Hydrogen Blending
Consumer Perceptions of Blended Hydrogen in the Home: Learning from HyDeploy
Apr 2022
Publication
This report presents the results of research into consumer perceptions and the subsequent degree of acceptance of blended hydrogen in domestic properties. Evidence from two trial sites of the HyDeploy programme: i) a private site trial at Keele University North Staffordshire; ii) and a public site trial at Winlaton Gateshead are discussed.
Experimental Research on Low Calorific Value Gas Blended with Hydrogen Engine
Mar 2019
Publication
Experimental research on performance and emissions of engine fuelled with low calorific value gas blended with hydrogen was carried out and indicated thermal efficiency engine torque indicator diagram pressure rise rate and emissions with different hydrogen ratios were also analyzed. Experimental results show that with the increase of hydrogen fraction and CNG fraction in mixtures the indicated thermal efficiency increased. The engine power output is influenced by both low calorific value and hydrogen fractions. With the increase of hydrogen fraction in mixtures HC emissions decrease CO and NOx emissions increase. An engine operating on lean-burn low calorific value gas blended with hydrogen is favourable for getting lower emissions.
HyDeploy Overview
May 2020
Publication
An overview of the HyDeploy project at Keele University where hydrogen is being blended with natural gas to demonstrate the feasibility of using hydrogen to heat our homes.
Performance of Three Typical Domestic Gas Stoves Operated with Methane-hydrogen Mixture
Dec 2022
Publication
Hydrogen blending into natural gas has attracted significant attention in domestic applications. The paper studied the effects of natural gas mixed with hydrogen at 0% (vol) 5% 10% 15% 20% and 25% on the performance of typical round-port gas stove (TRPGS) swirling strip-port gas stove (SSPGS) and radiant porous media gas stove (RPMGS). The experimental results show that flame length shortens with the increase of hydrogen proportion and the combustion remains stable when the hydrogen proportion is equal to or less than 25%. With increasing hydrogen proportion the measured heat inputs of the three types of domestic gas stoves decrease gradually and the average thermal efficiency of TRPGS and SSPGS increase by 0.82% and 1.18% respectively. In addition the average efficiency of the RPMGS first increases by 1.35% under a hydrogen proportion of 15% and then decreases by 1.36% under a hydrogen proportion of 25%. In terms of flue gas emission CO emission reduces significantly with increasing hydrogen proportion while NOX emissions remain almost unchanged.
Gas Goes Green: Hydrogen Blending Capacity Maps
Jan 2022
Publication
Britain's gas networks are ready for hydrogen blending. Learn more about Britain's hydrogen blending capacity in the National Transmission System and Distribution Networks.
A Robust Scheduling Methodology for Integrated Electric-Gas System Considering Dynamics of Natural Gas Pipeline and Blending Hydrogen
Mar 2022
Publication
As smart grid develops and renewables advance challenges caused by uncertainties of renewables have been seriously threatening the energy system’s safe operation. Nowadays the integrated electric-gas system (IEGS) plays a significant role in promoting the flexibility of modern grid owing to its great characteristic in accommodating renewable energy and coping with fluctuation and uncertainty of the system. And hydrogen as an emerging and clean energy carrier can further enhance the energy coupling of the IEGS and promote carbon neutralization with the development of power-to-hydrogen (P2H) technology and technology of blending hydrogen in the natural gas system. Dealing with the uncertainty of renewables a robust schedule optimization model for the integrated electric and gas systems with blending hydrogen (IEGSH) considering the dynamics of gas is proposed and the iterative solving method based on column-and-constraint generation (C&CG) algorithm is implemented to solve the problem. Case studies on the IEGSH consisting of IEEE 39-bus power system and 27-node natural gas system validate the effectiveness of the dynamic energy flow model in depicting the transient process of gas transmission. The effectiveness of the proposed robust day-ahead scheduling model in dealing with the intra-day uncertainty of wind power is also verified. Additionally the carbon emission reduction resulting from the blending of hydrogen is evaluated.
Experiment and Numerical Study of the Combustion Behavior of Hydrogen-blended Natural Gas in Swirl Burners
Oct 2022
Publication
Hydrogen production from renewable energy is gaining increasing attention to enhance energy consumption structure and foster a more eco-friendly and sustainable society. At the same time mixing hydrogen with natural gas and supplying it to civilians is one of the best ways to reduce carbon emissions and increase the reliability of technology while reducing the costs of storing and transporting hydrogen. Even though numerous researchers have conducted experimental and simulation studies on hydrogen-doped natural gas most of these studies have focused on the effects of hydrogen-doped ratio equivalence ratio and fuel combustion mode. The impact of burner structure on hydrogen-enriched natural gas has not received much attention. Compared with conventional direct-flow combustion swirl combustion can improve the mixing effect of the fuel mixture during combustion and the use of regions of reversed flow due to swirl can make the fuel burn more fully to achieve the reduction of pollutant emissions. Swirling flames are widely used in gas turbines and industrial furnaces because of their high stability. However the application of swirl combustion in domestic equipment is still in its infancy which deserves more researchers to explore and enhance the working conditions of domestic combustion equipment. In this paper a three-dimensional swirl burner model is utilized to examine the effect of swirl angle θ and swirl length L of the swirler on the combustion behavior of hydrogen-enriched natural gas in a swirl burner. The results indicate that the swirl angle θ and swirl length L play an essential role in the combustion of natural gas containing hydrogen. As the swirl angle θ increases the flame temperature decreases more slowly the combustion becomes more stable and the length of the flame is slightly increased. Simultaneously CO and NO emissions will gradually decrease and the combustion effect is enhanced when the swirl angle is 45◦. With increased swirl length L the flame length grows the high-temperature region expands and CO and NO emissions decrease. Meanwhile the change in swirl length has little effect on the increase of flame peak temperature when the fuel is thoroughly mixed. When the swirl length is 12 mm CO and NO emissions are lower and NO emissions are reduced by 36.11% compared to a swirl length of 6 mm. This work is a reference point for applying hydrogen-mixed natural gas in the swirl burner but it must be studied and optimized further in future research.
Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements
Jul 2025
Publication
Blending hydrogen with natural gas is emerging as a pivotal strategy in the transition to low-carbon energy systems. However the exploitation of the natural gas infrastructure to distribute natural gas and hydrogen blends (and 100% hydrogen in the long-term) introduces several technical economic and safety issues. These latter are paramount especially in urban distribution networks that supply residential buildings and dwellings since the quality and safety of the living environment can also be significantly affected. In this scenario the reliability of odorant concentration measurements according to the best practices currently in use for natural gas becomes crucial. This study is aimed at assessing the accuracy of odorant measurements at different concentration levels (i.e. low medium and high) in 100% methane methane–hydrogen blend and 100% hydrogen. The obtained results show the tendency to overestimate the odorant concentration up to 2.3% in methane–hydrogen blends at medium and high concentrations of THT as well as the underestimation of −3.4% in 100% hydrogen at low concentration of TBM. These results are consistent with those of natural gas from the city distribution network with hydrogen content of 5% and 20%.
Effect of Hydrogen-blended Natural Gas on Combustion Stability and Emission of Water Heater Burner
Jun 2022
Publication
To study the effect of hydrogen-blended natural gas on the combustion stability and emission of domestic gas water heater a test system is built in this paper taking a unit of the partial premixed burner commonly used in water heaters as the object. Under the heat load of 0.7~2.3kW the changes of flame shape burner temperature and pollutant emission of natural gas with hydrogen volume ratio of 0~40% are studied with independent control of primary air supply and mixing. The results show that: with the increase of hydrogen blending ratio the inner flame height increases firstly and then reduces while the change of burner temperature is opposite. The maximum inner flame height and the minimum temperature of the burner both appear at the hydrogen blending ratio of 10~20%. It can be seen that the limit of hydrogen blending ratio which can maintain the burner operate safely and stably under rated heat load is 40% through the maximum temperature distribution on the burner surface. The CO emission in the flue gas gradually decreases with the increase of hydrogen blending ratio while the NOx emission fluctuates slightly when the hydrogen blending ratio is less than 20% but then decreases gradually.
Numerical Investigation and Simulation of Hydrogen Blending into Natural Gas Combustion
Aug 2024
Publication
This study reviews existing simulation models and describes a selected model for analysing combustion dynamics in hydrogen and natural gas mixtures specifically within non-ferrous melting furnaces. The primary objectives are to compare the combustion characteristics of these two energy carriers and assess the impact of hydrogen integration on furnace operation and efficiency. Using computational fluid dynamics (CFD) simulations incorporating actual furnace geometries and a detailed combustion and NOx emission prediction model this research aims to accurately quantify the effects of hydrogen blending. Experimental tests on furnaces using only natural gas confirmed the validity of these simulations. By providing precise predictions for temperature distribution and NOx emissions this approach reduces the need for extensive laboratory testing facilitates broader exploration of design modifications accelerates the design process and ultimately lowers product development costs.
Industrial Decarbonization through Blended Combustion of Natural Gas and Hydrogen
Aug 2024
Publication
The transition to cleaner energy sources particularly in hard-to-abate industrial sectors often requires the gradual integration of new technologies. Hydrogen crucial for decarbonization is explored as a fuel in blended combustions. Blending or replacing fuels impacts combustion stability and heat transfer rates due to differing densities. An extensive literature review examines blended combustion focusing on hydrogen/methane mixtures. While industrial burners claim to accommodate up to 20% hydrogen theoretical support is lacking. A novel thermodynamic analysis methodology is introduced evaluating methane/hydrogen combustion using the Wobbe index. The findings highlight practical limitations beyond 25% hydrogen volume necessitating a shift to “totally hydrogen” combustion. Blended combustion can be proposed as a medium-term strategy acknowledging hydrogen’s limited penetration. Higher percentages require burner and infrastructure redesign.
Study Progress on the Pipeline Transportation Safety of Hydrogen-blended Natural Gas
Oct 2023
Publication
The core of carbon neutrality is the energy structure adjustment and economic structure transformation. Hydrogen energy as a kind of clean energy with great potential has provided important support for the implementation of the carbon peaking and carbon neutrality goals of China. How to achieve the large-range safe and reliable transportation of hydrogen energy with good economic benefits remains the key to limiting the development of hydrogen energy. Using the existing natural gas pipeline network can save many infrastructure construction costs to transport hydrogen-blended natural gas. However due to great differences in the physical and chemical properties of hydrogen and natural gas the transportation of hydrogen-blended natural gas will bring safety risks to the pipeline network operation to a certain extent. In this paper the influences of pipeline transportation of hydrogen-blended natural gas on existing pipelines and parts along the pipelines are analyzed from two aspects of pipe compatibility and hydrogen blending ratio and the safety of pipeline transportation of hydrogen-blended natural gas is summarized from two aspects of leakage and accumulation as well as combustion and explosion. In addition the integrity management of hydrogen-blended natural gas pipelines and the existing relevant standards and specifications are reviewed. This paper points out the shortcomings of current hydrogen-blended natural gas pipeline transportation and gives some relevant suggestions. Hopefully this work can provide a useful reference for developing a hydrogen-blended natural gas pipeline transportation system.
Investigation on the Compressibility Factor of Hydrogen-Doped Natural Gas Using GERG-2008 Equation of State
Dec 2024
Publication
The primary methods for hydrogen transportation include gaseous storage and transport liquid hydrogen storage and transport via organic liquid carriers. Among these pipeline transportation offers the lowest cost and the greatest potential for large-scale long-distance transport. Although the construction and operation costs of dedicated hydrogen pipelines are relatively high blending hydrogen into existing natural gas networks presents a viable alternative. This approach allows hydrogen to be transported to the end-users where it can be either separated for use or directly combusted thereby reducing hydrogen transport costs. This study based on the GERG-2008 equation of state conducts experimental tests on the compressibility factor of hydrogen-doped natural gas mixtures across a temperature range of −10 ◦C to 110 ◦C and a pressure range of 2 to 12 MPa with hydrogen blending ratios of 5% 10% 20% 30% and 40%. The results indicate that the hydrogen blending ratio temperature and pressure significantly affect the compressibility factor particularly under low-temperature and high-pressure conditions where an increase in the hydrogen blending ratio leads to a notable rise in the compressibility factor. These findings have substantial implications for the practical design of hydrogen-enriched natural gas pipelines as changes in the compressibility factor directly impact pipeline operational parameters compressor characteristics and other system performance aspects. Specifically the introduction of hydrogen alters the compressibility factor of the transported medium thereby affecting the pipeline’s flowability and compressibility which are crucial for optimizing and applying the performance of hydrogen-enriched natural gas in transportation channels. The research outcomes provide valuable insights for understanding combustion reactions adjusting pipeline operational parameters and compressor performance characteristics facilitating more precise decision-making in the design and operation of hydrogen-enriched natural gas pipelines.
Flashback Propensity due to Hydrogen Blending in Natural Gas: Sensitivity to Operating and Geometrical Parameters
Jan 2024
Publication
Hydrogen has emerged as a promising option for promoting decarbonization in various sectors by serving as a replacement for natural gas while retaining the combustion-based conversion system. However its higher reactivity compared to natural gas introduces a significant risk of flashback. This study investigates the impact of operating and geometry parameters on flashback phenomena in multi-slit burners fed with hydrogenmethane-air mixtures. For this purpose transient numerical simulations which take into account conjugate heat transfer between the fluid and the solid walls are coupled with stochastic sensitivity analysis based on Generalized Polynomial Chaos. This allows deriving comprehensive maps of flashback velocities and burner temperatures within the parameter space of hydrogen content equivalence ratio and slit width using a limited number of numerical simulations. Moreover we assess the influence of different parameters and their interactions on flashback propensity. The ranges we investigate encompass highly H2 -enriched lean mixtures ranging from 80% to 100% H2 by volume with equivalence ratios ranging from 0.5 to 1.0. We also consider slit widths that are typically encountered in burners for end-user devices ranging from 0.5 mm to 1.2 mm. The study highlights the dominant role of preferential diffusion in affecting flashback physics and propensity as parameters vary including significant enrichment close to the burner plate due to the Soret effect. These findings hold promise for driving the design and optimization of perforated burners enabling their safe and efficient operation in practical end-user applications.
Fracture Toughness Assessment of Pipeline Steels Under Hydrogen Exposure for Blended Gas Applications
Jan 2025
Publication
Hydrogen embrittlement (HE) is a critical concern for pipeline steels particularly as the energy sector explores the feasibility of blending hydrogen with natural gas to reduce carbon emissions. Various mechanical testing methods assess HE with fracture toughness testing offering a quantitative measure of defect impacts on structural safety particularly for cracks arising during manufacturing fabrication or in-service conditions. This study focuses on assessing the fracture toughness of two pipeline steels from an existing natural gas network under varying hydrogen concentrations using double cantilever beam (DCB) fracture tests. A vintage API X52 steel with a ferritic–pearlitic microstructure and a modern API X65 steel with polygonal ferrite and elongated pearlite colonies were selected to represent old and new pipeline materials. Electrochemical hydrogen charging was employed to simulate hydrogen exposure with the charging parameters derived from hydrogen permeation tests. The results highlight the differing impacts of hydrogen on the fracture toughness and crack growth in vintage and modern pipeline steels. These findings are essential for ensuring the safety and integrity of pipelines carrying hydrogen–natural gas blends.
Enriching Natural Gas with Hydrogen: Implications for Burner Operation
Feb 2024
Publication
This paper presents the results of increasing the hydrogen concentration in natural gas distributed within the territory of the Slovak Republic. The range of hydrogen concentrations in the mathematical model is considered to be from 0 to 100 vol.% for the resulting combustion products temperature and heating value and for the scientific assessment of the environmental and economic implications. From a technical perspective it is feasible to consider enriching natural gas with hydrogen up to a level of 20% within the Slovak Republic. CO2 emissions are estimated to be reduced by 3.76 tons for every 1 TJ of energy at an operational cost of EUR 10000 at current hydrogen prices.
Economic Modelling of Mixing Hydrogen with Natural Gas
Jan 2024
Publication
As global efforts intensify to transition toward cleaner and more sustainable energy sources the blending of hydrogen with natural gas emerges as a promising strategy to reduce carbon emissions and enhance energy security. This study employs a systematic approach to assess the economic viability of hydrogen blending considering factors such as gas costs and heat values. Various hydrogen blending scenarios are analyzed to determine the optimal blend ratios taking into account both technical feasibility and economic considerations. The study discusses potential economic benefits challenges and regulatory implications associated with the widespread adoption of hydrogen–natural gas mixtures. Furthermore the study explores the impact of this integration on existing natural gas infrastructure exploring the potential for enhanced energy storage and delivery. The findings of this research contribute valuable insights to policymakers industry stakeholders and researchers engaged in the ongoing energy transition by providing a nuanced understanding of the economic dimensions of hydrogen blending within the natural gas sector.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society
Aug 2023
Publication
The increase in demand and thus the need to lower its price has kept C-based fuels as the main source. In this context the use of oil and gas has led to increased climate change resulting in greenhouse gases. The high percentage of emissions over 40% is due to the production of electricity heat or/and energy transport. This is the main reason for global warming and the extreme and increasingly common climate change occurrences with all of nature being affected. Due to this reason in more and more countries there is an increased interest in renewable energies from sustainable sources with a particular emphasis on decarbonisation. One of the energies analysed for decarbonisation that will play a role in future energy systems is hydrogen. The development of hydrogen–natural gas mixtures is a major challenge in the field of energy and fuel technology. This article aims to highlight the major challenges associated with researching hydrogen–natural gas blends. Meeting this challenge requires a comprehensive research and development effort including exploring appropriate blending techniques optimising performance addressing infrastructure requirements and considering regulatory considerations. Overcoming this challenge will enable the full potential of hydrogen–natural gas blends to be realised as a clean and sustainable energy source. This will contribute to the global transition to a greener and more sustainable future. Several international European and Romanian studies projects and legislative problems are being analysed. The mix between H2 and natural gas decreases fugitive emissions. In contrast using hydrogen increases the risk of fire more than using natural gas because hydrogen is a light gas that easily escapes and ignites at almost any concentration in the air.
Gas Turbine Combustion Technologies for Hydrogen Blends
Sep 2023
Publication
The article reviews gas turbine combustion technologies focusing on their current ability to operate with hydrogen enriched natural gas up to 100% H2. The aim is to provide a picture of the most promising fuel-flexible and clean combustion technologies the object of current research and development. The use of hydrogen in the gas turbine power generation sector is initially motivated highlighting both its decarbonisation and electric grid stability objectives; moreover the state-of-the-art of hydrogen-blend gas turbines and their 2024 and 2030 targets are reported in terms of some key performance indicators. Then the changes in combustion characteristics due to the hydrogen enrichment of natural gas blends are briefly described from their enhanced reactivity to their pollutant emissions. Finally gas turbine combustion strategies both already commercially available (mostly based on aerodynamic flame stabilisation self-ignition and staging) or still under development (like the micro-mixing and the exhaust gas recirculation concepts) are described.
No more items...