Policy & Socio-Economics
Webinar to Launch New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
On 26 June the World Energy Council held a webinar presenting the results of its latest Innovation Insights Brief on hydrogen engaging three key experts on the topic:
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Decarbonization of Cement Production in a Hydrogen Economy
Apr 2022
Publication
The transition to net-zero emission energy systems creates synergistic opportunities across sectors. For example fuel hydrogen production from water electrolysis generates by-product oxygen that could be used to reduce the cost of carbon capture and storage (CCS) essential in the decarbonization of clinker production in cement making. To assess this opportunity a techno-economic assessment was carried out for the production of clinker using oxy-combustion in a natural gas-fueled plant coupled to CCS. Material and energy flows were assessed in a reference case for clinker production (oxygen from air no CCS) and compared to oxy-combustion clinker production from either an air separation unit (ASU 95% O2) or water electrolysis (100% O2) both coupled to CCS. Compared to the reference air-combusted clinker plant oxy-combustion increases thermal energy demand by 7% and electricity demand by 137% for ASU and 67% for electrolytic oxygen. The levelized cost of oxygen supply ranges from $49/tO2 for an on-site ASU to pipelined electrolytic O2 at $35/tO2 (200 km) or $13/t O2 (20 km). The cost of clinker for the reference plant without CCS increases linearly from $84/t clinker to $193/t clinker at a carbon price of $0/tCO2 to $150/tCO2 respectively. With oxy-combustion and CCS the clinker production cost ranges from $119 to $122/t clinker reflecting a breakeven carbon price of $39 to $53/tCO2 compared to the reference case. The lower cost for the electrolytic supply of by-product oxygen compared to ASU oxygen must be balanced against the reliability of supply the pipeline transport distance and the charges that may be added by the hydrogen producer.
At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?
Apr 2020
Publication
The results of a techno-economic model of distributed wind-hydrogen systems (WHS) located at each existing wind farm on the island of Ireland are presented in this paper. Hydrogen is produced by water electrolysis from wind energy and backed up by grid electricity compressed before temporarily stored then transported to the nearest injection location on the natural gas network. The model employs a novel correlation-based approach to select an optimum electrolyser capacity that generates a minimum levelised cost of hydrogen production (LCOH) for each WHS. Three scenarios of electrolyser operation are studied: (1) curtailed wind (2) available wind and (3) full capacity operations. Additionally two sets of input parameters are used: (1) current and (2) future techno-economic parameters. Additionally two electricity prices are considered: (1) low and (2) high prices. A closest facility algorithm in a geographic information system (GIS) package identifies the shortest routes from each WHS to its nearest injection point. By using current parameters results show that small wind farms are not suitable to run electrolysers under available wind operation. They must be run at full capacity to achieve sufficiently low LCOH. At full capacity the future average LCOH is 6–8 €/kg with total hydrogen production capacity of 49 kilotonnes per year or equivalent to nearly 3% of Irish natural gas consumption. This potential will increase significantly due to the projected expansion of installed wind capacity in Ireland from 5 GW in 2020 to 10 GW in 2030
Scenario-Based Techno-Economic Analysis of Steam Methane Reforming Process for Hydrogen Production
Jun 2021
Publication
Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions including CO2 emission permits and CO2 capture and sale. Of the six scenarios the process configuration involving CO2 capture and sale is the most economical with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost the economic feasibility of the SMR-based H2 production process can be further improved.
Inefficient Investments as a Key to Narrowing Regional Economic Imbalances
Feb 2022
Publication
Policy led decisions aiming at decarbonizing the economy may well exacerbate existing regional economic imbalances. These effects are seldomly recognised in spatially aggregated top-down and techno-economic decarbonization strategies. Here we present a spatial economic framework that quantifies the gross value added associated with low carbon hydrogen investments while accounting for region-specific factors such as the industrial specialization of regions their relative size and their economic interdependencies. In our case study which uses low carbon hydrogen produced via autothermal reforming combined with carbon capture and storage to decarbonize the energy intensive industries in Europe and in the UK we demonstrate that interregional economic interdependencies drive the overall economic benefits of the decarbonization. Policies intended to concurrently transition to net zero and address existing regional imbalances as in the case of the UK Industrial Decarbonization Challenge should take these local factors into account.
Hydrogen Production, Storage and Transport for Renewable Energy and Chemicals: An Environmental Footprint Assessment
Dec 2022
Publication
Hydrogen applications range from an energy carrier to a feedstock producing bulk and other chemicals and as an essential reactant in various industrial applications. However the sustainability of hydrogen production storage and transport are neither unquestionable nor equal. Hydrogen is produced from natural gas biogas aluminium acid gas biomass electrolytic water splitting and others; a total of eleven sources were investigated in this work. The environmental impact of hydrogen production storage and transport is evaluated in terms of greenhouse gas and energy footprints acidification eutrophication human toxicity potential and eco-cost. Different electricity mixes and energy footprint accounting approaches supported by sensitivity analysis are conducted for a comprehensive overview. H2 produced from acid gas is identified as the production route with the highest eco-benefit (− 41188 €/t H2) while the biomass gasification method incurred the highest eco-cost (11259 €/t H2). The water electrolysis method shows a net positive energy footprint (60.32 GJ/t H2) suggesting that more energy is used than produced. Considering the operating footprint of storage and transportation gaseous hydrogen transported via a pipeline is a better alternative from an environmental point of view and with a lower energy footprint (38 %–85%) than the other options. Storage and transport (without construction) could have accounted for around 35.5% of the total GHG footprint of a hydrogen value chain (production storage transportation and losses) if liquefied and transported via road transport instead of a pipeline. The identified results propose which technologies are less burdensome to the environment.
A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen Roadmap
Oct 2020
Publication
Power to hydrogen (P2H) provides a promising solution to the geographic mismatch between sources of renewable energy and the market due to its technological maturity flexibility and the availability of technical and economic data from a range of active demonstration projects. In this review we aim to provide an overview of the status of P2H analyze its technical barriers and solutions and propose potential opportunities for future research and industrial demonstrations. We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification. Strong evidence shows that an addition of about 10% hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances and may therefore extend the asset value of the pipelines after natural gas is depleted. To obtain pure hydrogen from hydrogen-enriched natural gas (HENG) mixtures end-user separation is inevitable and can be achieved through membranes adsorption and other promising separation technologies. However novel materials with high selectivity and capacity will be the key to the development of industrial processes and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG. It is also worth investigating the feasibility of electrochemical separation (hydrogen pumping) at a large scale and its energy analysis. Cryogenics may only be feasible when liquefied natural gas (LNG) is one of the major products. A range of other technological and operational barriers and opportunities such as water availability byproduct (oxygen) utilization and environmental impacts are also discussed. This review will advance readers’ understanding of P2H and foster the development of the hydrogen economy.
Delivering Net-zero Carbon Heat: Technoeconomic and Whole-system Comparisons of Domestic Electricity- and Hydrogen-driven Technologies in the UK
Apr 2022
Publication
Proposed sustainable transition pathways for moving away from natural gas in domestic heating focus on two main energy vectors: electricity and hydrogen. Electrification would be implemented by using vapourcompression heat pumps which are currently experiencing market growth in many countries. On the other hand hydrogen could substitute natural gas in boilers or be used in thermally–driven absorption heat pumps. In this paper a consistent thermodynamic and economic methodology is developed to assess the competitiveness of these options. The three technologies along with the option of district heating are for the first time compared for different weather/ambient conditions and fuel-price scenarios first from a homeowner’s and then from a wholeenergy system perspective. For the former two-dimensional decision maps are generated to identify the most cost-effective technologies for different combinations of fuel prices. It is shown that in the UK hydrogen technologies are economically favourable if hydrogen is supplied to domestic end-users at a price below half of the electricity price. Otherwise electrification and the use of conventional electric heat pumps will be preferred. From a whole-energy system perspective the total system cost per household (which accounts for upstream generation and storage as well as technology investment installation and maintenance) associated with electric heat pumps varies between 790 and 880 £/year for different scenarios making it the least-cost decarbonisation pathway. If hydrogen is produced by electrolysis the total system cost associated with hydrogen technologies is notably higher varying between 1410 and 1880 £/year. However this total system cost drops to 1150 £/year with hydrogen produced cost-effectively by methane reforming and carbon capture and storage thus reducing the gap between electricity- and hydrogen-driven technologies.
Options for Producing Low-carbon Hydrogen at Scale
Feb 2018
Publication
Low-carbon hydrogen has the potential to play a significant role in tackling climate change and poor air quality. This policy briefing considers how hydrogen could be produced at a useful scale to power vehicles heat homes and supply industrial processes.
Four groups of hydrogen production technologies are examined:
Thermochemical Routes to Hydrogen
These methods typically use heat and fossil fuels. Steam methane reforming is the dominant commercial technology and currently produces hydrogen on a large scale but is not currently low carbon. Carbon capture is therefore essential with this process. Innovative technology developments may also help and research is underway. Alternative thermal methods of creating hydrogen indicate biomass gasification has potential. Other techniques at a low technology readiness level include separation of hydrogen from hydrocarbons using microwaves.
Electrolytic Routes to Hydrogen
Electrolytic hydrogen production also known as electrolysis splits water into hydrogen and oxygen using electricity in an electrolysis cell. Electrolysis produces pure hydrogen which is ideal for low temperature fuel cells for example in electric vehicles. Commercial electrolysers are on the market and have been in use for many years. Further technology developments will enable new generation electrolysers to be commercially competitive when used at scale with fluctuating renewable energy sources.
Biological Routes to Hydrogen
Biological routes usually involve the conversion of biomass to hydrogen and other valuable end products using microbial processes. Methods such as anaerobic digestion are feasible now at a laboratory and small pilot scale. This technology may prove to have additional or greater impact and value as route for the production of high value chemicals within a biorefinery concept.
Solar to Fuels Routes to Hydrogen
A number of experimental techniques have been reported the most developed of which is ‘solar to fuels’ - a suite of technologies that typically split water into hydrogen and oxygen using solar energy. These methods have close parallels with the process of photosynthesis and are often referred to as ‘artificial photosynthesis’ processes. The research is promising though views are divided on its ultimate utility. Competition for space will always limit the scale up of solar to fuels.
The briefing concludes that steam methane reforming and electrolysis are the most likely technologies to be deployed to produce low-carbon hydrogen at volume in the near to mid-term providing that the challenges of high levels of carbon capture (for steam methane reforming) and cost reduction and renewable energy sources (for electrolysis) can be overcome.
Four groups of hydrogen production technologies are examined:
Thermochemical Routes to Hydrogen
These methods typically use heat and fossil fuels. Steam methane reforming is the dominant commercial technology and currently produces hydrogen on a large scale but is not currently low carbon. Carbon capture is therefore essential with this process. Innovative technology developments may also help and research is underway. Alternative thermal methods of creating hydrogen indicate biomass gasification has potential. Other techniques at a low technology readiness level include separation of hydrogen from hydrocarbons using microwaves.
Electrolytic Routes to Hydrogen
Electrolytic hydrogen production also known as electrolysis splits water into hydrogen and oxygen using electricity in an electrolysis cell. Electrolysis produces pure hydrogen which is ideal for low temperature fuel cells for example in electric vehicles. Commercial electrolysers are on the market and have been in use for many years. Further technology developments will enable new generation electrolysers to be commercially competitive when used at scale with fluctuating renewable energy sources.
Biological Routes to Hydrogen
Biological routes usually involve the conversion of biomass to hydrogen and other valuable end products using microbial processes. Methods such as anaerobic digestion are feasible now at a laboratory and small pilot scale. This technology may prove to have additional or greater impact and value as route for the production of high value chemicals within a biorefinery concept.
Solar to Fuels Routes to Hydrogen
A number of experimental techniques have been reported the most developed of which is ‘solar to fuels’ - a suite of technologies that typically split water into hydrogen and oxygen using solar energy. These methods have close parallels with the process of photosynthesis and are often referred to as ‘artificial photosynthesis’ processes. The research is promising though views are divided on its ultimate utility. Competition for space will always limit the scale up of solar to fuels.
The briefing concludes that steam methane reforming and electrolysis are the most likely technologies to be deployed to produce low-carbon hydrogen at volume in the near to mid-term providing that the challenges of high levels of carbon capture (for steam methane reforming) and cost reduction and renewable energy sources (for electrolysis) can be overcome.
The Path to Carbon Neutrality in China: A Paradigm Shift in Fossil Resource Utilization
Jan 2022
Publication
The Paris Agreement has set the goal of carbon neutrality to cope with global climate change. China has pledged to achieve carbon neutrality by 2060 which will strategically change everything in our society. As the main source of carbon emissions the consumption of fossil energy is the most profoundly affected by carbon neutrality. This work presents an analysis of how China can achieve its goal of carbon neutrality based on its status of fossil energy utilization. The significance of transforming fossils from energy to resource utilization in the future is addressed while the development direction and key technologies are discussed.
Between Hope And Hype: A Hydrogen Vision For The UK
Mar 2021
Publication
There is a growing conversation around the role that hydrogen can play in the future of the UK and how to best harness its potential to secure jobs show climate leadership promote industrial competitiveness and drive innovation. The Government’s ‘Ten Point Plan for a Green Industrial Revolution’ included hydrogen as one of its ten actions targeting 5GW of ‘low carbon’ hydrogen production by 2030. Britain is thus joining the EU US Japan Germany and a host of other countries seeking to be part of the hydrogen economy of the future.<br/><br/>A focus on clean green hydrogen within targeted sectors and hubs can support multiple Government goals – including demonstrating climate leadership reducing regional inequalities through the ‘levelling up’ agenda and ensuring a green and cost-effective recovery from the coronavirus pandemic which prioritises jobs and skills. A strategic hydrogen vision must be honest and recognise where green hydrogen does not present the optimal pathway for decarbonisation – for instance where alternative solutions are already readily available for roll-out are more efficient and cost-effective. A clear example is hydrogen use for heating where it is estimated to require around 30 times more offshore wind farm capacity than currently available to produce enough green hydrogen to replace all gas boilers as well as adding costs for consumers.<br/><br/>This paper considers the offer of hydrogen for key Government priorities – including an inclusive and resilient economic recovery from the pandemic demonstrating climate leadership and delivering for all of society across the UK. It assesses existing evidence and considers the risks and opportunities and how they might inform a strategic vision for the UK. Ahead of the forthcoming Hydrogen Strategy it sets expectations for Government and outlines key recommendations.
Australian Hydrogen Hubs Study
Nov 2019
Publication
Arup have conducted interviews with targeted industry and government stakeholders to gather data and perspectives to support the development of this study. Arup have also utilised private and publicly available data sources building on recent work undertaken by Geoscience Australia and Deloitte and the comprehensive stakeholder engagement process to inform our research. This study considers the supply chain and infrastructure requirements to support the development of export and domestic hubs. The study aims to provide a succinct “Hydrogen Hubs” report for presentation to the hydrogen working group.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
- Health and safety provisions;
- Environmental considerations;
- Economic and social considerations;
- Land availability with appropriate zoning and buffer distances & ownership (new terminals storage solar PV industries etc.);•
- Availability of gas pipeline infrastructure;
- Availability of electricity grid connectivity backup energy supply or co-location of renewables;
- Road & rail infrastructure (site access);
- Community and environmental concerns and weather. Social licence consideration;
- Berths (berthing depth ship storage loading facilities existing LNG and/or petroleum infrastructure etc.);
- Port potential (current capacity & occupancy expandability & scalability);
- Availability of or potential for skilled workers (construction & operation);
- Availability of or potential for water (recycled & desalinated);
- Opportunity for co-location with industrial ammonia production and future industrial opportunities;
- Interest (projects priority ports state development areas politics etc.);
- Shipping distance to target market (Japan & South Korea);
- Availability of demand-based infrastructure (i.e. refuelling stations).
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
Timmermans’ Dream: An Electricity and Hydrogen Partnership Between Europe and North Africa
Oct 2021
Publication
Because of differences in irradiation levels it could be more efficient to produce solar electricity and hydrogen in North Africa and import these energy carriers to Europe rather than generating them at higher costs domestically in Europe. From a global climate change mitigation point of view exploiting such efficiencies can be profitable since they reduce overall renewable electricity capacity requirements. Yet the construction of this capacity in North Africa would imply costs associated with the infrastructure needed to transport electricity and hydrogen. The ensuing geopolitical dependencies may also raise energy security concerns. With the integrated assessment model TIAM-ECN we quantify the trade-off between costs and benefits emanating from establishing import-export links between Europe and North Africa for electricity and hydrogen. We show that for Europe a net price may have to be paid for exploiting such interlinkages even while they reduce the domestic investments for renewable electricity capacity needed to implement the EU’s Green Deal. For North African countries the potential net benefits thanks to trade revenues may build up to 50 billion €/yr in 2050. Despite fears over costs and security Europe should seriously consider an energy partnership with North Africa because trade revenues are likely to lead to positive employment income and stability effects in North Africa. Europe can indirectly benefit from such impacts.
100% Renewable Energy in Japan
Feb 2022
Publication
Low-cost solar photovoltaics and wind offer a reliable and affordable pathway to deep decarbonization of energy which accounts for three quarters of global emissions. However large-scale deployment of solar photovoltaics and wind requires space and may be challenging for countries with dense population and high per capita energy consumption. This study investigates the future role of renewable energy in Japan as a case study. A 40-year hourly energy balance model is presented of a hypothetical 100% renewable Japanese electricity system using representative demand data and historical meteorological data. Pumped hydro energy storage high voltage interconnection and dispatchable capacity (existing hydro and biomass and hydrogen energy produced from curtailed electricity) are included to balance variable generation and demand. Differential evolution is used to find the least-cost solution under various constraints. This study shows that Japan has 14 times more solar and offshore wind resources than needed to supply 100% renewable electricity and vast capacity for off-river pumped hydro energy storage. Assuming significant cost reductions of solar photovoltaics and offshore wind towards global norms in the coming decades driven by large-scale deployment locally and global convergence of renewable generation costs the levelized cost of electricity is found to be US$86/Megawatt-hour for a solar-dominated system and US$110/Megawatt-hour for a wind-dominated system. These costs can be compared with 2020 average system prices on the spot market in Japan of US$102/Megawatt-hour. Cost of balancing 100% renewable electricity in Japan ranges between US$20–27/Megawatt-hour for a range of scenarios. In summary Japan can be self-sufficient for electricity supply at competitive costs provided that the barriers to the mass deployment of solar photovoltaics and offshore wind in Japan are overcome.
Energy Modeling Approach to the Global Energy-mineral Nexus: Exploring Metal Requirements and the Well-below 2 °C Target with 100 Percent Renewable Energy
Jun 2018
Publication
Detailed analysis of pathways to future sustainable energy systems is important in order to identify and overcome potential constraints and negative impacts and to increase the utility and speed of this transition. A key aspect of a shift to renewable energy technologies is their relatively higher metal intensities. In this study a bottom-up cost-minimizing energy model is used to calculate aggregate metal requirements in different energy technology including hydrogen and climate policy scenarios and under a range of assumptions reflecting uncertainty in future metal intensities recycling rate and life time of energy technologies. Metal requirements are then compared to current production rates and resource estimates to identify potentially “critical” metals. Three technology pathways are investigated: 100 percent renewables coal & nuclear and gas & renewables each under the two different climate policies: net zero emissions satisfying the well-below 2 °C target and business as usual without carbon constraints resulting together in six scenarios. The results suggest that the three different technology pathways lead to an almost identical degree of warming without any climate policy while emissions peaks within a few decades with a 2 °C policy. The amount of metals required varies significantly in the different scenarios and under the various uncertainty assumptions. However some can be deemed “critical” in all outcomes including Vanadium. The originality of this study lies in the specific findings and in the employment of an energy model for the energy-mineral nexus study to provide better understanding for decision making and policy development.
The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas
May 2020
Publication
Presently there is a paradoxical situation in the global energy market related to a gap between the image of hydrocarbon resources (HCR) and their real value for the economy. On the one hand we face an increase in expected HCR production and consumption volumes both in the short and long term. On the other hand we see the formation of the image of HCR and associated technologies as an unacceptable option without enough attention to the differences in fuels and the ways of their usage. Due to this it seems necessary to take a step back to review the vitality of such a political line. This article highlights an alternative point of view with regard to energy development prospects. The purpose of this article is to analyse the consistency of criticism towards HCR based on exploration of scientific literature analytical documents of international corporations and energy companies as well as critical assessment of technologies offered for the HCR substitution. The analysis showed that: (1) it is impossible to substitute the majority of HCR with alternative power resources in the near term (2) it is essential that the criticism of energy companies with regard to their responsibility for climate change should lead not to destruction of the industry but to the search of sustainable means for its development (3) the strategic benchmarks of oil and coal industries should shift towards chemical production but their significance should not be downgraded for the energy sector (4) liquified natural gas (LNG) is an independent industry with the highest expansion potential in global markets in the coming years as compared to alternative energy options and (5) Russia possesses a huge potential for the development of the gas industry and particularly LNG that will be unlocked if timely measures on higher efficiency of the state regulation system are implemented.
The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective
Dec 2020
Publication
Hydrogen is currently enjoying a renewed and widespread momentum in many national and international climate strategies. This review paper is focused on analysing the challenges and opportunities that are related to green and blue hydrogen which are at the basis of different perspectives of a potential hydrogen society. While many governments and private companies are putting significant resources on the development of hydrogen technologies there still remains a high number of unsolved issues including technical challenges economic and geopolitical implications. The hydrogen supply chain includes a large number of steps resulting in additional energy losses and while much focus is put on hydrogen generation costs its transport and storage should not be neglected. A low-carbon hydrogen economy offers promising opportunities not only to fight climate change but also to enhance energy security and develop local industries in many countries. However to face the huge challenges of a transition towards a zero-carbon energy system all available technologies should be allowed to contribute based on measurable indicators which require a strong international consensus based on transparent standards and targets.
A Decarbonization Roadmap for Singapore and Its Energy Policy Implications
Oct 2021
Publication
As a signatory to the Paris Agreement Singapore is committed to achieving net-zero carbon emissions in the second half of the century. In this paper we propose a decarbonization roadmap for Singapore based on an analysis of Singapore’s energy landscape and a technology mapping exercise. This roadmap consists of four major components. The first component which also underpins the other three components is using centralized post-combustion carbon capture technology to capture and compress CO2 emitted from multiple industrial sources in Jurong Island. The captured CO2 is then transported by ship or an existing natural gas pipeline to a neighboring country where it will be stored permanently in a subsurface reservoir. Important to the success of this first-of-a-kind cross-border carbon capture and storage (CCS) project is the establishment of a regional CCS corridor which makes use of economies of scale to reduce the cost of CO2 capture transport and injection. The second component of the roadmap is the production of hydrogen in a methane steam reforming plant which is integrated with the carbon capture plant. The third component is the modernizing of the refining sector by introducing biorefineries increasing output to petrochemical plants and employing post-combustion carbon capture. The fourth component is refueling the transport sector by introducing electric and hydrogen fuel cell vehicles using biofuels for aviation and hydrogen for marine vessels. The implications of this roadmap on Singapore’s energy policies are also discussed.
Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System
Feb 2022
Publication
Greenhouse gas emissions need to be drastically reduced to mitigate the environmental impacts caused by climate change and to lead to a transformation of the European energy system. A model landscape consisting of four final energy consumption sector models with high spatial (NUTS-3) and temporal (hourly) resolution and the multi-energy system model ISAaR is extended and applied to investigate the transformation pathway of the European energy sector in the deep emission mitigation scenario solidEU. The solidEU scenario describes not only the techno-economic but also the socio-political contexts and it includes the EU27 + UK Norway and Switzerland. The scenario analysis shows that volatile renewable energy sources (vRES) dominate the energy system in 2050. In addition the share of flexible sector coupling technologies increases to balance electricity generation from vRES. Seasonal differences are balanced by hydrogen storage with a seasonal storage profile. The deployment rates of vRES in solidEU show that a fast profound energy transition is necessary to achieve European climate protection goals.
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
Jun 2021
Publication
Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid used as a transportation fuel or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals such as methanol dimethyl ether and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e. the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). It is unique because it is the first study to provide this analysis. The results showed that only about 10% of the state’s resources are used to generate biogas of which a small fraction is processed to RNG on the only two operational RNG facilities in the state. The impact of incorporating a second renewable substitute for fossil natural gas “green” hydrogen is also analyzed. It revealed that injecting RNG and “green” hydrogen gas into the pipeline system can reduce up to 20% of the state’s carbon emissions resulting from fossil natural gas usage which is a significant GHG reduction. Policy analysis for NYS shows that several state and federal policies support RNG production. However the value of RNG can be increased 10-fold by applying a similar incentive policy to California’s Low Carbon Fuel Standard (LCFS).
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
Impacts of Variation Management on Cost-optimal Investments in Wind Power and Solar Photovoltaics
Dec 2019
Publication
This work investigates the impacts of variation management on the cost-optimal electricity system compositions in four regions with different pre-requisites for wind and solar generation. Five variation management strategies involving electric boilers batteries hydrogen storage low-cost biomass and demand-side management are integrated into a regional investment model that is designed to account for variability. The variation management strategies are considered one at a time as well as combined in four different system contexts. By investigating how the variation management strategies interact with each other as well as with different electricity generation technologies in a large number of cases this work support policy-makers in identifying variation management portfolios relevant to their context. It is found that electric boilers demand-side management and hydrogen storage increase the cost-optimal variable renewable electricity (VRE) investments if the VRE share is sufficiently large to reduce its marginal system value. However low-cost biomass and hydrogen storage are found to increase cost-optimal investments in wind power in systems with a low initial wind power share. In systems with low solar PV share variation management reduce the cost-optimal solar PV investments. In two of the regions investigated a combination of variation management strategies results in a stronger increase in VRE capacity than the sum of the single variation management efforts.
How Green Are the National Hydrogen Strategies?
Feb 2022
Publication
Since Japan promulgated the world’s first national hydrogen strategy in 2017 28 national (or regional in the case of the EU) hydrogen strategies have been issued by major world economies. As carbon emissions vary with different types of hydrogen and only green hydrogen produced from renewable energy can be zero-emissions fuel this paper interrogates the commitment of the national hydrogen strategies to achieve decarbonization objectives focusing on the question “how green are the national hydrogen strategies?” We create a typology of regulatory stringency for green hydrogen in national hydrogen strategies analyzing the text of these strategies and their supporting policies and evaluating their regulatory stringency toward decarbonization. Our typology includes four parameters fossil fuel penalties hydrogen certifications innovation enablement and the temporal dimension of coal phasing out. Following the typology we categorize the national hydrogen strategies into three groups: zero regulatory stringency scale first and clean later and green hydrogen now. We find that most national strategies are of the type “scale first and clean later” with one or more regulatory measures in place. This article identifies further challenges to enhancing regulatory stringency for green hydrogen at both national and international levels.
The Heralds of Hydrogen: The Economic Sectors that are Driving the Hydrogen Economy in Europe
Jan 2021
Publication
This paper looked at 39 hydrogen associations across Europe to understand which economic sectors support the hydrogen transition in Europe and why they do so. Several broad conclusions can be drawn from this paper. It is clear that the support for hydrogen is broad and from a very wide spectrum of economic actors that have clear interests in the success of the hydrogen transition. Motivations for support differ. Sales and market growth are important for companies pursuing professional scientific and technical activities as well as manufacturers of chemicals machinery electronic or electrical equipment and fabricated metals. The increasing cost of CO2 combines with regulatory and societal pressure to decarbonize and concerns from investors about the long-term profitability of sectors with high emissions. This makes hydrogen especially interesting for companies working in the energy transport steel and chemical industries. Another motivation is the ability to keep using existing fixed assets relevant for ports oil and gas companies and natural gas companies. More sector-specific concerns are a technological belief held by some motor vehicle manufacturers in the advantages of FCVs over BEVs for private mobility which is held more widely regarding heavy road transport. Security of supply and diversifying the current business portfolio come up specifically for natural gas companies. Broader concerns about having to shift into other energy technologies as a core business are reasons for interest from the oil and gas sector and ports.
Perhaps the most important lesson is that the hydrogen transition has already begun – but it needs continued policy support and political commitment. Carbon-intensive industries such as steel and chemicals are clearly interested and willing to invest billions but need policy support to avoid carbon leakage to high-carbon competitors before they commit. The gas grid is ready and many operators and utility companies are eager but they need clearance to experiment with blending in hydrogen. Hydrogen road vehicles still face many regulatory hurdles. There are several clusters that can serve as models and nuclei for the future European hydrogen economy in different parts of Europe. However these nuclei will need more public funding and regulatory support for them to grow.
Link to document on Oxford Institute for Energy Studies website
Perhaps the most important lesson is that the hydrogen transition has already begun – but it needs continued policy support and political commitment. Carbon-intensive industries such as steel and chemicals are clearly interested and willing to invest billions but need policy support to avoid carbon leakage to high-carbon competitors before they commit. The gas grid is ready and many operators and utility companies are eager but they need clearance to experiment with blending in hydrogen. Hydrogen road vehicles still face many regulatory hurdles. There are several clusters that can serve as models and nuclei for the future European hydrogen economy in different parts of Europe. However these nuclei will need more public funding and regulatory support for them to grow.
Link to document on Oxford Institute for Energy Studies website
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Technology Investment Roadmap First Low Emissions Technology Statement – 2020 Global Leadership in Low Emissions Technologies
Sep 2020
Publication
Australia’s Technology Investment Roadmap is a strategy to accelerate development and commercialisation of low emissions technologies.
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
- priority technologies and economic stretch goals
- Australia’s big technology challenges and opportunities
- Technology Investment Framework
- monitoring transparency and impact evaluation
Risk-adjusted Preferences of Utility Companies and Institutional Investors for Battery Storage and Green Hydrogen Investment
Feb 2022
Publication
Achieving climate-neutrality requires considerable investment in energy storage systems (ESS) to integrate variable renewable energy sources into the grid. However investments into ESS are often unprofitable in particular for grid-scale battery storage and green hydrogen technologies prompting many actors to call for policy intervention. This study investigates investor-specific risk-return preferences for ESS investment and derives policy recommendations. Insights are drawn from 1605 experimental investment-related decisions obtained from 42 high-level institutional investors and utility representatives. Results reveal that both investor groups view revenue stacking as key to making ESS investment viable. While the expected return on investment is the most important project characteristic risk-return preferences for other features diverge between groups. Institutional investors appear more open to exploring new technological ventures (20% of utility respondents would not consider making investments into solar photovoltaic-hydrogen) whereas utilities seem to prefer greenfield projects (23% of surveyed institutional investors rejected such projects). Interestingly both groups show strong aversion towards energy market price risk. Institutional investors require a premium of 6.87 percentage points and utilities 5.54 percentage points for moving from a position of fully hedged against market price risk to a scenario where only 20% of revenue is fixed underlining the need for policy support.
Hydrogen for Net Zero - A Critical Cost-competitive Energy Vector
Nov 2021
Publication
The report “Hydrogen for Net Zero” presents an ambitious yet realistic deployment scenario until 2030 and 2050 to achieve Net Zero emissions considering the uses of hydrogen in industry power mobility and buildings. The scenario is described in terms of hydrogen demand supply infrastructure abatement potential and investments required and then compared with current momentum and investments in the industry to identify the investment gaps across value chains and geographies.
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
Analysing Future Demand, Supply, and Transport of Hydrogen
Jun 2021
Publication
Hydrogen is crucial to Europe’s transformation into a climate-neutral continent by mid-century. This study concludes that the European Union (EU) and UK could see a hydrogen demand of 2300 TWh (2150-2750 TWh) by 2050. This corresponds to 20-25% of EU and UK final energy consumption by 2050. Achieving this future role of hydrogen depends on many factors including market frameworks legislation technology readiness and consumer choice.
The document can be download on their website
The document can be download on their website
A Perspective on Hydrogen Investment, Deployment and Cost Competitiveness
Feb 2021
Publication
Deployment and investments in hydrogen have accelerated rapidly in response to government commitments to deep decarbonisation establishing hydrogen as a key component in the energy transition.
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
Energy Transition in France
May 2022
Publication
To address the climate emergency France is committed to achieving carbon neutrality by 2050. It plans to significantly increase the contribution of renewable energy in its energy mix. The share of renewable energy in its electricity production which amounts to 25.5% in 2020 should reach at least 40% in 2030. This growth poses several new challenges that require policy makers and regulators to act on the technological changes and expanding need for flexibility in power systems. This document presents the main strategies and projects developed in France as well as various recommendations to accompany and support its energy transition policy.
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
Hydrogen for Australia’s Future
Aug 2018
Publication
The Hydrogen Strategy Group chaired by Australia’s Chief Scientist Dr Alan Finkel has today released a briefing paper on the potential domestic and export opportunities of a hydrogen industry in Australia.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Fuel Cells and Hydrogen Observatory 2019 EU and National Policies Report
Sep 2021
Publication
The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: While FCHO covers 38 entities around the world due to the completeness of the data at the moment of writing this report covers 29 entities. The report reflects data collected January 2019 – December 2019. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
2020 It's Time To Get Real
Mar 2020
Publication
Gi Editor Sharon Baker-Hallam sits down with Chris Stark CEO of the Committee on Climate Change to talk about this year’s Sir Denis Rooke Memorial Lecture the economic opportunities to be found in going green and why 2020 is a critical year in the ongoing battle against rising global temperatures
Public Acceptance for the Implementation of Hydrogen Self-refueling Stations
Sep 2021
Publication
The utilization of hydrogen energy is important for achieving a low-carbon society. Japan has set ambitious goals for hydrogen stations and fuel cell vehicles focusing on the introduction and dissemination of self-refuelling systems. This paper evaluates public trust in the fuel equipment and self-handling technology related to self-refuelling hydrogen stations and compares it with that for widespread gasoline stations. To this end the results of an online survey of 300 people with Japanese driver licenses are reported and analyzed. The results show that trust in the equipment and self-handling is more important for the user than trust in the fuel. In addition to introduce and disseminate new technology such as hydrogen stations users must be made aware of the risk of using the technology until it becomes as familiar as existing gasoline station technology.
Steel Manufacturing Clusters in a Hydrogen Economy – Simulation of Changes in Location and Vertical Integration of Steel Production in Northwestern Europe
Feb 2022
Publication
With the move to a hydrogen-based primary steel production envisioned for the near future in Europe existing regional industrial clusters loose major assets. Such a restructuring of industries may result in a new geographical distribution of the steel industry and also to another quality of vertical integration at sites. Both implications could turn out as drivers or barriers to invest in new technologies and are thus important in respect to vertical integration of sites and to regional policy. This paper describes an approach to model production stock invest for the steel industries in North-Western Europe. Current spatial structures are reproduced with capacity technical and energy efficiency data on the level of single facilities like blast furnaces. With the model developed both investments in specific technologies and at specific production sites can be modelled. The model is used to simulate different possible future scenarios. The case with a clear move to hydrogen-based production is compared to a reference scenario without technological shift. The scenarios show that existing trends like movement of production to the coast may be accelerated by the new technology but that sites in the hinterland can also adapt to a hydrogen economy. Possible effects of business cycles or a circular economy on regional value chains are explored with a Monte-Carlo analysis.
Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy
Apr 2021
Publication
In its new report Making the Hydrogen Economy Possible: Accelerating clean hydrogen in an electrified economy the ETC outlines the role of clean hydrogen in achieving a highly electrified net-zero economy. The report sets out how a combination of private-sector collaboration and policy support can drive the initial ramp up of clean hydrogen production and use to reach 50 million tonnes by 2030.<br/>Clean hydrogen will play a complementary role to decarbonise sectors where direct electrification is likely to be technologically very challenging or prohibitively expensive such as in steel production and long-distance shipping. The report highlights how critical rapid ramp-up of production and use in the 2020s is to unlock cost reductions and to make mid-century growth targets achievable.<br/>This report is part of the ETC’s wider Making Mission Possible Series – a series of reports outlining how to scale up clean energy provision within the next 30 years to meet the needs of a net-zero greenhouse gas emissions (GHG) economy by mid-century. The reports in the series analyse and set out specific actions required in the next decade to put this net-zero by 2050 target within reach.
Integrating System and Operator Perspectives for the Evaluation of Power-to-Gas Plants in the Future German Energy System
Feb 2022
Publication
In which way and in which sectors will renewable energy be integrated in the German Energy System by 2030 2040 and 2050? How can the resulting energy system be characterised following a −95% greenhouse gas emission reduction scenario? Which role will hydrogen play? To address these research questions techno-economic energy system modelling was performed. Evaluation of the resulting operation of energy technologies was carried out from a system and a business point of view. Special consideration of gas technologies such as hydrogen production transport and storage was taken as a large-scale and long-term energy storage option and key enabler for the decarbonisation of the non-electric sectors. The broad set of results gives insight into the entangled interactions of the future energy technology portfolio and its operation within a coupled energy system. Amongst other energy demands CO2 emissions hydrogen production and future power plant capacities are presented. One main conclusion is that integrating the first elements of a large-scale hydrogen infrastructure into the German energy system already by 2030 is necessary for ensuring the supply of upscaling demands across all sectors. Within the regulatory regime of 2020 it seems that this decision may come too late which jeopardises the achievement of transition targets within the horizon 2050.
Explaining Hydrogen Energy Technology Acceptance: A Critical Review
Jan 2022
Publication
The use of hydrogen energy and the associated technologies is expected to increase in the coming years. The success of hydrogen energy technology (HET) is however dependent on public acceptance of the technology. Developing this new industry in a socially responsible way will require an understanding of the psychology factors that may facilitate or impede its public acceptance. This paper reviews 27 quantitative studies that have explored the relationship between psychological factors and HET acceptance. The findings from the review suggest that the perceived effects of the technology (i.e. the perceived benefits costs and risks) and the associated emotions are strong drivers of HET acceptance. This paper does though highlight some limitations with past research that make it difficult to make strong conclusions about the factors that influence HET acceptance. The review also reveals that few studies have investigated acceptance of different types of HET beyond a couple of applications. The paper ends with a discussion about directions for future research and highlights some practical implications for messaging and policy.
Use of Hydrogen as Fuel: A Trend of the 21st Century
Jan 2022
Publication
The unbridled use of fossil fuels is a serious problem that has become increasingly evident over the years. As such fuels contribute considerably to environmental pollution there is a need to find new sustainable sources of energy with low emissions of greenhouse gases. Climate change poses a substantial challenge for the scientific community. Thus the use of renewable energy through technologies that offer maximum efficiency with minimal pollution and carbon emissions has become a major goal. Technology related to the use of hydrogen as a fuel is one of the most promising solutions for future systems of clean energy. The aim of the present review was to provide an overview of elements related to the potential use of hydrogen as an alternative energy source considering its specific chemical and physical characteristics as well as prospects for an increase in the participation of hydrogen fuel in the world energy matrix.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Consumer Attitudes to Fuel Cell Vehicles Post Trial in the United Kingdom
Mar 2016
Publication
Fuel cell vehicles (FCVs) have clear societal and environmental benefits and can help mitigate the issues of climate change urban air pollution and oil dependence. In order for FCVs to have the biggest impact on these issues they need to be employed in large numbers. First though they need to be adopted by consumers. Their acceptance depends on positive consumer attitudes towards the vehicles. Currently there is a limited understanding within the literature on how consumers perceive FCVs and what the likelihood of adoption by consumers would be despite significant governmental and organisational investments into the technology. Therefore this study assesses consumer attitudes towards FCVs in the United Kingdom. 81 persons drove a Hyundai FCV at the Low Carbon Vehicle Event in September 2015 of which 30 took part in this study. The results show that at present FCVs are perceived mostly as being similar to incumbent internal combustion engine vehicles. This is an admirable technical achievement however in order for consumers to adopt FCVs they will need to be perceived as having distinctive benefits. Two significant barriers to the adoption of FCVs are observed in this sample: high costs and lack of refuelling infrastructure. This paper goes on to make suggestions on how and which beneficial attributes of the vehicles can be promoted to consumers and also makes suggestions on how the barriers can be overcame so that FCVs will be adopted by consumers.
Economic Feasibility of Green Hydrogen Production by Water Electrolysis Using Wind and Geothermal Energy Resources in Asal-Ghoubbet Rift (Republic of Djibouti): A Comparative Evaluation
Dec 2021
Publication
The Republic of Djibouti has untapped potential in terms of renewable energy resources such as geothermal wind and solar energy. This study examines the economic feasibility of green hydrogen production by water electrolysis using wind and geothermal energy resources in the Asal–Ghoubbet Rift (AG Rift) Republic of Djibouti. It is the first study in Africa that compares the cost per kg of green hydrogen produced by wind and geothermal energy from a single site. The unit cost of electricity produced by the wind turbine (0.042 $/kWh) is more competitive than that of a dry steam geothermal plant (0.086 $/kWh). The cost of producing hydrogen with a suitable electrolyzer powered by wind energy ranges from $0.672/kg H2 to $1.063/kg H2 while that produced by the high-temperature electrolyzer (HTE) powered by geothermal energy ranges from $3.31/kg H2 to $4.78/kg H2 . Thus the AG Rift area can produce electricity and green hydrogen at low-cost using wind energy compared to geothermal energy. The amount of carbon dioxide (CO2 ) emissions reduced by using a “Yinhe GX113-2.5MW” wind turbine and a single flash geothermal power plant instead of fuel-oil generators is 2061.6 tons CO2/MW/year and 2184.8 tons CO2/MW/year respectively.
Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU
Nov 2019
Publication
As the EU energy system transitions to low carbon the technology choices should consider a broader set of criteria. The use of Life Cycle Assessment (LCA) prevents burden shift across life cycle stages or impact categories while the use of Energy System Models (ESM) allows evaluating alternative policies capacity evolution and covering all the sectors. This study does an ex-post LCA analysis of results from JRC-EU-TIMES and estimates the environmental impact indicators across 18 categories in scenarios that achieve 80–95% CO2 emission reduction by 2050. Results indicate that indirect CO2 emissions can be as large as direct ones for an 80% CO2 reduction target and up to three times as large for 95% CO2 reduction. Impact across most categories decreases by 20–40% as the CO2 emission target becomes stricter. However toxicity related impacts can become 35–100% higher. The integrated framework was also used to evaluate the Power-to-Methane (PtM) system to relate the electricity mix and various CO2 sources to the PtM environmental impact. To be more attractive than natural gas the climate change impact of the electricity used for PtM should be 123–181 gCO2eq/kWh when the CO2 comes from air or biogenic sources and 4–62 gCO2eq/kWh if the CO2 is from fossil fuels. PtM can have an impact up to 10 times larger for impact categories other than climate change. A system without PtM results in ~4% higher climate change impact and 9% higher fossil depletion while having 5–15% lower impact for most of the other categories. This is based on a scenario where 9 parameters favor PtM deployment and establishes the upper bound of the environmental impact PtM can have. Further studies should work towards integrating LCA feedback into ESM and standardizing the methodology.
Prospects and Obstacles for Green Hydrogen Production in Russia
Jan 2021
Publication
Renewable energy is considered the one of the most promising solutions to meet sustainable development goals in terms of climate change mitigation. Today we face the problem of further scaling up renewable energy infrastructure which requires the creation of reliable energy storages environmentally friendly carriers like hydrogen and competitive international markets. These issues provoke the involvement of resource-based countries in the energy transition which is questionable in terms of economic efficiency compared to conventional hydrocarbon resources. To shed a light on the possible efficiency of green hydrogen production in such countries this study is aimed at: (1) comparing key Russian trends of green hydrogen development with global trends (2) presenting strategic scenarios for the Russian energy sector development (3) presenting a case study of Russian hydrogen energy project «Dyakov Ust-Srednekanskaya HPP» in Magadan region. We argue that without significant changes in strategic planning and without focus on sustainable solutions support the further development of Russian power industry will be halted in a conservative scenario with the limited presence of innovative solutions in renewable energy industries. Our case study showed that despite the closeness to Japan hydrogen market economic efficiency is on the edge of zero with payback period around 17 years. The decrease in project capacity below 543.6 MW will immediately lead to a negative NPV. The key reason for that is the low average market price of hydrogen ($14/kg) which is only a bit higher than its production cost ($12.5/kg) while transportation requires about $0.96/kg more. Despite the discouraging results it should be taken into account that such strategic projects are at the edge of energy development. We see them as an opportunity to lead transnational energy trade of green hydrogen which could be competitive in the medium term especially with state support.
Lowest Cost Decarbonisation for the UK: The Critical Role of CCS
Sep 2016
Publication
A new report to the Secretary of State for Business Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS) advises that that the UK should kickstart CCS in order to save consumers billions a year from the cost of meeting climate change targets.
Life Cycle Environmental and Cost Comparison of Current and Future Passenger Cars under Different Energy Scenarios
Apr 2020
Publication
In this analysis life cycle environmental burdens and total costs of ownership (TCO) of current (2017) and future (2040) passenger cars with different powertrain configurations are compared. For all vehicle configurations probability distributions are defined for all performance parameters. Using these a Monte Carlo based global sensitivity analysis is performed to determine the input parameters that contribute most to overall variability of results. To capture the systematic effects of the energy transition future electricity scenarios are deeply integrated into the ecoinvent life cycle assessment background database. With this integration not only the way how future electric vehicles are charged is captured but also how future vehicles and batteries are produced. If electricity has a life cycle carbon content similar to or better than a modern natural gas combined cycle powerplant full powertrain electrification makes sense from a climate point of view and in many cases also provides reductions in TCO. In general vehicles with smaller batteries and longer lifetime distances have the best cost and climate performance. If a very large driving range is required or clean electricity is not available hybrid powertrain and compressed natural gas vehicles are good options in terms of both costs and climate change impacts. Alternative powertrains containing large batteries or fuel cells are the most sensitive to changes in the future electricity system as their life cycles are more electricity intensive. The benefits of these alternative drivetrains are strongly linked to the success of the energy transition: the more the electricity sector is decarbonized the greater the benefit of electrifying passenger vehicles.
No more items...