Policy & Socio-Economics
Hydrogen Roadmap: A Commitment to Renewable Hydrogen - Executive Summary
Oct 2020
Publication
This Hydrogen Roadmap aims to identify the challenges and opportunities for the full development of renewable hydrogen in Spain providing a series of measures aimed at boosting investment action taking advantage of the European consensus on the role that this energy vector should play in the context of green recovery. This Roadmap is therefore aligned with the 2021 Annual Sustainable Growth Strategy published by the European Commission which identifies the future Recovery and Resilience Mechanism as an opportunity to create emblematic areas of action at European level making two of these areas of action (Power up and Recharge and Refuel) an explicit mention of the development of renewable hydrogen in the European Union.
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
Hydrogen Europe Podcast: Hydrogen, The First Element: Why Renewable Hydrogen? Why Now?
Mar 2022
Publication
In the first episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with NEL's CEO and President of Hydrogen Europe Jon Andre Løkke. Starting off on how Jon joined the hydrogen sector the two CEOs investigate the historical moment renewable hydrogen is currently living.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
Annual Science Review 2018
Mar 2018
Publication
THIS ANNUAL SCIENCE Review showcases the high quality of science evidence and analysis that underpins HSE’s risk-based regulatory regime. To be an effective regulator HSE has to balance its approaches to informing directing advising and enforcing through a variety of activities. For this we need capacity to advance knowledge; to develop and use robust evidence and analysis; to challenge thinking; and to review effectiveness.<br/>In simple terms policy provides the route map to tackling issues. HSE is particularly well placed in terms of the three components of effective policy - “politics” “evidence” and “delivery”. Unlike most regulators and arms-length bodies HSE leads on policy development which draws directly on front line delivery expertise and intelligence; and we are also unusual in having our own world class science and insight capabilities.<br/>The challenge is to ensure we bring these components together to best effect to respond to new risk management and regulatory issues with effective innovative and proportionate approaches.<br/>Many of the articles in this Review relate to new and emerging technologies and the changing world of work and it is important to understand the risks these may pose and how they can be effectively controlled or how they themselves can contribute to improved health and safety in the workplace. Good policy development can support approaches to change that are proportionate relevant persuasive and effective. For example work described in these pages is: to help understand changing workplace exposures; to provide robust evidence to those negotiating alternatives to unduly prescriptive standards; to understand how best to influence duty<br/>holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>The vital interface between HSE science and policy understand how best to influence duty holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>We work well together and it is important we maintain this engagement as a conscious collaboration.
Disrupting the UK energy system: Causes, Impacts and Policy Implications
Jun 2019
Publication
With government legislating for net-zero by 2050 what does this mean for UK energy markets and business models?<br/>Getting to net-zero will require economy-wide changes that extend well beyond the energy system leading to rapid and unprecedented change in all aspects of society.<br/>This report shines a light on the level of disruption that could be required by some sectors to meet net-zero targets. With many businesses making strong commitments to a net-zero carbon future the report highlights the stark future facing specific sectors. Some will need to make fundamental change to their business models and operating practices whilst others could be required to phase out core assets. Government may need to play a role in purposefully disrupting specific sectors to ensure the move away from high carbon business models facilitating the transition a zero-carbon economy. Sector specific impactsThe in-depth analysis presented in ‘Disrupting the UK energy systems: causes impacts and policy implications’ focuses on four key areas of the economy highlighting how they may need to change to remain competitive and meet future carbon targets.<br/>Heat: All approaches for heat decarbonisation are potentially disruptive with policymakers favouring those that are less disruptive to consumers. Since it is unlikely that rapid deployment of low carbon heating will be driven by consumers or the energy industry significant policy and governance interventions will be needed to drive the sustainable heat transformation.<br/>Transport: Following the ‘Road to Zero’ pathway for road transport is unlikely to be disruptive but it is not enough to meet our climate change targets. The stricter targets for phasing out conventional vehicles that will be required will lead to some disruption. Vehicle manufacturers the maintenance and repair sector and the Treasury may all feel the strain.<br/>Electricity: Strategies of the Big 6 energy companies have changed considerably in recent years with varying degrees of disruption to their traditional business model. It remains to be seen whether they will be able to continue to adapt to rapid change – or be overtaken by new entrants.<br/>Construction: To deliver low-carbon building performance will require disruptive changes to the way the construction sector operates. With new-build accounting for less than 1% of the total stock major reductions in energy demand will need to come through retrofit of existing buildings.<br/>The report identifies how policy makers plan for disruptions to existing systems. With the right tools and with a flexible and adaptive approach to policy implementation decision makers can better respond to unexpected consequences and ensure delivery of key policy objectives.
Hydrogen - Decarbonising Heat
Feb 2020
Publication
<br/>Our industry is beginning its journey on the transition to providing the world with sufficient sustainable affordable and low emission energy.<br/><br/>Decarbonisation is now a key priority. Steps range from reducing emissions from traditional oil and gas operations to investing in renewable energy and supplementing natural gas supplies with greener gasses such as hydrogen.<br/><br/>This paper looks at the role hydrogen could play in decarbonisation.
Annual Science Review 2019
Mar 2019
Publication
Having a robust evidence base enables us to tackle real issues causing pain and suffering in the workplace. Critically it enables us to better understand developing issues and ways of working to ensure that we support innovation rather than stifle it through lack of knowledge. For example the work on the use of 3D printers in schools demonstrates HSE’s bility to engage and understand the risks to encourage safe innovation in a developing area (see p47).<br/>Other examples in this report show just a selection of the excellent work carried out by our staff often collaborating with others which contributes to improving how we regulate health and safety risks proportionately and effectively.<br/>One of HSEs key priorities is to prevent future cases of occupational lung disease by improving the management and control of hazardous substances. The case study on measuring Respirable Crystalline Silica exposure contributes to this and to recognise developing and future issues such as the work on diacetyl in the coffee industry (see p24 and p39). This type of scientific investigation gives our regulators good trusted information enabling critical decisions on the actions needed to protect workers.<br/>The case study on publishing new guidance on the use of Metalworking Fluids (MWF) demonstrates the important contribution of collaborative science to improving regulation. If used inappropriately exposure to MWF mist can cause serious long-term lung disease and it was recognised that users needed help to control this risk. HSE scientists and regulators worked with industry stakeholders to produce new free guidance which reflects changes in scientific understanding in a practical easy to use guide. As well as enabling users to better manage the risks and as a bonus likely save money it has assisted regulation by providing clear benchmarks for all to judge control against. An excellent example of science contributing to controlling serious health risks (see p22).<br/>These case studies are excellent examples of how science contributes to reducing risk. Hopefully they will inspire you to think about how risk in your workplace could be improved and where further work might be needed.
The Clean Growth Strategy: Leading the Way to a Low Carbon Future
Oct 2017
Publication
Seizing the clean growth opportunity. The move to cleaner economic growth is one of the greatest industrial opportunities of our time. This Strategy will ensure Britain is ready to seize that opportunity. Our modern Industrial Strategy is about increasing the earning power of people in every part of the country. We need to do that while not just protecting but improving the environment on which our economic success depends. In short we need higher growth with lower carbon emissions. This approach is at the heart of our Strategy for clean growth. The opportunity for people and business across the country is huge. The low carbon economy could grow 11 per cent per year between 2015 and 2030 four times faster than the projected growth of the economy as a whole. This is spread across a large number of sectors: from low cost low carbon power generators to more efficient farms; from innovators creating better batteries to the factories putting them in less polluting cars; from builders improving our homes so they are cheaper to run to helping businesses become more productive. This growth will not just be seen in the UK. Following the success of the Paris Agreement where Britain played such an important role in securing the landmark deal the transition to a global low carbon economy is gathering momentum. We want the UK to capture every economic opportunity it can from this global shift in technologies and services.<br/>Our approach to clean growth is an important element of our modern Industrial Strategy: building on the UK’s strengths; improving productivity across the country; and ensuring we are the best place for innovators and new businesses to start up and grow. A good example of this is offshore wind where costs have halved in just a few years. A combination of sustained commitment – across different Governments – and targeted public sector innovation support harnessing the expertise of UK engineers working in offshore conditions and private sector ingenuity has created the conditions for a new industry to flourish while cutting emissions. We need to replicate this success in sectors across our economy. This Strategy delivers on the challenge that Britain embraced when Parliament passed the Climate Change Act. If we get it right we will not just deliver reduced emissions but also cleaner air lower energy bills for households and businesses an enhanced natural environment good jobs and industrial opportunity. It is an opportunity we will seize.
The Sixth Carbon Budget: The UK's Path to Net Zero
Dec 2020
Publication
The Sixth Carbon Budget report is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero advice. In support of the advice in this report we have also produced:
- A Methodology Report setting out the evidence and methodology behind the scenarios.
- A Policy Report setting out the changes to policy that could drive the changes necessary particularly over the 2020s.
- All the charts and data behind the report as well as a separate dataset for the Sixth Carbon Budget scenarios which sets out more details and data on the pathways than can be included in this report.
- A public Call for Evidence several new research projects three expert advisory groups and deep dives into the roles of local authorities and businesses.
Government Strategy on Hydrogen - The Netherlands
Apr 2020
Publication
Low-carbon gases are indispensable to any energy system that is reliable clean affordable safe and is suited to spatial integration and zero-carbon hydrogen is a crucial link in that chain1. The most common element in the universe seems to have a highly bonding effect in the Netherlands – particularly as a result of the unique starting position of our country. This is made clear in the agreements of the National Climate Agreement which includes an ambitious target for hydrogen supported by a large and broad group of stakeholders. Industrial clusters and ports regard hydrogen as an indispensable part of their future and sustainability strategy. For the transport sector hydrogen (in combination with fuel cells) is crucial to achieving zero emissions transport. The agricultural sector has identified opportunities for the production of hydrogen and for its use. Cities regions and provinces are keen to get started on implementing hydrogen.<br/>The government embraces these targets and recognises the power of the framework for action demonstrated by so many parties. The focus on clean hydrogen in the Netherlands will lead to the creation of new jobs improvements to air quality and moreover is crucial to the energy transition.
Industrial Decarbonisation Strategy
Mar 2021
Publication
The UK is a world leader in the fight against climate change. In 2019 we became the first major economy in the world to pass laws to end its contribution to global warming by 2050. Reaching this target will require extensive systematic change across all sectors including industry. We must get this change right as the products made by industry are vital to life in the UK and the sector supports local economies across the country.<br/><br/>This strategy covers the full range of UK industry sectors: metals and minerals chemicals food and drink paper and pulp ceramics glass oil refineries and less energy-intensive manufacturing. These businesses account for around one sixth of UK emissions and transformation of their manufacturing processes is key if we are to meet our emissions targets over the coming decades (BEIS Final UK greenhouse gas emissions from national statistics: 1990 to 2018: Supplementary tables 2020).<br/><br/>The aim of this strategy is to show how the UK can have a thriving industrial sector aligned with the net zero target without pushing emissions and business abroad and how government will act to support this. An indicative roadmap to net zero for UK industry based on the content in this strategy is set out at the end of this summary. This strategy is part of a series of publications from government which combined show how the net zero transition will take place across the whole UK economy.
Hourly Modelling of Thermal Hydrogen Electricity Markets
Jul 2020
Publication
The hourly operation of Thermal Hydrogen electricity markets is modelled. The economic values for all applicable chemical commodities are quantified (syngas ammonia methanol and oxygen) and an hourly electricity model is constructed to mimic the dispatch of key technologies: bi-directional power plants dual-fuel heating systems and plug-in fuel-cell hybrid electric vehicles. The operation of key technologies determines hourly electricity prices and an optimization model adjusts the capacity to minimize electricity prices yet allow all generators to recover costs. We examine 12 cost scenarios for renewables nuclear and natural gas; the results demonstrate emissionsfree ‘energy-only’ electricity markets whose supply is largely dominated by renewables. The economic outcome is made possible in part by seizing the full supply-chain value from electrolysis (both hydrogen and oxygen) which allows an increased willingness to pay for (renewable) electricity. The wholesale electricity prices average $25–$45/ MWh or just slightly higher than the assumed levelized cost of renewable energy. This implies very competitive electricity prices particularly given the lack of need for ‘scarcity’ pricing capacity markets dedicated electricity storage or underutilized electric transmission and distribution capacity.
A Vision for Hydrogen in New Zealand - Green Paper
Sep 2019
Publication
Green hydrogen has the potential to play a significant role in our energy system and could play an important role in decarbonising parts of our economy.
To assist with the development of the Hydrogen Green Paper MBIE assisted by consultants Arup – held four workshops with key stakeholders in Wellington Auckland Christchurch and New Plymouth. The workshops were well attended with a range of views expressed on the potential for hydrogen in New Zealand. Following the workshops we incorporated these views into a Hydrogen Green Paper which was released for public consultation. We sought feedback from the public and wider stakeholders about the challenges and opportunities of building a hydrogen economy in New Zealand as part of our renewable energy strategy. On 2 September 2019 we released the green paper – “A vision for hydrogen in New Zealand”. Consultation ended on 25 October 2019. The green paper looked at the scope of New Zealand’s hydrogen potential to frame discussions for a national strategy.
The green paper asked 27 questions about the challenges and opportunities and the Government’s role in nine key areas:
This green paper along with the submissions will feed into a wider renewable energy strategy for New Zealand. This will outline the renewable energy pathway to a clean green carbon neutral for New Zealand by 2050.
To assist with the development of the Hydrogen Green Paper MBIE assisted by consultants Arup – held four workshops with key stakeholders in Wellington Auckland Christchurch and New Plymouth. The workshops were well attended with a range of views expressed on the potential for hydrogen in New Zealand. Following the workshops we incorporated these views into a Hydrogen Green Paper which was released for public consultation. We sought feedback from the public and wider stakeholders about the challenges and opportunities of building a hydrogen economy in New Zealand as part of our renewable energy strategy. On 2 September 2019 we released the green paper – “A vision for hydrogen in New Zealand”. Consultation ended on 25 October 2019. The green paper looked at the scope of New Zealand’s hydrogen potential to frame discussions for a national strategy.
The green paper asked 27 questions about the challenges and opportunities and the Government’s role in nine key areas:
- Hydrogen production
- Hydrogen electricity nexus
- Hydrogen for mobility
- Hydrogen for industrial processes
- Hydrogen for seasonal power generation
- Decarbonisation of our gas
- Hydrogen for export
- Innovation expands job opportunities
- Transitioning the job market
This green paper along with the submissions will feed into a wider renewable energy strategy for New Zealand. This will outline the renewable energy pathway to a clean green carbon neutral for New Zealand by 2050.
Enabling Efficient Networks For Low Carbon Futures: Options for Governance and Regulation
Sep 2015
Publication
This report summarises key themes emerging from the Energy Technologies Institute’s (ETI) project ‘Enabling efficient networks for low carbon futures’. The project aimed to explore the options for reforming the governance and regulatory arrangements to enable major changes to and investment in the UK’s energy network infrastructures. ETI commissioned four expert perspectives on the challenges and options facing the UK.
Workshop Report: Summary & Outcomes, Putting Science into Standards Power-to-Hydrogen and HCNG
Oct 2014
Publication
The Joint Research Centre (JRC) of the European Commission together with the European Association of Research and Technology Organisations (EARTO) the European Standards Organisations (ESO) CEN and CENELEC and the European Commission Directorate-General Enterprise and Industry (ENTR) have launched an initiative within the context of the European Forum on Science and Industry to bring the scientific and standardization communities closer together. The second and very successful workshop in a series entitled “Putting Science into Standards" was held in at the Institute for Energy and Transport of the JRC in Petten on 21-22 October 2014.<br/>The workshop focused on Power to Hydrogen (P2H) and Hydrogen Compressed Natural Gas (HCNG) which represent a promising and major contribution to the challenging management of increased integration of renewable energy sources in the overall energy system. The workshop offered a platform to exchange ideas on technologies policy and standardization issues. The participation of major stakeholders from both industry and research to this event proved fruitful in moving towards consensus on the relevant technical issues involved and at identifying a common way forward to increase the maturity and market visibility of P2H components and systems. Other outcomes include a clarification of expectations of industry of where and how policy and standardization can contribute to a competitive development of P2H and related issues. The workshop results will be used to devise a roadmap on "Opportunities for Power to Hydrogen and HCNG" by CEN/CENELEC outlining the next steps of standardization activities.
The Decarbonisation of Heat
Mar 2020
Publication
This paper proposes that whilst the exact pathway to decarbonising heat in the UK is not yet clear there are a range of actions that could be taken in the next ten years to shift heat onto the right route to meet our 2050 net zero obligation. We already possess many of the skills and technologies required but there are a number of significant barriers preventing a spontaneous movement towards low carbon heat on the scale required – a starting impulse is needed.<br/><br/>Energy efficiency and low carbon heating have the potential to radically improve the quality of life of not just the poorest in our society but all residents of the United Kingdom. With the right approach the decarbonisation of heat can improve health outcomes for millions create new jobs in manufacturing and construction reduce air pollution in our cities and reduce the burden on our health service. This in addition to leading the world in mitigating the climate emergency.
Net Zero Review: Interim Report
Dec 2020
Publication
Climate change is an existential threat to humanity. Without global action to limit greenhouse gas emissions the climate will change catastrophically with almost unimaginable consequences for societies across the world. In recognition of the risks to the UK and other countries the UK became in 2019 the first major economy to implement a legally binding net zero target.<br/>The UK has made significant progress in decarbonising its economy but needs to go much further to achieve net zero. This will be a collective effort requiring changes from households businesses and government. It will require substantial investment and significant changes to how people live their lives.<br/>This transformation will also create opportunities for the UK economy. New industries and jobs will emerge as existing sectors decarbonise or give way to lowcarbon equivalents. The Ten Point Plan for a Green Industrial Revolution and Energy White Paper start to set out how the UK can make the most of these opportunities with new investment in sectors like offshore wind and hydrogen.1 The transition will also have distributional and competitiveness impacts that the government will need to consider as it designs policy.<br/>This interim report sets out the analysis so far from the Treasury’s Net Zero Review and seeks feedback on the approach ahead of the final report due to be published next year.
Hydrogen: A Reviewable Energy Perspective
Sep 2019
Publication
Hydrogen has emerged as an important part of the clean energy mix needed to ensure a sustainable future. Falling costs for hydrogen produced with renewable energy combined with the urgency of cutting greenhouse-gas emissions has given clean hydrogen unprecedented political and business momentum.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
- Electrolysers can add demand-side flexibility. In advanced European energy markets electrolysers are growing from megawatt to gigawatt scale.
- Blue hydrogen is not inherently carbon free. This type of production requires carbon-dioxide (CO2) monitoring verification and certification.
- Synergies may exist between green and blue hydrogen deployment given the chance for economies of scale in hydrogen use or logistics.
- A hydrogen-based energy transition will not happen overnight. Hydrogen use is likely to catch on for specific target applications. The need for new supply infrastructure could limit hydrogen use to countries adopting this strategy.
- Dedicated hydrogen pipelines have existed for decades and could be refurbished along with existing gas pipelines. The implications of replacing gas abruptly or changing mixtures gradually should be further explored.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
Potential Development of Renewable Hydrogen Imports to European Markets until 2030
Mar 2022
Publication
This paper considers potential import routes for low-carbon and renewable hydrogen (H2) to main European markets like Germany. In particular it analyses claims made by Hydrogen Europe and subsequently picked up by the European Commission in its Hydrogen Strategy that there will be 40GW of electrolyser capacity in nearby countries providing hydrogen imports to Europe by 2030. The analysis shows that by 2030 potential demand for H2 could be high enough to initiate some limited international hydrogen trade most likely between European countries initially rather than from outside Europe. Geographically a northern hydrogen cluster around Netherlands and NW Germany will be more significant for hydrogen demand while southern Europe is more likely to have surplus low cost renewable power generation. The paper considers potential H2 exporters to Europe including Ukraine and North African countries (in line with the proposal from Hydrogen Europe) as well as Norway and Russia. (The research pre-dates recent political and military tensions between Russia and Ukraine which are likely to influence future development pathways). The supply cost of hydrogen in 2030 is predicted to be in a reasonably (and perhaps surprisingly) narrow band around €3/kg from various sources and supply chains. The paper concludes that overall while imports of hydrogen to Europe are certainly possible in the longer term there are many challenges to be addressed. This conclusion supports the growing consensus that development of low carbon hydrogen certainly within Europe is likely to start within relatively local hydrogen clusters with some limited bilateral trade.
The research paper can be found on their website
The research paper can be found on their website
A Hydrogen Strategy for a Climate-neutral Europe
Jul 2020
Publication
In an integrated energy system hydrogen can support the decarbonisation of industry transport power generation and buildings across Europe. The EU Hydrogen Strategy addresses how to transform this potential into reality through investments regulation market creation and research and innovation.
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
- From 2020 to 2024 we will support the installation of at least 6 gigawatts of renewable hydrogen electrolysers in the EU and the production of up to one million tonnes of renewable hydrogen.
- From 2025 to 2030 hydrogen needs to become an intrinsic part of our integrated energy system with at least 40 gigawatts of renewable hydrogen electrolysers and the production of up to ten million tonnes of renewable hydrogen in the EU.
- From 2030 to 2050 renewable hydrogen technologies should reach maturity and be deployed at large scale across all hard-to-decarbonise sectors.
- To help deliver on this Strategy the Commission is launched the European Clean Hydrogen Alliance with industry leaders civil society national and regional ministers and the European Investment Bank. The Alliance will build up an investment pipeline for scaled-up production and will support demand for clean hydrogen in the EU.
Business Energy and Industrial Strategy Committee Inquiry into Decarbonising Heat in Homes
Dec 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Business Energy and Industrial Strategy Committee’s inquiry into decarbonising heat in homes. It is the Taskforce’s view that:
In March 2020 the Taskforce has defined a set of policy recommendations for Government which are designed to ensure that hydrogen can scale to meet the future demands of a net zero energy system: • Development of a cross departmental UK Hydrogen Strategy within UK Government;• Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;• Develop a financial support scheme for the production of hydrogen in blending industry power and transport.• Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and• Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
- Decarbonising heat is one of the biggest challenges that the UK faces in meeting Net Zero and several solutions will be required;
- Hydrogen can play a valuable role in reducing the cost of decarbonising heat. Its high energy density enables it to be stored cost effectively at scale providing system resilience;
- Hydrogen heating can be implemented at minimal disruption to the consumer;
- The UK holds world-class advantages in hydrogen production distribution and application; and
- Other economies are moving ahead in the development of this sector and the UK must respond.
In March 2020 the Taskforce has defined a set of policy recommendations for Government which are designed to ensure that hydrogen can scale to meet the future demands of a net zero energy system: • Development of a cross departmental UK Hydrogen Strategy within UK Government;• Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;• Develop a financial support scheme for the production of hydrogen in blending industry power and transport.• Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and• Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
Reducing Emissions in Scotland 2020 Progress Report to the Scottish Parliament
Oct 2020
Publication
Outline
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Hydrogen Europe 2020
Dec 2020
Publication
2020: a great year for hydrogen! Among other things 2020 has been exceptional for H2 technology deployment and policy development. The European Commission’s hydrogen strategy is just one of many crowning achievements! What does the future hold?
National Hydrogen Roadmap: Pathways to an Economically Sustainable Hydrogen Industry in Australia
Apr 2021
Publication
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
Recently there has been a considerable amount of work undertaken (both globally and domestically) seeking to quantify the economic opportunities associated with hydrogen. The National Hydrogen Roadmap takes that analysis a step further by focusing on how those opportunities can be realised.
National Hydrogen Roadmap
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
The primary objective of the Roadmap is to provide a blueprint for the development of a hydrogen industry in Australia. With a number of activities already underway it is designed to help inform the next series of investment amongst various stakeholder groups (e.g. industry government and research) so that the industry can continue to scale in a coordinated manner.
Pathways to an economically sustainable industry
The low emissions hydrogen value chain now consists of a series of mature technologies. While there is considerable scope for further R&D this level of maturity has meant that the narrative has shifted from one of technology development to market activation.
Barriers to market activation stem from a lack of supporting infrastructure and/or the cost of hydrogen supply. However both barriers can be overcome via a series of strategic investments along the value chain from both the private and public sector.
The report shows that while government assistance is needed to kick-start the industry it can become economically sustainable thereafter. This is demonstrated by first assessing the target price of hydrogen needed for it be competitive with other energy carriers and feedstocks. Second the assessment considers the current state of the industry namely the cost and maturity of the underpinning technologies and infrastructure. It then identifies the material cost drivers and consequently the key priorities and areas for investment needed to make hydrogen competitive in each of the identified markets.
The opportunity for hydrogen to compete favourably on a cost basis in local applications such as transport and remote area power systems is within reach based on potential cost reductions to 2025. Further the development of a hydrogen export industry represents a significant opportunity for Australia and a potential 'game changer' for the local industry and the broader energy sector due to associated increases in scale."
You can read the full report on the CSIRO website at this link
Recently there has been a considerable amount of work undertaken (both globally and domestically) seeking to quantify the economic opportunities associated with hydrogen. The National Hydrogen Roadmap takes that analysis a step further by focusing on how those opportunities can be realised.
National Hydrogen Roadmap
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
The primary objective of the Roadmap is to provide a blueprint for the development of a hydrogen industry in Australia. With a number of activities already underway it is designed to help inform the next series of investment amongst various stakeholder groups (e.g. industry government and research) so that the industry can continue to scale in a coordinated manner.
Pathways to an economically sustainable industry
The low emissions hydrogen value chain now consists of a series of mature technologies. While there is considerable scope for further R&D this level of maturity has meant that the narrative has shifted from one of technology development to market activation.
Barriers to market activation stem from a lack of supporting infrastructure and/or the cost of hydrogen supply. However both barriers can be overcome via a series of strategic investments along the value chain from both the private and public sector.
The report shows that while government assistance is needed to kick-start the industry it can become economically sustainable thereafter. This is demonstrated by first assessing the target price of hydrogen needed for it be competitive with other energy carriers and feedstocks. Second the assessment considers the current state of the industry namely the cost and maturity of the underpinning technologies and infrastructure. It then identifies the material cost drivers and consequently the key priorities and areas for investment needed to make hydrogen competitive in each of the identified markets.
The opportunity for hydrogen to compete favourably on a cost basis in local applications such as transport and remote area power systems is within reach based on potential cost reductions to 2025. Further the development of a hydrogen export industry represents a significant opportunity for Australia and a potential 'game changer' for the local industry and the broader energy sector due to associated increases in scale."
You can read the full report on the CSIRO website at this link
Renewable Energy Market Analysis: Africa and its Regions
Jan 2022
Publication
An energy system centred on renewable energy can help resolve many of Africa’s social economic health and environmental challenges. A profound energy transition is not only feasible it is essential for a climate-safe future in which sustainable development prerogatives are met. Renewables are key to overcoming energy poverty providing needed energy services without damaging human health or ecosystems and enabling a transformation of economies in support of development and industrialisation.
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
- Only 2% of global investments in renewable energy in the last two decades were made in Africa with significant regional disparities
- Less than 3% of global renewables jobs are in Africa
- In Sub-Saharan Africa electrification rate was static at 46% in 2019 with 906 million people still lacking access to clean cooking fuels and technologies
- Africa has vast resource potential in wind solar hydro and geothermal energy and falling costs are increasingly bringing renewables within reach
- Central and Southern Africa have abundant mineral resources essential to the production of electric batteries wind turbines and other low-carbon technologies
- Renewable energy deployment has grown in the last decade with more than 26 GW of renewables-based generation capacity added. The largest additions were in solar energy
- Average annual investments in renewable energy grew ten-fold from less than USD 0.5 billion in the 2000-2009 period to USD 5 billion in 2010-2020
- Distributed renewable energy solutions including stand-alone systems and mini-grids are playing a steadily growing role in expanding electricity access in off-grid areas and strengthening supply in already connected areas
- The energy transition under IRENA’s 1.5°C Scenario pathway predicts 6.4% higher GDP 3.5% higher economy-wide jobs and a 25.4% higher welfare index than that realised under current plans on average up to 2050
- Jobs created in the renewable energy transition will outweigh those lost by moving away from traditional energy. Every million U.S. dollars invested in renewables between 2020 – 2050 would create at least 26 job-years; for every million invested in energy efficiency at least 22 job-years would be created annually; for energy flexibility the figure is 18
- A comprehensive policy package that combines the pursuit of climate and environmental goals; economic development and jobs creation; and social equity and welfare for society as a whole
- Strong institutions international co-operation (including South- South co-operation) and considerable co-ordination at the regional level
Future Fuels Strategy: Discussion Paper Powering Choice
Feb 2021
Publication
New vehicle technologies and fuels will drive the future of road transport in Australia. Increased availability of battery electric vehicles hydrogen fuel cell vehicles biofuels and associated recharging and refuelling infrastructure will:
- give consumers more choice
- provide productivity emissions reduction fuel security and air quality benefits
Energy From Waste and the Circular Economy
Jul 2020
Publication
The Energy Research Accelerator (ERA) and the Birmingham Energy Institute have launched a policy commission to examine the state of play barriers challenges and opportunities for Energy from Waste (EfW) to form part of the regional energy circular economy in the Midlands. This policy commission explores the case for regional investment whilst helping shape the regional local government and industry thinking surrounding critical issues such as fuel poverty and poor air quality.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
- Building a network of local and regional Resource Recovery Clusters
- Creating a National Centre for the Circular Economy
- Launching an R&D Grand Challenge to develop small-scale circular carbon capture technologies.
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
How Hydrogen Can Help Decarbonise the Maritime Sector
Jun 2021
Publication
Hydrogen Europe is the organisation representing the interests of the European hydrogen industry. It fully adheres to the European Union’s target of climate neutrality by 2050 and supports the European Commission’s objectives to develop and integrate more renewable energy sources into the European energy mix.<br/><br/>In December 2015 in Paris a global climate agreement was reached at the UN Climate Change Conference (COP 21). The Paris Agreement is seen as a historic and landmark instrument in climate action. However the agreement is lacking emphasis on international maritime transport and the role that this sector will need to play in contributing to the decarbonisation of the global economy and in striving for a clean planet for all.<br/><br/>Hydrogen hydrogen-based fuels (such as ammonia) and hydrogen technologies offer tremendous potential for the maritime sector<br/>and if properly harnessed can significantly contribute to the decarbonisation and also mitigate the air pollution of the worldwide fleet. Hydrogen Europe will be the catalyst in this process the decarbonisation and also mitigate the air pollution of the worldwide fleet. Hydrogen Europe will be the catalyst in this process.<br/><br/>The pathway towards hydrogen and hydrogenbased fuels for the maritime sector does not come without technological and commercial challenges let alone regulatory barriers.
Clean or Renewable – Hydrogen and Power-to-gas in EU Energy Law
Aug 2020
Publication
Interest in hydrogen as a carbon-neutral energy carrier is on the rise around the globe including in Europe. In particular power-to-gas as a technology to transform electricity to hydrogen is receiving ample attention. This article scrutinises current updates in the energy law framework of the EU to explain the legal pre-conditions for the various possible applications of power-to-gas technology. It highlights the influence of both electricity and gas legislation on conversion storage and transmission of hydrogen and demonstrates why ‘green’ hydrogen might come with certain legal privileges under the Renewable Energy Directive attached to it as opposed to the European Commission’s so-called ‘clean’ hydrogen. The article concludes by advocating for legal system integration in EU energy law namely merging the currently distinct EU electricity and gas law frameworks into one unified EU Energy Act.
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Developing Community Trust in Hydrogen
Oct 2019
Publication
The report documents current knowledge of the social issues surrounding hydrogen projects. It reviews leading practice stakeholder engagement and communication strategies and findings from focus groups and research activities across Australia.
The full report can be found at this link.
The full report can be found at this link.
Scotland’s Energy Strategy Position Statement
Mar 2021
Publication
This policy statement provides:
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
- a whole-system view;
- an inclusive energy transition; and
- a smarter local energy model.
- Skills and Jobs;
- Supporting Local Communities:
- Investment; and
- Innovation
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
Lessons Learned from Australian Infrastructure Upgrades
Feb 2020
Publication
This report fulfils Deliverable Five for Research Project 2.1-01 of the Future Fuels CRC. The aims of this project Crystallising lessons learned from major infrastructure upgrades are to provide a report on lessons learned from earlier infrastructure upgrades and fuel transitions and identify tools that can be used to develop consistent messaging around the proposed transition to hydrogen and/or other low-carbon fuels. In both the report and the toolkit there are recommendations on how to apply lessons learned and shape messaging throughout the value chain based on prior infrastructure upgrades.
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
Biogas: Pathways to 2030
Mar 2021
Publication
Humans directly or indirectly generate over 105 billion tonnes of organic wastes globally each year all of which release harmful methane and other greenhouse gas emissions directly into the atmosphere as they decompose. These organic wastes include food waste sewage and garden wastes food and drink processing wastes and farm and agricultural wastes. Today only 2% of these are treated and recycled.
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
Reaching Zero with Renewables
Sep 2020
Publication
Patrick Akerman,
Pierpaolo Cazzola,
Emma Skov Christiansen,
Renée Van Heusden,
Joanna Kolomanska-van Iperen,
Johannah Christensen,
Kilian Crone,
Keith Dawe,
Guillaume De Smedt,
Alex Keynes,
Anaïs Laporte,
Florie Gonsolin,
Marko Mensink,
Charlotte Hebebrand,
Volker Hoenig,
Chris Malins,
Thomas Neuenhahn,
Ireneusz Pyc,
Andrew Purvis,
Deger Saygin,
Carol Xiao and
Yufeng Yang
Eliminating CO2 emissions from industry and transport in line with the 1.5⁰C climate goal
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
The Pathway to Net Zero Heating in the UK: A UKERC Policy Brief
Oct 2020
Publication
There is uncertainty over how heating might practically be decarbonised in the future. This briefing provides some clarity about the possible pathways forward focusing on the next 5-10 years.<br/>Meeting the UK government’s net zero emissions goal for 2050 will only be possible by complete decarbonisation of the building stock (both existing and new). There is uncertainty over the extent to which heating might practically be decarbonised in the future and what the optimal technologies may be. This paper provides some clarity about the pathways forward focusing on the next 5-10 years.
The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society
Jun 2021
Publication
A radical decarbonization pathway for the Norwegian society towards 2050 is presented. The paper focuses on the role of hydrogen in the transition when present Norwegian petroleum export is gradually phased out. The study is in line with EU initiatives to secure cooperation opportunities with neighbouring countries to establish an international hydrogen market. Three analytical perspectives are combined. The first uses energy models to investigate the role of hydrogen in an energy and power market perspective without considering hydrogen export. The second uses an economic equilibrium model to examine the potential role of hydrogen export in value creation. The third analysis is a socio-technical case study on the drivers and barriers for hydrogen production in Norway. Main conclusions are that access to renewable power and hydrogen are prerequisites for decarbonization of transport and industrial sectors in Norway and that hydrogen is a key to maintain a high level of economic activity. Structural changes in the economy impacts of new technologies and key enablers and barriers in this transition are discussed.
Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory
Apr 2018
Publication
Hydrogen produced from renewables works as an energy carrier and as energy storage medium and thus hydrogen can help to overcome the intermittency of typical renewable energy sources. However there is no comprehensive environmental performance study of hydrogen production and consumption. In this study detailed cradle to grave life cycle analyses are performed in an isolated territory. The hydrogen is produced on-site by Polymer Electrolyte Membrane (PEM) water electrolysis based on electricity from wind turbines that would otherwise have been curtailed and subsequently transported with gas cylinder by road and ferry. The hydrogen is used to provide electricity and heat through fuel cell stacks as well as hydrogen fuel for fuel cell vehicles. In order to evaluate the environmental impacts related to the hydrogen production and utilisation this work conducts an investigation of the entire life cycle of the described hydrogen production transportation and utilisation. All the processes related to the equipment manufacture operation maintenance and disposal are considered in this study.
Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System
Jan 2021
Publication
Pathways leading to a carbon neutral future for the German energy system have to deal with the expected phase-out of coal-fired power generation in addition to the shutdown of nuclear power plants and the rapid ramp-up of photovoltaics and wind power generation. An analysis of the expected impact on electricity market security of supply and system stability must consider the European context because of the strong coupling—both from an economic and a system operation point of view—through the cross-border power exchange of Germany with its neighbors. This analysis complemented by options to improve the existing development plans is the purpose of this paper. We propose a multilevel energy system modeling including electricity market network congestion management and system stability to identify challenges for the years 2023 and 2035. Out of the results we would like to highlight the positive role of innovative combined heat and power (CHP) solutions securing power and heat supply the importance of a network congestion management utilizing flexibility from sector coupling and the essential network extension plans. Network congestion and reduced security margins will become the new normal. We conclude that future energy systems require expanded flexibilities in combination with forward planning of operation.
Flexibility in Great Britain
May 2021
Publication
The Flexibility in Great Britain project analysed the system-level value of deploying flexibility across the heat transport industry and power sectors in Great Britain to provide a robust evidence-base on the role and value of flexibility in a net zero system.
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
- Embedding greater flexibility across the entire energy system will reduce the cost of achieving net zero for all consumers while assuring energy security.
- Investing in flexibility is a no-regrets decision as it has the potential to deliver material net savings of up to £16.7bn per annum across all scenarios analysed in 2050.
- A more flexible system will accelerate the benefits of decarbonisation supported by decentralisation and digitalisation.
- To maximise the benefits of flexibility households and businesses should play an active role in the development and operation of the country’s future energy system as energy use for transport heat and appliances becomes more integrated.
- Policymakers should preserve existing flexibility options and act now to maximise future flexibility such as by building it into ‘smart’ appliances or building standards.
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Alberta Hydrogen Roadmap
Nov 2021
Publication
Alberta is preparing for a lower emission future. The Hydrogen Roadmap is a key part of that future and Alberta's Recovery Plan. The roadmap is our path to building a provincial hydrogen economy and accessing global markets. It contains several policy actions that will be introduced in the coming months and years and it provides support to the sector as technology and markets develop.<br/>Alberta is already the largest hydrogen producer in Canada. We have all the resources expertise and technology needed to quickly become a global supplier of clean low-cost hydrogen. With a worldwide market estimated to be worth over $2.5 trillion a year by 2050 hydrogen can be the next great energy export that fuels jobs investment and economic opportunity across our province.
Optimal Hydrogen Production in a Wind-dominated Zero-emission Energy System
May 2021
Publication
The role of hydrogen in future energy systems is widely acknowledged: from fuel for difficult-to-decarbonize applications to feedstock for chemicals synthesis to energy storage for high penetration of undispatchable renewable electricity. While several literature studies investigate such energy systems the details of how electrolysers and renewable technologies optimally behave and interact remain an open question. With this work we study the interplay between (i) renewable electricity generation through wind and solar (ii) electricity storage in batteries (iii) electricity storage via Power-to-H2 and (iv) hydrogen commodity demand. We do so by designing a cost-optimal zero-emission energy system and use the Netherlands as a case study in a mixed integer linear model with hourly resolution for a time horizon of one year. To account for the significant role of wind we also provide an elaborate approach to model broad portfolios of wind turbines. The results show that if electrolyzers can operate flexibly batteries and power-to-H2-to-power are complementary with the latter using renewable power peaks and the former using lower renewable power outputs. If the operating modes of the power-to-H2-to-power system are limited - artificially or technically - the competitive advantage over batteries decreases. The preference of electrolyzers for power peaks also leads to an increase in renewable energy utilization for increased levels of operation flexibility highlighting the importance of capturing this feature both from a technical and a modeling perspective. When adding a commodity hydrogen demand the amount of hydrogen converted to electricity decreases hence decreasing its role as electricity storage medium.
Carbons Formed in Methane Thermal and Thermocatalytic Decomposition Processes: Properties and Applications
Jun 2021
Publication
The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane respectively appear to have the greatest potential for hydrogen production. In particular the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.
Gas Goes Green: Tomorrow's Heat, Today's Opportunity
Sep 2021
Publication
Cutting-edge world-leading energy network innovation is vital to ensuring that our economy can continue to access the energy it needs to safeguard jobs and to maintain our international competitiveness as the world goes through decarbonisation. In this report we build on the 2020 Gas Goes Green Zero Carbon Commitment to set out the scale of investment that Britain’s gas networks wish to deliver to hydrogen innovation projects and preparing the gas networks. This work will be focused over the next ten years creating highly-skilled high-tech green jobs through investment and ensuring that the impact of that innovation is felt in communities across the UK.
No more items...