Hydrogen Blending
Accelerating to Net Zero with Hydrogen Blending Standards Development in the UK, Canada and the US - Part 1
Mar 2021
Publication
"Hydrogen is expected to play a critical role in the move to a net-zero economy. However large-scale deployment is still in its infancy and there is still much to be done before we can blend hydrogen in large volumes into gas networks and ramp up the production that is required to meet demands of the energy transport and industry sectors. KTN Global Alliance will host two webinars to explore these challenges and opportunities in hydrogen blending on the 2nd and 3rd March 2021.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter."
Part 2 Highlights and Perspectives from Canada and California can be found here.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter."
Part 2 Highlights and Perspectives from Canada and California can be found here.
Possible Pathways toward Carbon Neutrality in Thailand’s Electricity Sector by 2050 through the Introduction of H2 Blending in Natural Gas and Solar PV with BESS
May 2022
Publication
To avoid the potential adverse impacts of climate change from global warming it is suggested that the target of net zero emissions should be reached by this mid-century. Thailand is aiming to achieve carbon neutrality by 2050. Since electricity generation is one of the largest producers of carbon dioxide emission the associated emissions must be greatly reduced to achieve the targets mentioned above. Thus new generation expansion plans must be well developed. This paper discusses the development of generation expansion plans considering Thailand’s latest policies along with enhancement of the existing multi-period linear programming model allowing new electricity generation technologies having low emissions e.g. solar PV with battery and hydrogen blending in natural gas to be integrated into generation expansion planning. Then four generation expansion plans with different levels of hydrogen blending in natural gas are proposed and discussed. It is found that Thailand can achieve carbon neutrality by 2050 by promoting more use of renewable energy altogether with trade-off between land for solar PV installation and amount of hydrogen blended in natural gas. The lesson learned from this study provides crucial information about possible pathways to achieve carbon neutrality in the electricity sector for policy makers in other countries.
EU Hydrogen Vision: Regulatory Opportunities and Challenges
Sep 2020
Publication
This Insight provides an overview of the recent EU Commission Hydrogen Strategy Energy System Integration Strategy and Industrial Strategy focusing on regulatory issues impacting hydrogen. It looks at the proposed classification and preferences for different sources of hydrogen financial and regulatory support for development of hydrogen supply demand and infrastructure as well as potential regulation of hydrogen markets. Whilst the Hydrogen Strategy underlines the need for hydrogen to decarbonise the economy the Insight concludes that the EU has shown a clear preference for hydrogen based on renewable electricity at the expense of low carbon hydrogen from natural gas even though it recognises the need for low carbon hydrogen. In addition further detail is required on the support mechanisms and regulatory framework if development of new hydrogen value chain is to succeed. Lastly there is little sign that the Commission recognises the change in regulatory approach from the current natural gas framework which will be needed because of the different challenges facing the development of a hydrogen market.
Paper can be downloaded on their website
Paper can be downloaded on their website
A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network
Oct 2020
Publication
The growing rate of electricity generation from renewables is leading to new operational and management issues on the power grid because the electricity generated exceeds local requirements and the transportation or storage capacities are inadequate. An interesting option that is under investigation by several years is the opportunity to use the renewable electricity surplus to power electrolyzers that split water into its component parts with the hydrogen being directly injected into natural gas pipelines for both storage and transportation. This innovative approach merges together the concepts of (i) renewable power-to-hydrogen (P2H) and of (ii) hydrogen blending into natural gas networks. The combination of renewable P2H and hydrogen blending into natural gas networks has a huge potential in terms of environmental and social benefits but it is still facing several barriers that are technological economic legislative. In the framework of the new hydrogen strategy for a climate-neutral Europe Member States should design a roadmap moving towards a hydrogen ecosystem by 2050. The blending of “green hydrogen” that is hydrogen produced by renewable sources in the natural gas network at a limited percentage is a key element to enable hydrogen production in a preliminary and transitional phase. Therefore it is urgent to evaluate at the same time (i) the potential of green hydrogen blending at low percentage (up to 10%) and (ii) the maximum P2H capacity compatible with low percentage blending. The paper aims to preliminary assess the green hydrogen blending potential into the Italian natural gas network as a tool for policy makers grid and networks managers and energy planners.
Blended Hydrogen: The UK Public’s Perspective
Nov 2019
Publication
Hydrogen is increasingly being positioned as an important component of the UK’s Net Zero ambitions and commitments. In particular hydrogen could be an appropriate way to decarbonise the heat produced for domestic and industrial buildings. It is possible that hydrogen could replace natural gas in the UK gas network achieving key carbon emissions reduction targets while enabling homes to be heated to a similar level and standard as they currently are.<br/>In the interim small amounts of hydrogen will soon be blended into current natural gas supplies. The premise of this idea is to blend hydrogen into the existing gas network in small enough quantities to not require any adjustments to domestic cookers boilers and other gas-fired appliances but in large enough quantities to generate significant immediate reductions in carbon emissions. Three trials will take place between 2019 and 2022 as part of the HyDeploy project with the aim of demonstrating that hydrogen blending can occur at scale with no safety implications and no disruption to users.<br/>Public perceptions and acceptance of hydrogen will be pivotal in this scenario. At present there is very little indication of how acceptable hydrogen will be for heating homes and questions around safety cost and performance are only beginning to be understood and addressed.<br/>This report investigates public perceptions of blended hydrogen as a fuel for UK homes. In March 2019 we administered a survey to a sample (n=742) representative of the UK adult population in terms of age sex ethnicity and personal income. Our survey covered initial perceptions values and knowledge of hydrogen; the possibilities and pitfalls of hydrogen blending; public trust; and participants’ overall support for hydrogen. Key Findings and Conclusions and Recommendations for Policy and Practice follow immediately with the full report beginning on p.6.
Thermodynamic and Technical Issues of Hydrogen and Methane-Hydrogen Mixtures Pipeline Transmission
Feb 2019
Publication
The use of hydrogen as a non-emission energy carrier is important for the innovative development of the power-generation industry. Transmission pipelines are the most efficient and economic method of transporting large quantities of hydrogen in a number of variants. A comprehensive hydraulic analysis of hydrogen transmission at a mass flow rate of 0.3 to 3.0 kg/s (volume flow rates from 12000 Nm3/h to 120000 Nm3/h) was performed. The methodology was based on flow simulation in a pipeline for assumed boundary conditions as well as modeling of fluid thermodynamic parameters for pure hydrogen and its mixtures with methane. The assumed outlet pressure was 24 bar (g). The pipeline diameter and required inlet pressure were calculated for these parameters. The change in temperature was analyzed as a function of the pipeline length for a given real heat transfer model; the assumed temperatures were 5 and 25 ◦C. The impact of hydrogen on natural gas transmission is another important issue. The performed analysis revealed that the maximum participation of hydrogen in natural gas should not exceed 15%–20% or it has a negative impact on natural gas quality. In the case of a mixture of 85% methane and 15% hydrogen the required outlet pressure is 10% lower than for pure methane. The obtained results present various possibilities of pipeline transmission of hydrogen at large distances. Moreover the changes in basic thermodynamic parameters have been presented as a function of pipeline length for the adopted assumptions.
Mitigation of CO Poisoning Hazard in Malfunctioning Gas Appliances Through Use of Hydrogen Blended Gas
Sep 2021
Publication
The HyDeploy project [1] has undertaken an extensive research programme to assess safety and performance of the existing UK gas appliances population fueled with natural gas / hydrogen admixtures (hydrogen blended gas). The first stage of this work [2] focused on well maintained and normally functioning appliances. This work demonstrated that unmodified gas appliances can operate safely with hydrogen blended gas (up to 20 vol% hydrogen) and the key hazard areas of carbon monoxide (CO) production light back and flame out and the operation of flame failure devices are unaffected. It is widely recognized that due to aging and variable degrees of maintenance that the combustion performance of a gas appliance will depreciate over time. In extreme cases this can lead to situations where high levels of CO may be released back into the dwelling resulting in CO poisoning to the occupants. To obtain a universal appreciation of the effect of hydrogen addition on the safety and performance of all gas appliances operation under sub optimal conditions is required and therefore it is important that the operation of malfunctioning appliances fuelled with hydrogen blended gas is assessed. A review of failure modes identified six key scenarios where the composition of the fuel gas may lead to changes in safety performance - these primarily related to the resulting composition of the flue gas but also included delayed ignition. Gas appliance faults that will increase the CO production were tested through a series of experiments to simulate fault conditions and assess the effect of hydrogen blended gas. The fault modes examined included linting flame chilling incorrect appliance set up and modification of gas valve operation. The programme utilized six different appliances tested with three methane-hydrogen fuel blends (containing 0 20 and 28.4 vol% hydrogen). In all cases the switch to hydrogen blended gas reduced CO production. The change in CO production when using hydrogen blended gas is a consequence of a decrease in the theoretical air requirement to achieve complete combustion. In some cases the amount of CO produced was identical to the nonfault baseline performance on methane thereby fully mitigating the consequence of the malfunction. In the case of very high CO production a 90% reduction was recorded when using 20 vol% hydrogen blended gas. In situations such as non-optimal boiler set up the addition of hydrogen to the gas supply would prevent the production of high levels of CO. The findings here together with the results from HyDeploy 1 [2] indicate that the safety and performance of unmodified existing UK gas appliances are not detrimentally affected when using hydrogen blended gas. Furthermore the addition of hydrogen to the fuel gas has been shown to reduce CO production under fault conditions therefore the introduction of hydrogen into the gas network may serve to mitigate the hazard posed by existing faulty appliances that are producing elevated levels of CO.
HyDeploy: Demonstrating Non-destructive Carbon Savings Through Hydrogen Blending
Aug 2021
Publication
The project has successfully developed the safety case and delivered a hydrogen blend via the gas network into customers’ homes. The demonstration of safety for the specific network was based on robust evidence and clear operational procedures. Alongside the enabling safety case the HyDeploy project has demonstrated the first steps of hydrogen deployment are safe technically feasible and non-disruptive both for the network and domestic users.
The key outcomes of the HyDeploy project were:
The key outcomes of the HyDeploy project were:
- Successful achievement of the first regulatory approval from the HSE to operate a live gas network above the current hydrogen limit of 0.1 vol%. The approval allowed blending up to 20 vol%.
- Development of the technical and procedural precedents to generate evidence for review by the HSE which have informed subsequent safety case submissions through HyDeploy2 and the wider hydrogen safety case industry.
- The design fabrication installation and operation of the UK’s first hydrogen grid entry unit.
- Integration of novel hydrogen production and blending technologies to create the first hydrogen delivery system based on electrolytic generation into a live gas grid.
- Safe delivery of the UK’s first hydrogen blend trial to 100 homes and 30 faculty buildings. The trial delivered over 42000 cubic metres of hydrogen and abated over 27 tonnes of CO2.
- Collaboration with appliance and equipment providers to build a robust evidence base to demonstrate equipment suitability.
- Evidencing the suitability of hydrogen blends with domestic appliances as well as larger commercial appliances including catering equipment and boilers up to 600 kW.
- Evidencing the suitability of hydrogen blends with medium and low-pressure distribution systems relating to key performance metrics such as: pressure control; odour intensity and uniform gas compositions.
- Promotion of supply chain innovation through facilitating trials to develop gas detection and analysis technologies.
- Establishing a robust social science evidence base to understand the attitudes and experience of consumers actually using hydrogen blends.
Review of Release Behavior of Hydrogen & Natural Gas Blends from Pipelines
Aug 2021
Publication
Hydrogen can be used to reduce carbon emissions by blending into other gaseous energy carriers such as natural gas. However hydrogen blending into natural gas has important implications for safety which need to be evaluated. Hydrogen has different physical properties than natural gas and these properties affect safety evaluations concerning a leak of the blended gas. The intent of this report is to begin to investigate the safety implications of blending hydrogen into the natural gas infrastructure with respect to a leak event from a pipeline. A literature review was conducted to identify existing data that will better inform future hazard and risk assessments for hydrogen/natural gas blends. Metrics with safety implications such as heat flux and dispersion behavior may be affected by the overall blend ratio of the mixture. Of the literature reviewed there was no directly observed separation of the hydrogen from the natural gas or methane blend. No literature was identified that experimentally examined unconfined releases such as concentration fields or concentration at specific distances. Computational efforts have predicted concentration fields by modified versions of existing engineering models but the validation of these models is limited by the unavailability of literature data. There are multiple literature sources that measured flame lengths and heat flux values which are both relevant metrics to risk and hazard assessments. These data can be more directly compared to the outputs of existing engineering models for validation.
The paper can be downloaded on their website
The paper can be downloaded on their website
Experimental Study of Biogas-Hydrogen Mixtures Combustion in Conventional Natural Gas Systems
Jul 2021
Publication
Biogas is a renewable gas with low heat energy which makes it extremely difficult to use as fuel in conventional natural gas equipment. Nonetheless the use of hydrogen as a biogas additive has proven to have a beneficial effect on flame stability and combustion behavior. This study evaluates the biogas–hydrogen combustion in a conventional natural gas burner able to work up to 100 kW. Tests were performed for three different compositions of biogas: BG70 (30% CO2) BG60 (40% CO2) and BG50 (50% CO2). To achieve better flame stability each biogas was enriched with hydrogen from 5% to 25%. The difficulty of burning biogas in conventional systems was proven as the burner does not ignite when the biogas composition contains more than 40% of CO2. The best improvements were obtained at 5% hydrogen composition since the exhaust gas temperature and thus the enthalpy rises by 80% for BG70 and 65% for BG60. The stability map reveals that pure biogas combustion is unstable in BG70 and BG60; when the CO2 content is 50% ignition is inhibited. The properties change slightly when the hydrogen concentrations are more than 20% in the fuel gas and do not necessarily improve.
Analyzing the Competitiveness of Low-carbon Drive-technologies in Road-freight: A Total Cost of Ownership Analysis in Europe
Nov 2021
Publication
In light of the Paris Agreement road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets a rapid transition to zero-carbon road-freight is necessary. However limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that when targeted enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular we find battery electric vehicles to show great promise in the light- and medium-duty segments but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls fuel costs and CAPEX subsidies. Based on our analysis we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach increased efficiency and increased policy flexibility.
Hydrogen Blending and the Gas Commercial Framework - Report on Conclusions of NIA study
Sep 2020
Publication
Blending hydrogen into the gas grid could be an important stepping stone during the transition to a sustainable net zero system. In particular it may: provide a significant and reliable source of demand for hydrogen producers supporting the investment case for hydrogen; provide learnings and incremental change towards what could potentially become a 100% hydrogen grid; and immediately decarbonise a portion of the gas flowing through the grid. Technical questions relating to hydrogen blending are being taken forward by the industry (e.g. through the HyDeploy project in relation to the maximum potential blend of hydrogen that can be accommodated without end user appliances needing to be altered or replaced). But if blending is to take place changes to commercial arrangements will be necessary as today these assume a relatively uniform gas quality. In particular the commercial framework will need to ensure that limits on the percentage of hydrogen that can safely be blended (currently expected to be around 20% by volume) are not exceeded. We have been commissioned by Cadent to undertake a Network Innovation Allowance (NIA) project to identify the changes required to the gas commercial framework that will enable hydrogen blending in the GB gas grid and to set out a roadmap for how these can be delivered. This report sets out our recommendations.
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
Feb 2011
Publication
Lean premixed swirl combustion is widely used in gas turbines and many other combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NOx emissions. Although flashback is not generally a problem with natural gas combustion there are some reports of flashback damage with existing gas turbines whilst hydrogen enriched fuel blends especially those derived from gasification of coal and/or biomass/industrial processes such as steel making cause concerns in this area. Thus this paper describes a practical experimental approach to study and reduce the effect of flashback in a compact design of generic swirl burner representative of many systems. A range of different fuel blends are investigated for flashback and blow off limits; these fuel mixes include methane methane/hydrogen blends pure hydrogen and coke oven gas. Swirl number effects are investigated by varying the number of inlets or the configuration of the inlets. The well known Lewis and von Elbe critical boundary velocity gradient expression is used to characterise flashback and enable comparison to be made with other available data. Two flashback phenomena are encountered here. The first one at lower swirl numbers involves flashback through the outer wall boundary layer where the crucial parameter is the critical boundary velocity gradient Gf. Values of Gf are of similar magnitude to those reported by Lewis and von Elbe for laminar flow conditions and it is recognised that under the turbulent flow conditions pertaining here actual gradients in the thin swirl flow boundary layer are much higher than occur under laminar flow conditions. At higher swirl numbers the central recirculation zone (CRZ) becomes enlarged and extends backwards over the fuel injector to the burner baseplate and causes flashback to occur earlier at higher velocities. This extension of the CRZ is complex being governed by swirl number equivalence ratio and Reynolds Number. Under these conditions flashback occurs when the cylindrical flame front surrounding the CRZ rapidly accelerates outwards to the tangential inlets and beyond especially with hydrogen containing fuel mixes. Conversely at lower swirl numbers with a modified exhaust geometry hence restricted CRZ flashback occurs through the outer thin boundary layer at much lower flow rates when the hydrogen content of the fuel mix does not exceed 30%. The work demonstrates that it is possible to run premixed swirl burners with a wide range of hydrogen fuel blends so as to substantially minimise flashback behaviour thus permitting wider used of the technology to reduce NOx emissions.
Effect of Hydrogen-blended Natural Gas on Combustion Stability and Emission of Water Heater Burner
Jun 2022
Publication
To study the effect of hydrogen-blended natural gas on the combustion stability and emission of domestic gas water heater a test system is built in this paper taking a unit of the partial premixed burner commonly used in water heaters as the object. Under the heat load of 0.7~2.3kW the changes of flame shape burner temperature and pollutant emission of natural gas with hydrogen volume ratio of 0~40% are studied with independent control of primary air supply and mixing. The results show that: with the increase of hydrogen blending ratio the inner flame height increases firstly and then reduces while the change of burner temperature is opposite. The maximum inner flame height and the minimum temperature of the burner both appear at the hydrogen blending ratio of 10~20%. It can be seen that the limit of hydrogen blending ratio which can maintain the burner operate safely and stably under rated heat load is 40% through the maximum temperature distribution on the burner surface. The CO emission in the flue gas gradually decreases with the increase of hydrogen blending ratio while the NOx emission fluctuates slightly when the hydrogen blending ratio is less than 20% but then decreases gradually.
The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation
Dec 2022
Publication
Following the international trend of using hydrogen as combustible in many industry branches this paper investigates the impact of mixing methane gas with 23% hydrogen (G222) on condensing boilers’ operation. After modeling and testing several boilers with heat exchange surface different designs the authors gathered enough information to introduce a new concept namely High-Performance Condensing Boiler (HPCB). All the boilers that fit into this approach have the same operational parameters at nominal heat load including the CO2 concentrations in flue gases. After testing a flattened pipes condensing boiler a CO2 emission reduction coefficient of 1.1 was determined when converting from methane gas to G222 as combustible. Thus by inserting into the national grid a G222 mixture an important reduction in greenhouse gases can be achieved. For a 28 kW condensing boiler the annual reduction in CO2 emissions averages 1.26 tons value which was experimentally obtained and is consistent with the theoretical evaluation.
Enabling Hydrogen Blending From Industrial Clusters
Nov 2022
Publication
This study has been commissioned by the gas transporters as part of the Gas Goes Green (GGG)2 work programme to develop and report a ‘gas transporter view’ on how to facilitate hydrogen blending from industrial clusters which are likely to form the initial source for hydrogen blending in the gas network. This view has been developed through engagement carried out with industrial clusters and other stakeholders as well as drawing on learnings from a previous hydrogen blending study.3 The key takeaways of this study are that: l Enabling hydrogen blending from industrial clusters can be done in a pragmatic way with limited need for change to existing gas frameworks. l Where frameworks do need to change the changes are incremental rather than involving overhaul of existing frameworks and are highly workable. l While there remain uncertainties as to the nature of blending at each cluster (e.g. the volume and profile of hydrogen injections) in general the changes required to commercial and regulatory frameworks are the same implying that they are low regret. Below we summarise gas transporters’ preferred approach to facilitating hydrogen blending from industrial clusters including both the policy decisions needed and the changes required to commercial and regulatory frameworks. We note that this work has not involved a legal review and that one will be required as part of the process of implementing the framework changes described below.
Gas Goes Green: Hydrogen Blending Capacity Maps
Jan 2022
Publication
Britain's gas networks are ready for hydrogen blending. Learn more about Britain's hydrogen blending capacity in the National Transmission System and Distribution Networks.
Next for Net Zero Podcast: Unlock & Understand, Achieving a More Sustainable Future
Sep 2022
Publication
This episode examines how we are tackling a sustainable future – with Net Zero hurtling towards us at great pace. We’re around a year on from the pledges made at COP26 the UK’s Green Recovery initiative is well under way and by next year Britain is aiming to blend up to 20 per cent hydrogen into its gas networks. So now is the time to continue to unlock new insight and understand further the realities of both the challenges and opportunities ahead.
The podcast can be found here.
The podcast can be found here.
Steady State Analysis of Gas Networks with Distributed Injection of Alternative Gas
Jun 2015
Publication
A steady state analysis method was developed for gas networks with distributed injection of alternative gas. A low pressure gas network was used to validate the method. Case studies were carried out with centralized and decentralized injection of hydrogen and upgraded biogas. Results show the impact of utilizing a diversity of gas supply sources on pressure distribution and gas quality in the network. It is shown that appropriate management of using a diversity of gas supply sources can support network management while reducing carbon emissions.
Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements
Oct 2022
Publication
To meet the target of reducing greenhouse gas emissions hydrogen as a carbon-free fuel is expected to play a major role in future energy supplies. A challenge with hydrogen is its low density and volumetric energy value meaning that large tanks are needed to store and transport it. By injecting hydrogen into the natural gas network the transportation issue could be solved if the hydrogen–natural gas mixture satisfies the grid gas quality requirements set by legislation and standards. The end consumers usually have stricter limitations on the gas quality than the grid where Euromot the European association of internal combustion engine manufacturers has specific requirements on the parameters: the methane number and Wobbe index. This paper analyses how much hydrogen can be added into the natural gas grid to fulfil Euromot’s requirements. An average gas composition was calculated based on the most common ones in Europe in 2021 and the results show that 13.4% hydrogen can be mixed with a gas consisting of 95.1% methane 3.2% ethane 0.7% propane 0.3% butane 0.3% carbon dioxide and 0.5% nitrogen. The suggested gas composition indicates for engine manufacturers how much hydrogen can be added into the gas to be suitable for their engines.
No more items...