Hydrogen Blending
Gas Turbine Combustion Technologies for Hydrogen Blends
Sep 2023
Publication
The article reviews gas turbine combustion technologies focusing on their current ability to operate with hydrogen enriched natural gas up to 100% H2. The aim is to provide a picture of the most promising fuel-flexible and clean combustion technologies the object of current research and development. The use of hydrogen in the gas turbine power generation sector is initially motivated highlighting both its decarbonisation and electric grid stability objectives; moreover the state-of-the-art of hydrogen-blend gas turbines and their 2024 and 2030 targets are reported in terms of some key performance indicators. Then the changes in combustion characteristics due to the hydrogen enrichment of natural gas blends are briefly described from their enhanced reactivity to their pollutant emissions. Finally gas turbine combustion strategies both already commercially available (mostly based on aerodynamic flame stabilisation self-ignition and staging) or still under development (like the micro-mixing and the exhaust gas recirculation concepts) are described.
A Compilation of Operability and Emissions Performance of Residential Water Heaters Operated on Blends of Natural Gas and Hydrogen Including Consideration for Reporting Bases
Feb 2023
Publication
The impact of hydrogen added to natural gas on the performance of commercial domestic water heating devices has been discussed in several recent papers in the literature. Much of the work focuses on performance at specific hydrogen levels (by volume) up to 20–30% as a near term blend target. In the current work new data on several commercial devices have been obtained to help quantify upper limits based on flashback limits. In addition results from 39 individual devices are compiled to help generalize observations regarding performance. The emphasis of this work is on emissions performance and especially NOx emissions. It is important to consider the reporting bases of the emissions numbers to avoid any unitended bias. For water heaters the trends associated with both mass per fuel energy input and concentration-based representation are similar For carbon free fuels bases such as 12% CO2 should be avoided. In general the compiled data shows that NOx NO UHC and CO levels decrease with increasing hydrogen percentage. The % decrease in NOx and NO is greater for low NOx devices (meaning certified to NOx <10 ng/J using premixing with excess air) compared to conventional devices (“pancake burners” partial premixing). Further low NOx devices appear to be able to accept greater amounts of hydrogen above 70% hydrogen in some cases without modification while conventional water heaters appear limited to 40–50% hydrogen. Reporting emissions on a mass basis per unit fuel energy input is preferred to the typical dry concentration basis as the greater amount of water produced by hydrogen results in a perceived increase in NOx when hydrogen is used. While this effort summarizes emissions performance with added hydrogen additional work is needed on transient operation higher levels of hydrogen system durability/reliability and heating efficiency.
Hydrogen Addition to Natural Gas in Cogeneration Engines: Optimization of Performances Through Numerical Modeling
Aug 2021
Publication
A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine designed to be powered by natural gas is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios to avoid rapid pressure rise and excessive production of pollutant emissions.
Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures
Sep 2017
Publication
The author discusses in this paper the potential of a micro gas turbine (MGT) combustor when operated under unconventional fuel supplied. The combustor of C30 gas turbine is a reverse flow annular combustor. The CFD analysis of the reacting flow is performed with the 3D ANSYS-FLUENT solver. Specific computational experiments refer to the use of hydrogen – natural gas mixtures in order to define the optimal conditions for pilot and main injections in terms of combustion stability and NOx production. The author's methodology relies on an advanced CFD approach that compares different schemes like eddy dissipation concept together with the flamelet- PDF based approach coupled with an accurate study of the turbulent chemistry interaction. Extended kinetic mechanisms are also included in the combustion model. Some test cases are examined to make a comparison of combustion stability and efficiency and pollutant production with high hydrogen / natural gas ratios.
Analysis of Hydrogen Gas Injection at Various Compositions in an Existing Natural Gas Pipeline
Jul 2021
Publication
The lack of hydrogen (H2) transportation infrastructure restricts the development of the H2 industry. Owing to the high investment of building specific facilities using existing natural gas (NG) pipelines to transport a blend of H2 and NG (H2NG) is a viable means of transportation and approach for large-scale long-time storage. However variation in the thermo-physical properties of an H2NG blend will impact the performance of pipeline appliances. To address the gaps in H2 transmission via an NG system in the context of energy consumption in the present paper a one-dimensional pipeline model is proposed to predict the blended flow in a real existing pipeline (Shan–Jing I China). The data of NG components were derived from real gas fields. Furthermore the influence of H2 fractions on pipeline energy coefficient and the layout of pressurization stations are comprehensively analyzed. In addition the case of intermediate gas injection is investigated and the effects of injection positions are studied. This study serves as a useful reference for the design of an H2NG pipeline system. The present study reveals that with the increasing in H2 fraction the distance between pressure stations increases. Furthermore when the arrangement of original pressure stations is maintained overpressure occur. Intermediate gas injection results in the inlet pressure of subsequent pressurization stations reducing. Using existing pipeline network to transport H2NG it is necessary to make appropriate adjustment.
Modelling the Impacts of Hydrogen–Methane Blend Fuels on a Stationary Power Generation Engine
Mar 2023
Publication
To reduce greenhouse gas emissions from natural gas use utilities are investigating the potential of adding hydrogen to their distribution grids. This will reduce the carbon dioxide emissions from grid-connected engines used for stationary power generation and it may also impact their power output and efficiency. Promisingly hydrogen and natural gas mixtures have shown encouraging results regarding engine power output pollutant emissions and thermal efficiency in well-controlled on-road vehicle applications. This work investigates the effects of adding hydrogen to the natural gas fuel for a lean-burn spark-ignited four-stroke 8.9 liter eight-cylinder naturally aspirated engine used in a commercial stationary power generation application via an engine model developed in the GT-SUITETM modelling environment. The model was validated for fuel consumption air flow and exhaust temperature at two operating modes. The focus of the work was to assess the sensitivity of the engine’s power output brake thermal efficiency and pollutant emissions to blends of methane with 0–30% (by volume) hydrogen. Without adjusting for the change in fuel energy the engine power output dropped by approximately 23% when methane was mixed with 30% by volume hydrogen. It was found that increasing the fueling rate to maintain a constant equivalence ratio prevented this drop in power and reduced carbon dioxide emissions by almost 4.5%. In addition optimizing the spark timing could partially offset the increases in in-cylinder burned and unburned gas temperatures and in-cylinder pressures that resulted from the faster combustion rates when hydrogen was added to the natural gas. Understanding the effect of fuel change in existing systems can provide insight on utilizing hydrogen and natural gas mixtures as the primary fuel without the need for major changes in the engine.
Power-to-gas and the Consequences: Impact of Higher Hydrogen Concentrations in Natural Gas on Industrial Combustion Processes
Sep 2017
Publication
Operators of public electricity grids today are faced with the challenge of integrating increasing numbers of renewable and decentralized energy sources such as wind turbines and photovoltaic power plants into their grids. These sources produce electricity in a very inconstant manner due to the volatility of wind and solar power which further complicates power grid control and management. One key component that is required for modern energy infrastructures is the capacity to store large amounts of energy in an economically feasible way.<br/>One solution that is being discussed in this context is “power-to-gas” i.e. the use of surplus electricity to produce hydrogen (or even methane with an additional methanation process) which is then injected into the public natural gas grid. The huge storage capacity of the gas grid would serve as a buffer offering benefits with regards to sustainability and climate protection while also being cost-effective since the required infrastructure is already in place.<br/>One consequence would be however that the distributed natural gas could contain larger and fluctuating amounts of hydrogen. There is some uncertainty how different gas-fired applications and processes react to these changes. While there have already been several investigations for domestic appliances (generally finding that moderate amounts of H2 do not pose any safety risks which is the primary focus of domestic gas utilization) there are still open questions concerning large-scale industrial gas utilization. Here in addition to operational safety factors like efficiency pollutant emissions (NOX) process stability and of course product quality have to be taken into account.<br/>In a German research project Gas- und Wärme-Institut Essen e. V. (GWI) investigated the impact of higher and fluctuating hydrogen contents (up to 50 vol.-% much higher than what is currently envisioned) on a variety of industrial combustion systems using both numerical and experimental methods. The effects on operational aspects such as combustion behavior flame monitoring and pollutant emissions were analyzed.<br/>Some results of these investigations will be presented in this contribution.
Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution
Apr 2023
Publication
Natural gas distribution companies are developing ambitious plans to decarbonize the services that they provide in an affordable manner and are accelerating plans for the strategic integration of renewable natural gas and the blending of green hydrogen produced by electrolysis powered with renewable electricity being developed from large new commitments by states such as New York and Massachusetts. The demonstration and deployment of hydrogen blending have been proposed broadly at 20% of hydrogen by volume. The safe distribution of hydrogen blends in existing networks requires hydrogen blends to exhibit similar behavior as current supplies which are also mixtures of several hydrocarbons and inert gases. There has been limited research on the properties of blended hydrogen in low-pressure natural gas distribution systems. Current natural gas mixtures are known to be sufficiently stable in terms of a lack of chemical reaction between constituents and to remain homogeneous through compression and distribution. Homogeneous mixtures are required both to ensure safe operation of customer-owned equipment and for safety operations such as leak detection. To evaluate the stability of mixtures of hydrogen and natural gas National Grid experimentally tested a simulated distribution natural gas pipeline with blends containing hydrogen at up to 50% by volume. The pipeline was outfitted with ports to extract samples from the top and bottom of the pipe at intervals of 20 feet. Samples were analyzed for composition and the effectiveness of odorant was also evaluated. The new results conclusively demonstrate that hydrogen gas mixtures do not significantly separate or react under typical distribution pipeline conditions and gas velocity profiles. In addition the odorant retained its integrity in the blended gas during the experiments and demonstrated that it remains an effective method of leak detection.
Investigation of Hydrogen-Blended Natural Gas Pipelines in Utility Tunnel Leakage and Development of an Accident Ventilation Strategy for the Worst Leakage Conditions
Mar 2024
Publication
The development of hydrogen-blended natural gas (HBNG) increases the risk of gas transportation and presents challenges for pipeline security in utility tunnels. The objective of this study is to investigate the diffusion properties of HBNG in utility tunnels and evaluate the effectiveness of various ventilation mechanisms. The numerical simulation software Fluent 2023 R1 is applied to simulate and analyze the leakage of small holes in a HBNG pipeline in the natural gas compartment. By examining the leaking behavior of HBNG through small holes in different circumstances we aimed to identify the most unfavorable operational situation for leakage. Subsequently we analyzed the ventilation strategy for sub-high-pressure pipes at various pressure levels in this unfavorable condition. This study’s findings demonstrate that blending hydrogen improves the gas diffusion capacity and increases the likelihood of explosion. The primary factors that influence the pattern of leakage are the size of the leaking holes and the pressure of the pipeline. The gas compartment experiences the most unfavorable working conditions for natural gas pipeline leaks when there are higher pressures wider leak openings higher hydrogen blending ratios (HBRs) and leaks in close proximity to an air inlet. When the HBR is 20% the minimum accident ventilation rates for pressures of 0.4 MPa and 0.8 MPa are 15 air changes per hour and 21 air changes per hour respectively. The maximum allowable wind speed for accident ventilation is 5 m/s as regulated by China’s national standard GB 50838-2015. This regulation makes it difficult to minimize the risk of leakage in a 1.6 MPa gas pipeline. It is recommended to install a safety interlock device to quickly shut off the pipeline in the event of a leak in order to facilitate the dispersion of the substance.
An Overview on Safety Issues Related to Hydrogen and Methane Blend Applications in Domestic and Industrial Use
Sep 2017
Publication
The share of electrical energy hailing from renewable sources in the European electricity mix is increasing. The match between renewable power supply and demand has become the greatest challenge to cope with. Gas infrastructure can accommodate large volumes of electricity converted into gas whenever this supply of renewable power is larger than the grid capacity or than the electricity demand. The Power-to-Gas (P2G) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable hydrogen via electrolysis and subsequent methanation. The aim of this paper is to provide an overview of the required technical adaptations of the most common devices for end users such as heating plants CHP systems home gas furnaces and cooking surfaces wherever these are fuelled with methane and hydrogen blends in variable percentages by volume. Special attention will be given to issues related to essential safety standards firstly comparing existing Italian and European regulations in this regard and secondly highlighting the potential need for legislation to regulate the suitability of hydrogen methane blends. Finally a list of foreseeable technical solutions will be provided and discussed thoroughly
Performance of Three Typical Domestic Gas Stoves Operated with Methane-hydrogen Mixture
Dec 2022
Publication
Hydrogen blending into natural gas has attracted significant attention in domestic applications. The paper studied the effects of natural gas mixed with hydrogen at 0% (vol) 5% 10% 15% 20% and 25% on the performance of typical round-port gas stove (TRPGS) swirling strip-port gas stove (SSPGS) and radiant porous media gas stove (RPMGS). The experimental results show that flame length shortens with the increase of hydrogen proportion and the combustion remains stable when the hydrogen proportion is equal to or less than 25%. With increasing hydrogen proportion the measured heat inputs of the three types of domestic gas stoves decrease gradually and the average thermal efficiency of TRPGS and SSPGS increase by 0.82% and 1.18% respectively. In addition the average efficiency of the RPMGS first increases by 1.35% under a hydrogen proportion of 15% and then decreases by 1.36% under a hydrogen proportion of 25%. In terms of flue gas emission CO emission reduces significantly with increasing hydrogen proportion while NOX emissions remain almost unchanged.
Gas Goes Green: Britain's Hydrogen Blending Delivery Plan
Jan 2022
Publication
Britain’s Hydrogen Blending Delivery Plan which sets out how all five of Britain’s gas grid companies will meet the Government’s target for Britain’s network of gas pipes to be ready to deliver 20% hydrogen to homes and businesses from 2023 as a replacement for natural gas.
Differentiating Gas Leaks from Normal Appliance Use
Jun 2021
Publication
DNV has carried out an investigation into potential uses for smart gas meter data as part of Phase 1 of the Modernising Energy Data Applications competition as funded by UK Research & Innovation. In particular a series of calculations have been carried out to investigate the possibility of differentiating accidental gas leaks from normal appliance use in domestic properties. This is primarily with the aim of preventing explosions but the detection of leaks also has environmental and financial benefits.
Three gases have been considered in this study:
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
Three gases have been considered in this study:
- A representative UK natural gas composition.
- A blend of 80% natural gas and 20% hydrogen.
- Pure hydrogen.
- Small holes of up to 1 mm rarely reach flammable gas/air concentrations for any gas except under the most unfavourable conditions such as small volumes combined with low ventilation rates. These releases would likely be detected within 6 to 12 hours.
- Medium holes between 1 mm and 6 mm give outflow rates equivalent to a moderate to high level of gas use by appliances. The ability to detect these leaks is highly dependent on the hole size the time at which the leak begins and the normal gas use profile in the building. The larger leaks in this category would be detected within 30 to 60 minutes while the smaller leaks could take several hours to be clearly differentiated from appliance use. This is quick enough to prevent some explosions.
- Large holes of over 6 mm give leak rates greater than any gas use by appliances. These releases rapidly reach a flammable gas/air mixture in most cases but would typically be detected within the first 30-minute meter output period. Again some explosions could be prevented in this timescale.
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
Pressure Management in Smart Gas Networks for Increasing Hydrogen Blending
Jan 2022
Publication
The injection of hydrogen into existing gas grids is acknowledged as a promising option for decarbonizing gas systems and enhancing the integration among energy sectors. Nevertheless it affects the hydraulics and the quality management of networks. When the network is fed by multiple infeed sites and hydrogen is fed from a single injection point non-homogeneous hydrogen distribution throughout the grid happens to lead to a reduction of the possible amount of hydrogen to be safely injected within the grid. To mitigate these impacts novel operational schemes should therefore be implemented. In the present work the modulation of the outlet pressures of gas infeed sites is proposed as an effective strategy to accommodate larger hydrogen volumes into gas grids extending the area of the network reached by hydrogen while keeping compliance with quality and hydraulic restrictions. A distribution network operated at two cascading pressure tiers interfaced by pressure regulators constitutes the case study which is simulated by a fluid-dynamic and multi-component model for gas networks. Results suggest that higher shares of hydrogen and other green gases can be introduced into existing distribution systems by implementing novel asset management schemes with negligible impact on grid operations.
Economic Modelling of Mixing Hydrogen with Natural Gas
Jan 2024
Publication
As global efforts intensify to transition toward cleaner and more sustainable energy sources the blending of hydrogen with natural gas emerges as a promising strategy to reduce carbon emissions and enhance energy security. This study employs a systematic approach to assess the economic viability of hydrogen blending considering factors such as gas costs and heat values. Various hydrogen blending scenarios are analyzed to determine the optimal blend ratios taking into account both technical feasibility and economic considerations. The study discusses potential economic benefits challenges and regulatory implications associated with the widespread adoption of hydrogen–natural gas mixtures. Furthermore the study explores the impact of this integration on existing natural gas infrastructure exploring the potential for enhanced energy storage and delivery. The findings of this research contribute valuable insights to policymakers industry stakeholders and researchers engaged in the ongoing energy transition by providing a nuanced understanding of the economic dimensions of hydrogen blending within the natural gas sector.
Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler
Feb 2024
Publication
With the adjustment of energy structure the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value the pulverized coal combustion with hydrogen at 1% 5% and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period which helps the ignition of pulverized coal. However as the proportion of hydrogen blending increases the production of large amounts of H2O gives an overall lower temperature. On the other hand the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.
Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society
Aug 2023
Publication
The increase in demand and thus the need to lower its price has kept C-based fuels as the main source. In this context the use of oil and gas has led to increased climate change resulting in greenhouse gases. The high percentage of emissions over 40% is due to the production of electricity heat or/and energy transport. This is the main reason for global warming and the extreme and increasingly common climate change occurrences with all of nature being affected. Due to this reason in more and more countries there is an increased interest in renewable energies from sustainable sources with a particular emphasis on decarbonisation. One of the energies analysed for decarbonisation that will play a role in future energy systems is hydrogen. The development of hydrogen–natural gas mixtures is a major challenge in the field of energy and fuel technology. This article aims to highlight the major challenges associated with researching hydrogen–natural gas blends. Meeting this challenge requires a comprehensive research and development effort including exploring appropriate blending techniques optimising performance addressing infrastructure requirements and considering regulatory considerations. Overcoming this challenge will enable the full potential of hydrogen–natural gas blends to be realised as a clean and sustainable energy source. This will contribute to the global transition to a greener and more sustainable future. Several international European and Romanian studies projects and legislative problems are being analysed. The mix between H2 and natural gas decreases fugitive emissions. In contrast using hydrogen increases the risk of fire more than using natural gas because hydrogen is a light gas that easily escapes and ignites at almost any concentration in the air.
Effect of Gas Composition and Initial Turbulence on the Propagation Dynamics of Premixed Flames of Hydrogen-blended Natural Gas Fuel
Jul 2024
Publication
In order to reduce carbon emissions the effects of gas composition and initial turbulence on the premixed flame dynamics of hydrogen-blended natural gas were investigated. The results show that an increase in hydrogen content leads to earlier formation of flame wrinkles. When the equivalence ratio is 1 and hydrogen blending ratio is below 20% Tulip flames appear approximately 2.25 m away from the ignition point. When hydrogen blending ratio exceeds 20% Tulip flames appear approximately 1.3 m away from the ignition point and twisted Tulip flames appear approximately 2.5 m away from the ignition position. During the 0.05 m process of flame propagation downstream from ignition point flame propagation velocity increases by about 2 m/s for every 10% increase in hydrogen content. The increase in hydrogen content has the most significant impact on the flame propagation velocity during the ignition stage. The average flame propagation velocity increases with the increase of hydrogen blending ratio. The greater the initial turbulence the more obvious the stretching deformation of flame front structure. With the increase of wind speed the flame propagation velocity first increases and then decreases. At a wind speed of 3 m/s the flame propagation velocity reaches its maximum value.
Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector
Jul 2024
Publication
The forthcoming implementation of national policies towards hydrogen blending into the natural gas grid will affect the technical and economic parameters that must be taken into account in the design of building heating systems. This study evaluates the implications of using hydrogenenriched natural gas (H2NG) blends in condensing boilers and Gas Adsorption Heat Pumps (GAHPs) in a residential building in Rome Italy. The analysis considers several parameters including nonrenewable primary energy consumption CO2 emissions Levelized Cost of Heat (LCOH) and Carbon Abatement Cost (CAC). The results show that a 30% hydrogen blend achieves a primary energy consumption reduction of 12.05% and 11.19% in boilers and GAHPs respectively. The presence of hydrogen in the mixture exerts a more pronounced influence on the reduction in fossil primary energy and CO2 emissions in condensing boilers as it enhances combustion efficiency. The GAHP system turns out to be more cost-effective due to its higher efficiency. At current hydrogen costs the LCOH of both technologies increases as the volume fraction of hydrogen increases. The forthcoming cost reduction in hydrogen will reduce the LCOH and the decarbonization cost for both technologies. At low hydrogen prices the CAC for boilers is lower than for GAHPs; therefore replacing boilers with other gas technologies rather than electric heat pumps increases the risk of creating stranded assets. In conclusion blending hydrogen into the gas grid can be a useful policy to reduce emissions from the overall natural gas consumption during the process of end-use electrification while stimulating the development of a hydrogen economy.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
No more items...