
Publication
Sustainability goals include the utilization of renewable energy resources to supply the energy needs in addition to wastewater treatment to satisfy the water demand. Moreover hydrogen has become a promising energy carrier and green fuel to decarbonize the industrial and transportation sectors. In this context this research investigates a wind-photovoltaic power plant to produce green hydrogen for hydrogen refueling station and to operate an electrocoagulation water treatment unit in Ostrava Czech Republic’s northeast region. The study conducts a techno-economic analysis through HOMER Pro® software for optimal sizing of the power station components and to investigate the economic indices of the plant. The power station employs photovoltaic panels and wind turbines to supply the required electricity for electrolyzers and electrocoagulation reactors. As an offgrid system lead acid batteries are utilized to store the surplus electricity. Wind speed and solar irradiation are the key role site dependent parameters that determine the cost of hydrogen electricity and wastewater treatment. The simulated model considers the capital operating and replacement costs for system components. In the proposed system 240 kg of hydrogen as well as 720 kWh electrical energy are daily required for the hydrogen refueling station and the electrocoagulation unit respectively. Accordingly the power station annually generates 6997990 kWh of electrical energy in addition to 85595 kg of green hydrogen. Based on the economic analysis the project’s NPC is determined to be €5.49 M and the levelized cost of Hydrogen (LCH) is 2.89 €/kg excluding compressor unit costs. This value proves the effectiveness of this power system which encourages the utilization of green hydrogen for fuel-cell electric vehicles (FCVs). Furthermore emerging electrocoagulation studies produce hydrogen through wastewater treatment increasing hydrogen production and lowering LCH. Therefore this study is able to provide practicable methodology support for optimal sizing of the power station components which is beneficial for industrialization and economic development as well as transition toward sustainability and autonomous energy systems.
Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies
Jan 2025
Publication
The present work demonstrates a comparative study of hydrogen fuel cells and combustion aircraft to investigate the potential of fuel cells as a visionary propulsion system for radically more sustainable medium- to long-range commercial aircraft. The study which considered future airframe and propulsion technologies under the Se2A project was conducted to quantify potential emissions and costs associated with such aircraft and to determine the benefits and drawbacks of each energy system option for different market segments. Future technologies considered in the present work include laminar flow control active load alleviation new materials and structures ultra-high bypass ratio turbofan engines more efficient thermal management systems and superconducting electric motors. A multi-fidelity initial sizing framework with coupled constraint and mission analysis blocks was used for parametric airplane sizing and calculations of all necessary characteristics. Analyses performed for three reference aircraft of different sizes and ranges concluded that fuel-cell aircraft could have operating cost increases in the order of 30% compared to hydrogen combustion configurations and were caused by substantial weight and fuel burn increases. In-flight changes in emissions of fuel cell configurations at high altitudes were progressively reduced from medium-range to long-range segments from being similar to hydrogen combustion for medium-range to 24% for large long-range aircraft although fuel cell aircraft consume 22–30% more fuel than combustion aircraft. Results demonstrate a positive environmental impact of fuel cell propulsion for longrange applications the possibilities of being a more emission-universal solution if desired optimistic technology performance metrics are satisfied. The study also demonstrates progressively increasing technology requirements for larger aircraft making the long-range application’s feasibility more challenging. Therefore substantial development of fuel cell technologies for long-range aircraft is imperative. The article also emphasizes the importance of airframe and propulsion technologies and the necessity of green hydrogen production to achieve desired emissions.
Navigating the Intersection of Microgrids and Hydrogen: Evolutionary Trends, Challenges, and Future Strategies
Jan 2025
Publication
Growing interest in sustainable energy has gathered significant attention for alternative technologies with hydrogen-based solutions emerging as a crucial component in the transition to cleaner and more resilient energy systems. Following that hydrogenbased microgrids integrated with renewable energy sources including wind and solar have gained substantial attention as an upcoming pathway toward long-term energy sustainability. Hydrogen produced through processes such as electrolysis and steam methane reforming can be stored in various forms including compressed gas liquid or solid-state hydrides and later utilized for electricity generation through fuel cells and gas turbines. This dynamic energy system offers highly flexible scalable and resilient solutions for various applications. Specifically hydrogen-based microgrids are particularly suitable for offshore and islanded applications with geographical factors adverse environmental conditions and limited access to conventional energy solutions. This is critical for energy independence long-term storage capacity and grid stability. This review explores topological and functional-based classifications of microgrids advancements in hydrogen generation storage and utilization technologies and their integration with microgrid systems. It also critically evaluates the key challenges of each technology including cost efficiency and scalability which impact the feasibility of hydrogen microgrids.
Optimal Scheduling of Hydrogen Storage in Integrated Energy System Including Multi-source and Load Uncertainties
Dec 2024
Publication
Demand response (DR) is a crucial element in the optimization of integrated energy systems (IESs) that incor porate distributed generation (DG). However its inherent uncertainty poses significant challenges to the eco nomic viability of IESs. This research presents a novel economic dispatch model for IESs utilizing information gap decision theory (IGDT). The model integrates various components to improve IES performance and dispatch efficiency. With a focus on hydrogen energy the model considers users’ energy consumption patterns thereby improving system flexibility. By applying IGDT the model effectively addresses the uncertainty associated with DR and DG overcoming the limitations of traditional methods. The research findings indicate that in relation to the baseline method the proposed model has the potential to reduce operating costs by 6.3 % and carbon emissions by 4.2 %. The integration of a stepwise carbon trading mechanism helps boost both economic and environmental advantages achieving a 100 % wind power consumption rate in the optimized plan. In addition the daily operating costs are minimized to 23758.99 ¥ while carbon emissions are significantly reduced to 34192 kg. These findings provide quantitative decision support for IES dispatch planners to help them develop effective dispatch strategies that are consistent with low-carbon economic initiatives.
Analysis of Solid Oxide Fuel and Electrolysis Cells Operated in a Real-system Environment: State-of-the-health Diagnostic, Failure Modes, Degradation Mitigation and Performance Regeneration
Aug 2022
Publication
Solid oxide cells (SOC) play a major role in strategic visions to achieve decarbonization and climate-neutrality. With its multifuel capability this technology has received rapidly growing amount of attention from researchers worldwide. Due to the great flexibility of SOCs with respect to the fuels that can be used not only hydrogen but also biogas natural gas diesel reformates and many other conventional and alternative fuels can be used. This makes it possible to couple SOCs with diverse sustainable fuel sources to generate electricity or to generate valuable fuels such as syngas when utilizing renewable electricity. In this paper the reader is provided with a review of the existing knowledge about solid oxide fuel cell (SOFC) and solid oxide electrolysis (SOE) systems and how to safely operate them over the long-term placing a special focus on real-world operating environments. Both the utilization and generation of real commercially available fuels are taken into consideration. Different failure modes can appear during the system operation under real-world conditions and reduce the SOC lifetime an aspect that is extensively discussed in this review. Firstly a detailed discussion of the difference between carbon-free and carbon-containing fuels is presented considering different impurities and their impacts on the SOC performance stability and lifetime. Secondly unfavorable operating conditions are presented and possibilities for the early identification of different failure modes are explored. An overview of available conventional and non-conventional diagnostic tools and their applications is provided here. Overall this review paper presents a guideline for all relevant degradation issues related to SOCs operated in a real-world environment describing (i) how these issues appear and how to understand them (ii) how to predict them (iii) how to identify them and (iv) how to prevent them as well as if required how to reverse them. To achieve this goal individual chapters specifically address failure modes degradation prediction degradation prevention and performance regeneration. The reader is provided with necessary knowledge about the long-term and short-term operating stability and the degradation provoked in a compact summary. The available knowledge about specific process frequencies is summarized in one diagram which is a novel contribution of this review. This enables researchers to rapidly identify all occurring process mechanisms with SOFCs and SOECs. Moreover suggestions for how to accelerate degradation and how to regenerate performance are summarized in several tables.
Progress and Prospects of Reversible Solid Oxide Fuel Cell Materials
Dec 2021
Publication
Reversible solid oxide fuel cell (RSOFC) is an energy device that flexibly interchanges between electrical and chemical energy according to people’s life and production needs. The development of cell materials affects the stability and cost of the cell but also restricts its market-oriented development. After decades of research by scientists a lot of achievements and progress have been made on RSOFC materials. According to the composition and requirements of each component of RSOFC this article summarizes the research progress based on materials and discusses the merits and demerits of current cell materials in electrochemical performance. According to the efficiency of different materials in solid oxide fuel cell (SOFC mode) and solid oxide electrolyzer (SOEC mode) the challenges encountered by RSOFC in the operation are evaluated and the future development of RSOFC materials is boldly prospected.
An Environmentally Sustainable Energy Management Strategy for Marine Hybrid Propulsion
Jan 2025
Publication
Integrating electric technologies such as battery energy storage systems and electric propulsion has become an appealing option for reducing fuel consumption and emissions in the transportation sector making these technologies increasingly popular for research and industrial application in the maritime sector. In addition hydrogen is a promising technology for reducing emissions although hydrogen production technologies significantly influence the overall impact of hydrogen-powered systems. This paper proposes an optimizationbased strategy to minimize the environmental impact of a hybrid propulsion system over a given load profile while furthermore considering the environmental impact resulting from the hydrogen production chain. The propulsion system includes diesel generators hydrogen-powered fuel cells batteries and electric motors; mathematical models and assumptions are discussed in detail. The paper applies the proposed strategy and compares different hybrid solutions considering equivalent CO2 emissions discussing a test case applied to a short-range ferry operating in a marine protected area an area particularly sensitive to the problem of atmospheric emissions. The results demonstrate that the proposed strategy can reduce greenhouse gas emissions by up to 73% compared to a conventional mechanical propulsion system.
A Perspective on the Decarbonization of the Metals Industry
Nov 2024
Publication
The decarbonization of the metals industry is a major challenge for the energy transition. Metals are indeed essential elements in the expansion of renewable energy installations worldwide but they also represent a relevant source of carbon emissions. Therefore metals producers need to carefully shift their technologies towards less carbon intensive routes. After ranking all the metals in terms of world production volume and total estimated carbon emissions the three most relevant ones have been selected: steel aluminum and chromium. Concentrating the rest of the analysis on them several production processes are available for implementing the decarbonization step but none of them is currently capable of overcoming the challenge alone and being compatible with the 1.5°C trajectory. In this perspective the main production routes are reviewed and proper combinations of proven or emerging technologies are streamlined with the aim to provide an industrially feasible approach to curb the carbon emissions from the metals industry.
No more items...