Policy & Socio-Economics
Workshop Report: Summary & Outcomes, Putting Science into Standards Power-to-Hydrogen and HCNG
Oct 2014
Publication
The Joint Research Centre (JRC) of the European Commission together with the European Association of Research and Technology Organisations (EARTO) the European Standards Organisations (ESO) CEN and CENELEC and the European Commission Directorate-General Enterprise and Industry (ENTR) have launched an initiative within the context of the European Forum on Science and Industry to bring the scientific and standardization communities closer together. The second and very successful workshop in a series entitled “Putting Science into Standards" was held in at the Institute for Energy and Transport of the JRC in Petten on 21-22 October 2014.<br/>The workshop focused on Power to Hydrogen (P2H) and Hydrogen Compressed Natural Gas (HCNG) which represent a promising and major contribution to the challenging management of increased integration of renewable energy sources in the overall energy system. The workshop offered a platform to exchange ideas on technologies policy and standardization issues. The participation of major stakeholders from both industry and research to this event proved fruitful in moving towards consensus on the relevant technical issues involved and at identifying a common way forward to increase the maturity and market visibility of P2H components and systems. Other outcomes include a clarification of expectations of industry of where and how policy and standardization can contribute to a competitive development of P2H and related issues. The workshop results will be used to devise a roadmap on "Opportunities for Power to Hydrogen and HCNG" by CEN/CENELEC outlining the next steps of standardization activities.
National Hydrogen Roadmap for Finland
Nov 2020
Publication
Hydrogen has been used as an industrial chemical for more than 100 years. Today hydrogen is used to manufacture ammonia and hence fertilizers as well as methanol and hydrogen peroxide both vital feedstocks for a wide variety of different chemical products. Furthermore in oil refineries hydrogen is used for the processing of intermediate products as well as to increase the hydrogen contents of the final products that are used propel the vehicles. However hydrogen has recently achieved new attention for its capabilities in reducing carbon emissions to the atmosphere. Producing hydrogen via low or totally carbon-free ways and using this “good” low-carbon hydrogen to replace hydrogen with a larger carbon footprint we can reduce carbon emissions. Furthermore using renewable electricity and captured carbon we can synthesise many such chemical products that are currently produced from fossil raw materials. This “Power-to-X” (P2X) is often seen as the eventual incarnation of the hydrogen economy. In addition the progress in technology both in hydrogen fuel cells and in polymer electrolyte electrolysers alike has increased their efficiencies.<br/>Furthermore production costs of renewable electricity by wind or solar power have lowered significantly. Thus cost of “good” hydrogen has also decreased markedly and production volumes are expected to increase rapidly. For these reasons many countries have raised interests in “good” hydrogen and have created roadmaps and strategies for their involvement in hydrogen. Hydrogen plays a key role also in combating climate change and reaching Finland's national goal of carbon neutrality by 2035. In recent years many clean hydrogen and P2X production methods have developed significantly and become commercially viable.<br/>This report was produced by a team of VTT experts on hydrogen and hydrogen-related technologies. The focus is in an outlook for low-carbon H2 production H2 utilization for green chemicals and fuels as well as storage transport and end-use especially during the next 10 years in Finland in connection to renewed EU regulations. This roadmap is expected to serve as the knowledge-base for further work such as shaping the hydrogen policy for Finland and determining the role of hydrogen in the national energy and climate policy.
World Energy Issues Monitor 2019 Managing the Grand Energy Transition
Oct 2019
Publication
This is the tenth consecutive year of the World Energy Council’s (the Council) annual survey of key challenges and opportunities facing energy leaders in managing and shaping Energy Transitions. This year’s Issues Monitor report provides seven global maps six regional maps and fifty national maps.
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
- To promote a shared understanding of successful Energy Transitions
- To appreciate and contrast regional variations to better understand differing priorities and areas of concern
- To follow the evolution of specific technology trends related to the energy sector
Mathematical Description of Energy Transition Scenarios Based on the Latest Technologies and Trends
Dec 2021
Publication
This work dedicated to a mathematical description of energy transition scenarios consists of three main parts. The first part describes modern trends and problems of the energy sector. A large number of charts reflecting the latest updates in energy are provided. The COVID-2019 pandemic’s impacts on the energy sector are also included. The second part of the paper is dedicated to the analysis of energy consumption and the structure of the world fuel and energy balance. Furthermore a detailed description of energy-efficient technologies is given. Being important and low-carbon hydrogen is discussed including its advantages and disadvantages. The last part of the work describes the mathematical tool developed by the authors. The high availability of statistical data made it possible to identify parameters used in the algorithm with the least squares method and verify the tool. Performing several not complicated steps of the algorithm the tool allows calculating the deviation of the average global temperature of the surface atmosphere from preindustrial levels in the 21st century under different scenarios. Using the suggested mathematical description the optimal scenario that makes it possible to keep global warming at a level below 1.7 ◦C was found.
A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies
Aug 2016
Publication
This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar) that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California) and high penetration rates of residential solar photovoltaics (PV) (Germany). Therefore Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.
Government Strategy on Hydrogen - The Netherlands
Apr 2020
Publication
Low-carbon gases are indispensable to any energy system that is reliable clean affordable safe and is suited to spatial integration and zero-carbon hydrogen is a crucial link in that chain1. The most common element in the universe seems to have a highly bonding effect in the Netherlands – particularly as a result of the unique starting position of our country. This is made clear in the agreements of the National Climate Agreement which includes an ambitious target for hydrogen supported by a large and broad group of stakeholders. Industrial clusters and ports regard hydrogen as an indispensable part of their future and sustainability strategy. For the transport sector hydrogen (in combination with fuel cells) is crucial to achieving zero emissions transport. The agricultural sector has identified opportunities for the production of hydrogen and for its use. Cities regions and provinces are keen to get started on implementing hydrogen.<br/>The government embraces these targets and recognises the power of the framework for action demonstrated by so many parties. The focus on clean hydrogen in the Netherlands will lead to the creation of new jobs improvements to air quality and moreover is crucial to the energy transition.
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Where Does Hydrogen Fit in a Sustainable Energy Economy?
Jul 2012
Publication
Where does hydrogen fit into a global sustainable energy strategy for the 21st century as we face the enormous challenges of irreversible climate change and uncertain oil supply? This fundamental question is addressed by sketching a sustainable energy strategy that is based predominantly on renewable energy inputs and energy efficiency with hydrogen playing a crucial and substantial role. But this role is not an ex -distributed hydrogen production storage and distribution centres relying on local renewable energy sources and feedstocks would be created to avoid the need for an expensive long-distance hydrogen pipeline system. There would thus be complementary use of electricity and hydrogen as energy vectors. Importantly bulk hydrogen storage would provide the strategic energy reserve to guarantee national and global energy security in a world relying increasingly on renewable energy; and longer-term seasonal storage on electricity grids relying mainly on renewables. In the transport sector a 'horses for courses' approach is proposed in which hydrogen fuel cell vehicles would be used in road and rail vehicles requiring a range comparable to today's petrol and diesel vehicles and in coastal and international shipping while liquid hydrogen would probably have to be used in air transport. Plug-in battery electric vehicles would be reserved for shorter-trips. Energy-economic-environmental modelling is recommended as the next step to quantify the net benefits of the overall strategy outlined.
A Vision for Hydrogen in New Zealand - Green Paper
Sep 2019
Publication
Green hydrogen has the potential to play a significant role in our energy system and could play an important role in decarbonising parts of our economy.
To assist with the development of the Hydrogen Green Paper MBIE assisted by consultants Arup – held four workshops with key stakeholders in Wellington Auckland Christchurch and New Plymouth. The workshops were well attended with a range of views expressed on the potential for hydrogen in New Zealand. Following the workshops we incorporated these views into a Hydrogen Green Paper which was released for public consultation. We sought feedback from the public and wider stakeholders about the challenges and opportunities of building a hydrogen economy in New Zealand as part of our renewable energy strategy. On 2 September 2019 we released the green paper – “A vision for hydrogen in New Zealand”. Consultation ended on 25 October 2019. The green paper looked at the scope of New Zealand’s hydrogen potential to frame discussions for a national strategy.
The green paper asked 27 questions about the challenges and opportunities and the Government’s role in nine key areas:
This green paper along with the submissions will feed into a wider renewable energy strategy for New Zealand. This will outline the renewable energy pathway to a clean green carbon neutral for New Zealand by 2050.
To assist with the development of the Hydrogen Green Paper MBIE assisted by consultants Arup – held four workshops with key stakeholders in Wellington Auckland Christchurch and New Plymouth. The workshops were well attended with a range of views expressed on the potential for hydrogen in New Zealand. Following the workshops we incorporated these views into a Hydrogen Green Paper which was released for public consultation. We sought feedback from the public and wider stakeholders about the challenges and opportunities of building a hydrogen economy in New Zealand as part of our renewable energy strategy. On 2 September 2019 we released the green paper – “A vision for hydrogen in New Zealand”. Consultation ended on 25 October 2019. The green paper looked at the scope of New Zealand’s hydrogen potential to frame discussions for a national strategy.
The green paper asked 27 questions about the challenges and opportunities and the Government’s role in nine key areas:
- Hydrogen production
- Hydrogen electricity nexus
- Hydrogen for mobility
- Hydrogen for industrial processes
- Hydrogen for seasonal power generation
- Decarbonisation of our gas
- Hydrogen for export
- Innovation expands job opportunities
- Transitioning the job market
This green paper along with the submissions will feed into a wider renewable energy strategy for New Zealand. This will outline the renewable energy pathway to a clean green carbon neutral for New Zealand by 2050.
Hourly Modelling of Thermal Hydrogen Electricity Markets
Jul 2020
Publication
The hourly operation of Thermal Hydrogen electricity markets is modelled. The economic values for all applicable chemical commodities are quantified (syngas ammonia methanol and oxygen) and an hourly electricity model is constructed to mimic the dispatch of key technologies: bi-directional power plants dual-fuel heating systems and plug-in fuel-cell hybrid electric vehicles. The operation of key technologies determines hourly electricity prices and an optimization model adjusts the capacity to minimize electricity prices yet allow all generators to recover costs. We examine 12 cost scenarios for renewables nuclear and natural gas; the results demonstrate emissionsfree ‘energy-only’ electricity markets whose supply is largely dominated by renewables. The economic outcome is made possible in part by seizing the full supply-chain value from electrolysis (both hydrogen and oxygen) which allows an increased willingness to pay for (renewable) electricity. The wholesale electricity prices average $25–$45/ MWh or just slightly higher than the assumed levelized cost of renewable energy. This implies very competitive electricity prices particularly given the lack of need for ‘scarcity’ pricing capacity markets dedicated electricity storage or underutilized electric transmission and distribution capacity.
Hydrogen Strategy - Enabling a Low-Carbon Economy
Jul 2020
Publication
This document summarizes current hydrogen technologies and communicates the U.S. Department of Energy (DOE) Office of Fossil Energy's (FE's) strategic plan to accelerate research development and deploymnet of hydrogen technologies in the United States. It also describes ongoing FE hydrogen-related research and development (R&D). Hydrogen from fossil fuels is a versatile energy carrier and can play an important role in the transition to a low-carbon economy.
Carbon Negative Transportation Fuels - A Techno-Economic-Environmental Analysis of Biomass Pathways for Transportation
Feb 2022
Publication
Global warming and fossil fuel depletion have necessitated alternative sources of energy. Biomass is a promising fuel source because it is renewable and can be carbon negative even without carbon capture and storage. This study considers biomass as a clean renewable source for transportation fuels. An Aspen Plus process simulation model was built of a biomass gasification biorefinery with Fischer-Tropsch (FT) synthesis of liquid fuels. A GaBi life cycle assessment model was also built to determine the environmental impacts using a cradle-to-grave approach. Three different product pathways were considered: Fischer-Tropsch synthetic diesel hydrogen and electricity. An offgas autothermal reformer with a recycle loop was used to increase FT product yield. Different configurations and combinations of biorefinery products are considered. The thermal efficiency and cost of production of the FT liquid fuels are analyzed using the Aspen Plus process model. The greenhouse gas emissions profitability and mileage per kg biomass were compared. The mileage traveled per kilogram biomass was calculated using modern (2019-2021) diesel electric and hydrogen fuel cell vehicles. The overall thermal efficiency was found to be between 20-41% for FT fuels production between 58-61% for hydrogen production and around 25-26% for electricity production for this biorefinery. The lowest production costs were found to be $3.171/gal of FT diesel ($24.304/GJ) $1.860/kg of H2 ($15.779/GJ) and 13.332¢/kWh for electricity ($37.034/GJ). All configurations except one had net negative carbon emissions over the life cycle of the biomass. This is because carbon is absorbed in the trees initially and some of the carbon is sequestered in ash and unconverted char from the gasification process furthermore co-producing electricity while making transportation fuel offsets even more carbon emissions. Compared to current market rates for diesel hydrogen and electricity the most profitable biorefinery product is shown to be hydrogen while also having net negative carbon emissions. FT diesel can also be profitable but with a slimmer profit margin (not considering government credits) and still having net negative carbon emissions. However our biorefinery could not compete with current commercial electricity prices in the US. As oil hydrogen and electricity prices continue to change the economics of the biorefinery and the choice product will change as well. For our current biorefinery model hydrogen seems to be the most promising product choice for profit while staying carbon negative while FT diesel is the best choice for sequestering the most carbon and still being profitable. All code and data are given.
Legal Regulation of Hydrogen in Germany and Ukraine as a Precondition for Energy Partnership and Energy Transition
Dec 2021
Publication
In August 2020 Germany and Ukraine launched an energy partnership that includes the development of a hydrogen economy. Ukraine has vast renewable energy resources for “green” hydrogen production and a gas transmission system for transportation instead of Russian natural gas. Based on estimates by Hydrogen Europe Ukraine can install 8000 MW of total electrolyser capacity by 2030. For these reasons Ukraine is among the EU’s priority partners concerning clean hydrogen according to the EU Hydrogen strategy. Germany plans to reach climate neutrality by 2045 and “green” hydrogen plays an important role in achieving this target. However according to the National Hydrogen Strategy of Germany local production of “green” hydrogen will not cover all internal demand in Germany. For this reason Germany considers importing hydrogen from Ukraine. To govern the production and import of “green” hydrogen Germany and Ukraine shall introduce legal regulations the initial analysis of which is covered in this study. Based on observation and comparison this paper presents and compares approaches while exploring the current stage and further perspectives for legal regulation of hydrogen in Germany and Ukraine. This research identifies opportunities in hydrogen production to improve the flexibility of the Ukrainian power system. This is an important issue for Ukrainian energy security. In the meantime hydrogen can be a driver for decarbonisation according to the initial plans of Germany and it may also have positive impact on the operation of Germany’s energy system with a high share of renewables.
Hydrogen Roadmap: A Commitment to Renewable Hydrogen - Executive Summary
Oct 2020
Publication
This Hydrogen Roadmap aims to identify the challenges and opportunities for the full development of renewable hydrogen in Spain providing a series of measures aimed at boosting investment action taking advantage of the European consensus on the role that this energy vector should play in the context of green recovery. This Roadmap is therefore aligned with the 2021 Annual Sustainable Growth Strategy published by the European Commission which identifies the future Recovery and Resilience Mechanism as an opportunity to create emblematic areas of action at European level making two of these areas of action (Power up and Recharge and Refuel) an explicit mention of the development of renewable hydrogen in the European Union.
Living Carbon Free – Exploring What a Net-zero Target Means for Households
Jun 2019
Publication
The Energy Systems Catapult (ESC) explored the role of households in a net-zero emissions society to accompany the CCC’s Net Zero report looking at opportunities and challenges for households to reduce emissions from today’s levels and to support the stretch from an 80% emissions reduction to a net-zero greenhouse gas target. As well as describing a net-zero emissions world for households of different types the ESC looked at average household emissions under different decarbonisation scenarios and the options households can take to contribute to the decarbonisation effort.
This supported the Net Zero Technical report.
This supported the Net Zero Technical report.
Decentral Hydrogen
Apr 2022
Publication
This concept study extends the power-to-gas approach to small combined heat and power devices in buildings that alternately operate fuel cells and electrolysis. While the heat is used to replace existing fossil heaters on-site the power is either fed into the grid or consumed via heatcoupled electrolysis to balance the grid power at the nearest grid node. In detail the power demand of Germany is simulated as a snapshot for 2030 with 100% renewable sourcing. The standard load profile is supplemented with additional loads from 100% electric heat pumps 100% electric cars and a fully electrified industry. The renewable power is then scaled up to match this demand with historic hourly yield data from 2018/2019. An optimal mix of photovoltaics wind biomass and hydropower is calculated in respect to estimated costs in 2030. Hydrogen has recently entered a large number of national energy roadmaps worldwide. However most of them address the demands of heavy industry and heavy transport which are more difficult to electrify. Hydrogen is understood to be a substitute for fossil fuels which would be continuously imported from non-industrialized countries. This paper focuses on hydrogen as a storage technology in an all-electric system. The target is to model the most cost-effective end-to-end use of local renewable energies including excess hydrogen for the industry. The on-site heat coupling will be the principal argument for decentralisation. Essentially it flattens the future peak from massive usage of electric heat pumps during cold periods. However transition speed will either push the industry or the prosumer approach in front. Batteries are tried out as supplementary components for short-term storage due to their higher round trip efficiencies. Switching the gas net to hydrogen is considered as an alternative to overcome the slow power grid expansions. Further decentral measures are examined in respect to system costs.
Sustainable Hydrogen Society - Vision, Findings and Development of a Hydrogen Economy Using the Example of Austria
Oct 2021
Publication
Based on technical environmental economic and social facts and recent findings the feasibility of the transition from our current fossil age to the new green age is analyzed in detail at both global and local level. To avert the threats of health problems environmental pollution and climate change to our quality and standard of life a twofold radical paradigm shift is outlined: Green Energy Revolution means the complete change from fossil-based to green primary energy sources such as sun wind water environmental heat and biomass; Green Hydrogen Society means the complete change from fossil-based final energy to green electricity and green hydrogen in all areas of mobility industries households and energy services. Renewable energies offer a green future and are in combination with electrochemical machines such as electrolysers batteries and fuel cells able to achieve higher efficiencies and zero emissions.
Global Energy Review 2020- The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissions
Apr 2020
Publication
In response to the exceptional circumstances stemming from the coronavirus pandemic the annual IEA Global Energy Review has expanded its coverage to include real-time analysis of developments to date in 2020 and possible directions for the rest of the year. In addition to reviewing 2019 energy and CO2 emissions data by fuel and country for this section of the Global Energy Review we have tracked energy use by country and fuel over the past three months and in some cases – such as electricity – in real time. Some tracking will continue on a weekly basis. The uncertainty surrounding public health the economy and hence energy over the rest of 2020 is unprecedented. This analysis therefore not only charts a possible path for energy use and CO2 emissions in 2020 but also highlights the many factors that could lead to differing outcomes. We draw key lessons on how to navigate this once-in-a-century crisis.
Link to Document on IEA websitte
Link to Document on IEA websitte
Net Zero – Technical Report
May 2019
Publication
This technical report accompanies the ‘Net Zero’ advice report which is the Committee’s recommendation to the UK Government and Devolved Administrations on the date for a net-zero emissions target in the UK and revised long-term targets in Scotland and Wales.<br/>The conclusions in our advice report are supported by detailed analysis that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals. The purpose of this technical report is to lay out that analysis.
Next Steps for UK Heat Policy
Oct 2016
Publication
Heating and hot water for UK buildings make up 40% of our energy consumption and 20% of our greenhouse gas emissions. It will be necessary to largely eliminate these emissions by around 2050 to meet the targets in the Climate Change Act and to maintain the UK contribution to international action under the Paris Agreement.<br/>Progress to date has stalled. The Government needs a credible new strategy and a much stronger policy framework for buildings decarbonisation over the next three decades. Many of the changes that will reduce emissions will also contribute toward modern affordable comfortable homes and workplaces and can be delivered alongside a major expansion in the number of homes. This report considers that challenge and sets out possible steps to meet it.
No more items...