Production & Supply Chain
Green H2 Production by Water Electrolysis Using Cation Exchange Membrane: Insights on Activation and Ohmic Polarization Phenomena
Dec 2021
Publication
Low-temperature electrolysis by using polymer electrolyte membranes (PEM) can play an important role in hydrogen energy transition. This work presents a study on the performance of a proton exchange membrane in the water electrolysis process at room temperature and atmospheric pressure. In the perspective of applications that need a device with small volume and low weight a miniaturized electrolysis cell with a 36 cm2 active area of PEM over a total surface area of 76 cm2 of the device was used. H2 and O2 production rates electrical power energy efficiency Faradaic efficiency and polarization curves were determined for all experiments. The effects of different parameters such as clamping pressure and materials of the electrodes on polarization phenomena were studied. The PEM used was a catalyst-coated membrane (Ir-Pt-Nafion™ 117 CCM). The maximum H2 production was about 0.02 g min−1 with a current density of 1.1 A cm−2 and a current power about 280 W. Clamping pressure and the type of electrode materials strongly influence the activation and ohmic polarization phenomena. High clamping pressure and electrodes in titanium compared to carbon electrodes improve the cell performance and this results in lower ohmic and activation resistances.
Energy-efficient Conversion of Microalgae to Hydrogen and Power
Jun 2017
Publication
An integrated system for H2 production from microalgae and its storage is proposed employing enhanced process integration technology (EPI). EPI consists of two core technologies i.e. exergy recovery and process integration. The proposed system includes a supercritical water gasification H2 separation hydrogenation and combined cycle. Microalga Chlorella vulgaris is used as a material for evaluation. The produced syngas is separated to produce highly pure H2. Furthermore to store the produced H2 liquid organic H2 carrier of toluene-and-methylcyclohexane cycle is adopted. The remaining gas is used as fuel for combustion in combined cycle to generate electricity. The effects of fluidization velocity and gasification pressure to energy efficiency are evaluated. From process modelling and calculation it is shown that high total energy efficiency about 60% can be achieved. In addition about 40% of electricity generation efficiency can be realized.
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportation distributed heat and power generation and energy storage systems with little or no impact on the environment both locally and globally. However any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Low-carbon Energy Transition With the Sun and Forest: Solar-driven Hydrogen Production from Biomass
Nov 2021
Publication
There is a need to derive hydrogen from renewable sources and the innovative stewardship of two natural resources namely the Sun and forest could provide a new pathway. This paper provides the first comparative analysis of solar-driven hydrogen production from environmental angles. A novel hydrogen production process proposed in this paper named Solar-Driven Advanced Biomass Indirect-Gasification (SABI-Hydrogen) shows promise toward achieving continuous operation and scalability the two key challenges to meet future energy needs. The calculated Global Warming Potential for 1 kg of solar-driven hydrogen production is 1.04 kg CO2-eq/kg H2 less than half of the current biomass gasification process which emits 2.67 kg CO2-eq/kg H2. Further SABI-Hydrogen demonstrates the least-carbon intensive pathway among all current hydrogen production methods. Thus solar-driven hydrogen production from biomass could lead to a sustainable supply essential for a low-carbon energy transition.
Laser-Induced Generation of Hydrogen in Water by Using Graphene Target
Jan 2022
Publication
A new method of hydrogen generation from water by irradiation with CW infrared laser diode of graphene scaffold immersed in solution is reported. Hydrogen production was extremely efficient upon admixing NaCl into water. The efficiency of hydrogen production increased exponentially with laser power. It was shown that hydrogen production was highly efficient when the intense white light emission induced by laser irradiation of graphene foam was occurring. The mechanism of laser-induced dissociation of water is discussed. It was found that hydrogen production was extremely high at about 80% and assisted by a small emission of O2 CO and CO2 gases.
Bioanode and Biocathode Performance in a Microbial Electrolysis Cell
Jan 2017
Publication
The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from 0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m2 and 0.37 A/m2 at applied potential 0 and +0.6 V respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential in the range from 0.5 to 1.0 V. The highest production rate was 7.4 L H2/(m2 cathode area)/day at 1.0 V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as 0.84 V without overloading the bioanode
Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts
Jan 2022
Publication
With global warming and the depletion of fossil resources our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this the photocatalytic water-splitting reaction which produces H2 from water and solar energy through photocatalysis has attracted much attention. However for practical use the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis researchers in the various fields must be employed in this type of study to achieve this. However for researchers in fields other than catalytic chemistry ceramic (semiconductor) materials chemistry and electrochemistry to participate in this field new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore in this review we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.
Exchange Current Density of Reversible Solid Oxide Cell Electrodes
Mar 2022
Publication
Reversible solid oxide cells (r-SOCs) can be operated in either solid oxide fuel cell or solid oxide electrolysis cell mode. They are expected to become important in the support of renewable energy due to their high efficiency for both power generation and hydrogen generation. The exchange current density is one of the most important parameters in the quantification of electrode performance in solid oxide cells. In this study four different fuel electrodes and two different air electrodes are fabricated using different materials and the microstructures are compared. The temperature fuel humidification and oxygen concentration at the air electrode are varied to obtain the apparent exchange current density for the different electrode materials. In contrast to ruthenium-and-gadolinia-doped ceria (Rh-GDC) as well as nickel-and-gadolinia-doped ceria (Ni-GDC) electrodes significant differences in the apparent exchange current density were observed between electrolysis and fuel cell modes for the nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet. Variation of gas concentration revealed that surface adsorption sites were almost completely vacant for all these electrodes. The apparent exchange current densities obtained in this study are useful as a parameter for simulation of the internal properties of r-SOCs.
Renewable Hydrogen Production from Butanol: A Review
Dec 2017
Publication
Hydrogen production from butanol is a promising alternative when it is obtained from bio-butanol or bio-oil due to the higher hydrogen content compared to other oxygenates such as methanol ethanol or propanol. Catalysts and operating conditions play a crucial role in hydrogen production. Ni and Rh are metals mainly used for butanol steam reforming oxidative steam reforming and partial oxidation. Additives such as Cu can improve catalytic activity in many folds. Moreover support–metal interaction and catalyst preparation technique also play a decisive role in the stability and hydrogen production capacity of catalyst. Steam reforming technique as an option is more frequently researched due to higher hydrogen production capability in comparison to other thermochemical techniques despite its endothermic nature. The use of the oxidative steam reforming and partial oxidation has the advantages of requiring less energy and longer stability of catalysts. However the hydrogen yield is less. This article brings together and examines the latest research on hydrogen production from butanol via steam reforming oxidative steam reforming and partial oxidation reactions. In addition the review examines a few thermodynamic studies based on sorption-enhanced steam reforming and dry reforming where there is potential for hydrogen extraction.
Synthesis and Performance of Photocatalysts for Photocatalytic Hydrogen Production: Future Perspectives
Dec 2021
Publication
Photocatalysis for “green” hydrogen production is a technology of increasing importance that has been studied using both TiO2–based and heterojunction composite-based semiconductors. Different irradiation sources and reactor units can be considered for the enhancement of photocatalysis. Current approaches also consider the use of electron/hole scavengers organic species such as ethanol that are “available” in agricultural waste in communities around the world. Alternatively organic pollutants present in wastewaters can be used as organic scavengers reducing health and environmental concerns for plants animals and humans. Thus photocatalysis may help reduce the carbon footprint of energy production by generating H2 a friendly energy carrier and by minimizing water contamination. This review discusses the most up-to-date and important information on photocatalysis for hydrogen production providing a critical evaluation of: (1) The synthesis and characterization of semiconductor materials; (2) The design of photocatalytic reactors; (3) The reaction engineering of photocatalysis; (4) Photocatalysis energy efficiencies; and (5) The future opportunities for photocatalysis using artificial intelligence. Overall this review describes the state-of-the-art of TiO2–based and heterojunction composite-based semiconductors that produce H2 from aqueous systems demonstrating the viability of photocatalysis for “green” hydrogen production.
Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO2 Emissions Analysis
Apr 2022
Publication
A techno-economic analysis has been used to evaluate three processes for hydrogen production from advanced steam reforming (SR) of bio-oil as an alternative route to hydrogen with BECCS: conventional steam reforming (C-SR) C-SR with CO2 capture (C-SR-CCS) and sorption-enhanced chemical looping (SE-CLSR). The impacts of feed molar steam to carbon ratio (S/C) temperature pressure the use of hydrodesulphurisation pretreatment and plant production capacity were examined in an economic evaluation and direct CO2 emissions analysis. Bio-oil C-SR-CC or SE-CLSR may be feasible routes to hydrogen production with potential to provide negative emissions. SE-CLSR can improve process thermal efficiency compared to C-SR-CCS. At the feed molar steam to carbon ratio (S/C) of 2 the levelised cost of hydrogen (USD 3.8 to 4.6 per kg) and cost of carbon avoided are less than those of a C-SR process with amine-based CCS. However at higher S/C ratios SE-CLSR does not have a strong economic advantage and there is a need to better understand the viability of operating SE-CLSR of bio-oil at high temperatures (>850 ◦C) with a low S/C ratio (e.g. 2) and whether the SE-CLSR cycle can sustain low carbon deposition levels over a long operating period.
Biomass Gasification as an Industrial Process with Effective Proof-of-concept: A Comprehensive Review on Technologies, Processes and Future Developments
Apr 2022
Publication
The search for alternatives to fossil energy traditional sources led to the development of a set of energy conversion processes which include biomass thermochemical conversion technologies such as torrefaction pyrolysis hydrothermal liquefaction or gasification. These conversion technologies have shown significant evolutions and there are already several examples available of application on an industrial scale. Biomass gasification processes have also presented significant developments mainly when associated with the production of syngas with potential for energy recovery or to produce synthetic fuels but mainly due to its potential to be used as a sustainable hydrogen production technology. In the present work a bibliographic review of the current state-of-the-art of the biomass gasification is carried out focusing in the gasification technologies syngas cleaning processes simulation methodologies on process parameters. Finally future developments and possibilities are also analyzed and discussed with the introduction of a new approach to hydrogen production based on the use of an adapted combustion process with air deficit.
Hydrogen Production Using Solar Energy - Technical Analysis
Mar 2019
Publication
This paper presents a case study concerning a plant for hydrogen production and storage having a daily capacity of 100kg. The plant is located in Cluj-Napoca Romania. It produces hydrogen by means of water electrolysis while the energy is provided using solar energy. We performed the calculations for four different technical solutions used for the hydrogen production and storage plant and also we considered three scenarios regarding the sub-systems of the hydrogen production and storage plant efficiency. The conclusion of this study is that one can maximize the conversion of solar radiation into chemical energy in the form of hydrogen by hybridizing the solar hydrogen production system namely using both electrical energy as well as thermal energy in the form of steam.
Integrating IT-SOFC and Gasification Combined Cycle with Methanation Reactor and Hydrogen Firing for Near Zero-emission Power Generation from Coal
Apr 2011
Publication
Application of Solid Oxide Fuel Cells (SOFC) in gasification-based power plants would represent a turning point in the power generation sector allowing to considerably increase the electric efficiency of coal-fired power stations while reducing CO2 and other pollutant emissions. The aim of this paper is the thermodynamic assessment of a SOFC-based IGFC plant with methanation reactor hydrogen post-firing and CO2 capture by physical absorption. The configuration proposed allows to obtain a very high net efficiency (51.6%) overcoming the main limits of configurations assessed in previous works.
Membrane Based Purification of Hydrogen System (MEMPHYS)
Feb 2019
Publication
A hydrogen purification system based on the technology of the electrochemical hydrogen compression and purification is introduced. This system is developed within the scope of the project MEMPHYS. Therefore the project its targets and the different work stages are presented. The technology of the electrochemical purification and the state of the art of hydrogen purification are described. Early measurements in the project have been carried out and the results are shown and discussed. The ability of the technology to recover hydrogen from a gas mixture can be recognized and an outlook into further optimizations shows the future potential. A big advantage is the simultaneous compression of the purified hydrogen up to 200 bar therefore facilitating the transportation and storage.
Chitosan Flocculation Associated with Biofilms of C. Saccharolyticus and C. Owensensis Enhances Biomass Retention in a CSTR
Jun 2021
Publication
Cell immobilization and co-culture techniques have gained attention due to its potential to obtain high volumetric hydrogen productivities (QH2). Chitosan retained biomass in the fermentation of co-cultures of Caldicellulosiruptor saccharolyticus and C. owensensis efficiently up to a maximum dilution rate (D) of 0.9 h−1. Without chitosan wash out of the co-culture occurred earlier accompanied with approximately 50% drop in QH2 (D > 0.4 h−1). However butyl rubber did not show as much potential as carrier material; it did neither improve QH2 nor biomass retention in continuous culture. The population dynamics revealed that C. owensensis was the dominant species (95%) in the presence of chitosan whereas C. saccharolyticus was the predominant (99%) during cultivation without chitosan. In contrast the co-culture with rubber as carrier maintained the relative population ratios around 1:1. This study highlighted chitosan as an effective potential carrier for immobilization thereby paving the way for cost – effective hydrogen production.
Laser Powder Bed Fusion of WE43 in Hydrogen-argon-gas Atmosphere
Sep 2020
Publication
Growing demand for individual and especially complex parts with emphasis on biomedical or lightweight applications enhances the importance of laser powder bed fusion. Magnesium alloys offer both biocompatibility and low density but feature a very high melting point of oxide layers while the evaporation temperature of pure magnesium is much lower. This impedes adequate part quality and process reproducibility. To weaken this oxide layer and enhance processability a 2 %-hydrogen-argon-gas atmosphere was investigated. A machine system was modified to the use of the novel inert gas to determine the influence of gas atmosphere on hollow cuboids and solid cubes. While processing a 20.3 % decrease in structure width and 20.6 % reduction in standard deviation of the cuboids was determined. There was no significate influence on relative density of solid cubes although eight of the ten highest density specimen were fabricated with the hydrogen addition.
Cyclic Voltammetry of a Cobaloxime Catalyst
Jul 2019
Publication
<br/>Cyclic Voltammetry Measurements performed on a Cobaloxime Catalyst designed for photochemical hydrogen production.
Multi-objective Optimal Configurations of a Membrane Reactor for Steam Methane Reforming
Nov 2021
Publication
The combination of traditional reactor and permeable membrane is beneficial to increase the production rate of the target product. How to design a high efficiency and energy saving membrane reactor is one of the key problems to be solved urgently. This paper utilizes finite-time thermodynamics and nonlinear programming to solve the optimal configurations of the membrane reactor of steam methane reforming (MR-SMR) for two optimization objectives that is heat exchange rate minimization and power consumption minimization. The exterior wall temperature and fixed hydrogen production rate are regarded as the control variable and constraint respectively. The results indicate that the hydrogen production rate and heat exchange rate in MR-SMR are increased by 108.58% and 58.42% respectively while the power consumption is reduced by 33.44% compared with those in the traditional reactor under the same condition. Compared with the results in reference reactor (MR-SMR obtained with initial values) the heat exchange rate is reduced by 1.40% by optimizing the exterior wall temperature and the power consumption is reduced by 5.10% by optimizing the exterior wall temperature and molar flow rate of sweep gas. The optimal distributions of exterior wall temperatures in the optimal reactors of minimum heat exchange rate and power consumption have a theoretical guiding significance for the thermal design of the membrane reactors.
Design of an Efficient, High Purity Hydrogen Generation Apparatus and Method for a Sustainable, Closed Clean Energy Cycle
Jul 2015
Publication
In this paper we present a detailed design study of a novel apparatus for safely generating hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The apparatus consists of a first pressure vessel filled with liquid H2O with an overpressure of nitrogen (N2) gas above the H2O reactant and a second pressure vessel that stores solid Na reactant. Hydrogen gas is generated above the solid Na when H2O reactant is introduced using a regulator that senses when the downstream pressure of H2 gas above the solid Na reactant has dropped below a threshold value. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant.
Hydrogen Production from Biomass and Organic Waste Using Dark Fermentation: An Analysis of Literature Data on the Effect of Operating Parameters on Process Performance
Jan 2022
Publication
In the context of hydrogen production from biomass or organic waste with dark fermentation this study analysed 55 studies (339 experiments) in the literature looking for the effect of operating parameters on the process performance of dark fermentation. The effect of substrate concentration pH temperature and residence time on hydrogen yield productivity and content in the biogas was analysed. In addition a linear regression model was developed to also account for the effect of nature and pretreatment of the substrate inhibition of methanogenesis and continuous or batch operating mode. The analysis showed that the hydrogen yield was mainly affected by pH and residence time with the highest yields obtained for low pH and short residence time. High hydrogen productivity was favoured by high feed concentration short residence time and low pH. More modest was the effect on the hydrogen content. The mean values of hydrogen yield productivity and content were respectively 6.49% COD COD−1 135 mg L−1 d −1 51% v/v while 10% of the considered experiments obtained yield productivity and content of or higher than 15.55% COD COD−1 305.16 mg L−1 d −1 64% v/v. Overall this study provides insight into how to select the optimum operating conditions to obtain the desired hydrogen production.
Analysis of Wind to Hydrogen Production and Carbon Capture Utilisation and Storage Systems for Novel Production of Chemical Energy Carriers
Apr 2022
Publication
As the offshore energy landscape transitions to renewable energy useful decommissioned or abandoned oil and gas infrastructure can be repurposed in the context of the circular economy. Oil and gas platforms for example offer opportunity for hydrogen (H2) production by desalination and electrolysis of sea water using offshore wind power. However as H2 storage and transport may prove challenging this study proposes to react this H2 with the carbon dioxide (CO2) stored in depleted reservoirs. Thus producing a more transportable energy carriers like methane or methanol in the reservoir. This paper presents a novel thermodynamic analysis of the Goldeneye reservoir in the North Sea in Aspen Plus. For Goldeneye which can store 30 Mt of CO2 at full capacity if connected to a 4.45 GW wind farm it has the potential to produce 2.10 Mt of methane annually and abate 4.51 Mt of CO2 from wind energy in the grid.
Enhanced Production of Hydrogen from Methanol Using Spark Discharge Generated in a Small Portable Reactor
Nov 2021
Publication
An efficient production of hydrogen from a mixture of methanol and water is possible in a spark discharge. In this discharge there is a synergistic effect of high-energy electrons and high temperature interactions which enables an efficient course of endothermic processes such as the production of hydrogen from methanol. The water to methanol molar ratio of 1:1 was kept constant during the study. While the discharge power and feed flow rate were varied from 15 to 55 W and from 0.25 to 2 mol/h respectively which corresponded to the residence time of the reactants in the plasma zone from 58 to 7 ms. The cooled gas mixture contained 56 to 60% of H2. Other gaseous products of the process were CO CO2 and a small amount of CH4. The maximum energy yield was 16.2 mol(H2)/kWh which represents 20% of the theoretical energy yield when the substrates are in a liquid phase.
Simple Hydrogen Gas Production Method Using Waste Silicon
Jan 2022
Publication
We investigated a simple and safe method for producing hydrogen using Si powder which is discarded in the semiconductor industry. Using the reaction of generating hydrogen from Si powder and an aqueous NaOH solution a simple hydrogen generator that imitated Kipp’s apparatus was produced. Then by combining this apparatus with a polymer electrolyte fuel cell an automatic hydrogen generation system based on the amount of electric power required was proposed. Furthermore it was found that hydrogen can also be generated using non-poisonous and deleterious substances Ca(OH)2 and Na2CO3 instead of the deleterious substance NaOH and adding water to the mixture with Si powder. The by-products Na2SiO3 and CaCO3 can be used as raw materials for glass. The simple hydrogen generator produced in this study can be used as a fuel supply source for small-scale power generation systems as an auxiliary power source.
Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming
Jan 2022
Publication
Identifying sustainable energy vectors is perhaps one of the most critical issues that needs addressing to achieve a climate-neutral society by 2050. In this context the hydrogen economy has been proposed as a solution to mitigate our current fossil-based energy system while the concept of the circular economy aims to boost the efficient use of resources. Photoreforming offers a promising opportunity for recycling and transforming widely available biomass-derived wastes (e.g. crude glycerol from biodiesel) into clean hydrogen fuel. This processing technology may be a versatile method that can be performed not only under UV light but also under visible light. However this approach is currently at the lab-scale and some inherent challenges must be overcome not least the relatively modest hydrogen production rates for the lamps’ substantial energy consumption. This study aims to assess the main environmental impacts identifying the hotspots and possible trade-off in which this technology could operate feasibly. We introduce an assessment of the windows of opportunity using seven categories of environmental impact with either artificial light or sunlight as the source of photocatalytic conversion. We compared the environmental indicators from this study with those of the benchmark water electrolysis and steam–methane reforming (SMR) technologies which are currently operating at a commercial scale. The results obtained in this study situate biowaste photoreforming within the portfolio of sustainable H2 production technologies of interest for future development in terms of target H2 production rates and lifetimes of sustainable operation.
Combined Dehydrogenation and Hydrogen-based Power Generation
Jan 2018
Publication
An energy production from the combination of dehydrogenation and combined cycle power generation is proposed. The delivered system is established from three main modules: dehydrogenation combustion and combined cycle. The heat in the system is circulated thoroughly to enhance the energy efficiency due to optimum energy recovery. The Pt/Al2O3 catalyst is applied in the dehydrogenation module due to superior activity to accelerate the dehydrogenation of MCH. The toluene emitted from the MCH is recirculated to the hydrogenation plant while the hydrogen is further utilized as the fuel in the combustion. Although the high-temperature condition is necessary to perform high yield dehydrogenation the proposed system is capable of carrying out self-heating mechanism with no external heat. With the optimum configuration the delivered system can produce 100.0 MW of electricity from 100 t/h of MCH with 50.19% of energy efficiency.
A New Sustainable Hydrogen Clean Energy Paradigm
Feb 2018
Publication
We analyze the feasibility of a novel hydrogen fuel cell electric generator to provide power with zero noise and emissions for myriad ground based applications. The hydrogen fuel cell electric generator utilizes a novel scalable apparatus that safely generates hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant. The detailed analysis shows that the novel hydrogen fuel cell electric generator will be capable of meeting the clean power requirements for residential and commercial buildings including single family homes and light commercial establishments under a wide range of geographic and climatic conditions.
Dynamic Energy and Mass Balance Model for an Industrial Alkaline Water Electrolyzer Plant Process
Nov 2021
Publication
This paper proposes a parameter adjustable dynamic mass and energy balance simulation model for an industrial alkaline water electrolyzer plant that enables cost and energy efficiency optimization by means of system dimensioning and control. Thus the simulation model is based on mathematical models and white box coding and it uses a practicable number of fixed parameters. Zero-dimensional energy and mass balances of each unit operation of a 3 MW and 16 bar plant process were solved in MATLAB functions connected via a Simulink environment. Verification of the model was accomplished using an analogous industrial plant of the same power and pressure range having the same operational systems design. The electrochemical mass flow and thermal behavior of the simulation and the industrial plant were compared to ascertain the accuracy of the model and to enable modification and detailed representation of real case scenarios so that the model is suitable for use in future plant optimization studies. The thermal model dynamically predicted the real case with 98.7 % accuracy. Shunt currents were the main contributor to relative low Faraday efficiency of 86 % at nominal load and steady-state operation and heat loss to ambient from stack was only 2.6 % of the total power loss.
Catalysis of Oxides in Hydrogen Generation by the Reaction of Al with Water
Sep 2013
Publication
Hydrogen generation by the reaction of pure Al powder in water with the addition of Al(OH)3 γ- Al2O3 α-Al2O3 or TiO2 at mild temperatures was investigated. It was found that the reaction of Al with water is promoted and the reaction induction time decreases greatly by the above hydroxide and oxides. X-ray diffraction analyses revealed that the hydroxide and oxide phases have no any change during the Al-water reaction indicating that they are just as catalysts to assist the reaction of Al with water. A possible mechanism was proposed which shows that hydroxide and oxides could dissociate water molecules and promote the hydration of the passive oxide film on Al particle surfaces.
H2FC SUPERGEN- Delivering Negative Emissions from Biomass derived Hydrogen
Apr 2020
Publication
Bioenergy with carbon capture and storage (BECCS) removes carbon dioxide (CO2) from the atmosphere i.e. negative CO2 emissions. It will likely have an important role in the transition to a net-zero economy by offsetting hard-to-abate greenhouse gas emissions. However there are concerns about the sustainability of large scale BECCS deployment using bioenergy from predominantly primary biomass sources (i.e. dedicated energy crops). Secondary sources of biomass (e.g. waste biomass municipal solid wastes forest/agricultural residues) are potentially an economical and sustainable alternative resource. Furthermore supplementing primary biomass demand with secondary sources could enable the supply of biomass from solely indigenous sources (i.e. from the UK) which could provide economic advantages in a growing global bio-economy.<br/><br/>There is also a growing interest in biomass-derived hydrogen production with CCS (BHCCS) which generates hydrogen and removes CO2 from the atmosphere. Hydrogen could help decarbonise fuel-dependent sectors such as heat industry or transportation. The aim of this study was to determine whether BHCCS could possibly deliver net negative CO2 emissions making comparisons against the other BECCS technologies.
Thermal Hydrogen: An Emissions Free Hydrocarbon Economy
Apr 2017
Publication
Envisioned below is an energy system named Thermal Hydrogen developed to enable economy-wide decarbonization. Thermal Hydrogen is an energy system where electric and/or heat energy is used to split water (or CO2) for the utilization of both by-products: hydrogen as energy storage and pure oxygen as carbon abatement. Important advantages of chemical energy carriers are long term energy storage and extended range for electric vehicles. These minimize the need for the most capital intensive assets of a fully decarbonized energy economy: low carbon power plants and batteries. The pure oxygen pre-empts the gas separation process of “Carbon Capture and Sequestration” (CCS) and enables hydrocarbons to use simpler more efficient thermodynamic cycles. Thus the “externality” of water splitting pure oxygen is increasingly competitive hydrocarbons which happen to be emissions free. Methods for engineering economy-wide decarbonization are described below as well as the energy supply carrier and distribution options offered by the system.
Designing Optimal Integrated Electricity Supply Configurations for Renewable hydrogen Generation in Australia
Jun 2021
Publication
The high variability and intermittency of wind and solar farms raise questions of how to operate electrolyzers reliably economically and sustainably using pre-dominantly or exclusively variable renewables. To address these questions we develop a comprehensive cost framework that extends to include factors such as performance degradation efficiency financing rates and indirect costs to assess the economics of 10 MW scale alkaline and proton-exchange membrane electrolyzers to generate hydrogen. Our scenario analysis explores a range of operational configurations considering (i) current and projected wholesale electricity market data from the Australian National Electricity Market (ii) existing so-lar/wind farm generation curves and (iii) electrolyzer capital costs/performance to determine costs of H2production in the near (2020–2040) and long term(2030–2050). Furthermore we analyze dedicated off-grid integrated electro-lyzer plants as an alternate operating scenario suggesting oversizing renewable nameplate capacity with respect to the electrolyzer to enhance operational capacity factors and achieving more economical electrolyzer operation.
Advances and Challenges of MOF Derived Carbon-based Electrocatalysts and Photocatalyst for Water Splitting: A Review
Apr 2022
Publication
Environmental pollution and energy shortage are substantial fears to the modern world's long-term sustainability. Water splitting is an essential technique for eco - friendly and sustainable energy storage as well as a pollution-free method to produce hydrogen. In this regards Metal–organic frameworks have emerged as the most competent multifunctional materials in recent times due to its large surface areas adjustable permeability easy compositional alteration and capability for usage as precursors with a wide range of morphological forms. Further MOF-derived carbon-based nanomaterials also offer significant benefits in terms of tunable morphological features and hierarchical permeability as well as ease of functionalization making them extremely effective as catalysts or catalysts supports for a wide variety of important reactions. Recent developments in carbon-based MOFs as catalysts for overall water splitting are discussed in this review. We explore how MOFs and carbon-based MOFs might well be beneficial as well as which methods should be explored for future development. We divided our review into two sections: photocatalytic and electrocatalytic water splitting and we gathered published literature on carbon-based MOFs materials for their outstanding activity offers helpful methods for catalysts design and analysis as well as difficulties This study highlights the developments in MOF derived materials as photo and electro catalysts by explaining respective approaches for their use in overall water splitting.
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Reversible Thermochemical Routes for Carbon Neutrality: A Review of CO2 Methanation and Steam Methane Reforming
Jul 2025
Publication
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes highlighting how reaction reversibility can be strategically leveraged for decarbonization. The study addresses methane production via CO2 methanation and hydrogen production via SMR focusing on their thermodynamic behaviors catalytic systems environmental impacts and economic viability. CO2 methanation when powered by renewable hydrogen can result in emissions ranging from −471 to 1076 kg CO2-equivalent per MWh of methane produced while hydrogen produced from SMR ranges from 90.9 to 750.75 kg CO2-equivalent per MWh. Despite SMR’s lower production costs (USD 21–69/MWh) its environmental footprint is considerably higher. In contrast methanation offers environmental benefits but remains economically uncompetitive (EUR 93.53–204.62/MWh). Both processes rely primarily on Ni-based catalysts though recent developments in Ru-based and bimetallic systems have demonstrated improved performance. The review also examines operational challenges such as carbon deposition and catalyst deactivation. By framing these technologies through the shared lens of reversibility this work outlines pathways toward integrated efficient and circular energy systems aligned with long-term sustainability and climate neutrality goals.
Enhancing the Efficiency of Power- and Biomass-to-liquid Fuel Processes Using Fuel-assisted Solid Oxide Electrolysis Cells
Apr 2022
Publication
Power- and biomass-to-liquid fuel processes (PBtL) can utilize renewable energy and residual forestry waste to produce liquid synthetic fuels which have the potential to mitigate the climate impacts of the current transportation infrastructure including the long-haul aviation sector. In a previous study we demonstrated that implementing a solid oxide electrolysis cell (SOEC) in the PBtL process can significantly increase the energy efficiency of fuel production by supplying the produced hydrogen to a reverse water gas shift (RWGS) reactor to generate syngas which is then fed downstream to a Fischer–Tropsch (FT) reactor. The tail gas emitted from the FT reactor consists primarily of a mixture of hydrogen carbon monoxide and methane and is often recycled to the entrained flow gasifier located at the beginning of the process. In this analysis we investigate the efficiency gains of the PBtL process as a result of redirecting the tail gas of the FT reactor to the anode of an SOEC to serve as fuel. Supplying fuel to an SOEC can lower the electrical work input required to facilitate steam electrolysis when reacting electrochemically with oxide ions in the anode which in turn can reduce oxygen partial pressures and thus alleviate material degradation. Accordingly we develop a thermodynamic framework to reveal the performance limits of fuel-assisted SOECs (FASOECs) and provide strategies to minimize oxygen partial pressures in the SOEC anode. Additionally we elucidate how much fuel is required to match the heating demands of a cell when steam is supplied to the cathode over a broad range of inlet temperatures and demonstrate the influence of a set of reaction pathways of the supplied fuel on the operating potential of an FASOEC and the corresponding efficiency gain of the PBtL process. Based on preliminary calculations we estimate that implementing an FASOEC in the PBtL process can increase the energy efficiency of fuel production to more than 90% depending on the amount of FT tail gas available to the system.
Production of Sustainable Hydrogen and Carbon for the Metallurgical Industry
Dec 2021
Publication
Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However the challenge to supply enough CO2 -free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.
Accelerated Degradation for Solid Oxide Electrolysers: Analysis and Prediction of Performance for Varying Operating Environments
Jan 2022
Publication
Solid oxide electrolysis cells (SOECs) are an efficient technology for the production of green hydrogen that has great potential to contribute to the energy transition and decarbonization of industry. To date however time- and resource-intensive experimental campaigns slow down the development and market penetration of the technology. In order to speed-up the evaluation of SOEC performance and durability accelerated testing protocols are required. This work provides the results of experimental studies on the performance of a SOEC stack operated under accelerated degradation conditions. In order to initiate and accelerate degradation experiments were performed with high steam partial pressures at the gas inlet higher voltages and lower temperatures and high steam conversion rates. Thereby different types and degrees of impact on performance were observed which were analyzed in detail and linked to the underlying processes and degradation mechanisms. In this context significantly higher degradation rates were found compared to operation under moderate operating conditions with the different operating strategies varying in their degradation acceleration potential. The results also suggest that a few hundred hours of operation may be sufficient to predict long-term performance with the proposed operating strategies providing a solid basis for accelerated assessment of SOEC performance evolution and lifetime.
Generation of Hydrogen and Oxygen from Water by Solar Energy Conversion
Dec 2021
Publication
Photosynthesis is considered to be one of the promising areas of cheap and environmentally friendly energy. Photosynthesis involves the process of water oxidation with the formation of molecular oxygen and hydrogen as byproducts. The aim of the present article is to review the energy (light) phase of photosynthesis based on the published X-ray studies of photosystems I and II (PS-I and PS-II). Using modern ideas about semiconductors and biological semiconductor structures the mechanisms of H+ O2↑ e− generation from water are described. At the initial stage PS II produces hydrogen peroxide from water as a result of the photoenzymatic reaction which is oxidized in the active center of PS-II on the Mn4CaO5 cluster to form O2↑ H+ e−. Mn4+ is reduced to Mn2+ and then oxidized to Mn4+ with the transfer of reducing the equivalents of PS-I. The electrons formed are transported to PS-I (P 700) where the electrochemical reaction of water decomposition takes place in a two-electrode electrolysis system with the formation of gaseous oxygen and hydrogen. The proposed functioning mechanisms of PS-I and PS-II can be used in the development of environmentally friendly technologies for the production of molecular hydrogen.
Kinetic Modeling and Quantum Yields: Hydrogen Production via Pd‐TiO2 Photocatalytic Water Splitting under Near‐UV and Visible Light
Jan 2022
Publication
A palladium (Pd) doped mesoporous titanium dioxide (TiO2) photocatalyst was used to produce hydrogen (H2) via water splitting under both near‐UV and visible light. Experiments were carried out in the Photo‐CREC Water‐II Reactor (PCW‐II) using a 0.25 wt% Pd‐TiO2 photocatalyst initial pH = 4 and 2.0 v/v% ethanol as an organic scavenger. After 6 h of near‐UV irradiation this photocatalyst yielded 113 cm3 STP of hydrogen (H2). Furthermore after 1 h of near‐UV photoreduc‐ tion followed by 5 h of visible light the 0.25 wt% Pd‐TiO2 photocatalyst yielded 5.25 cm3 STP of H2. The same photocatalyst photoreduced for 24 h under near‐UV and subsequently exposed to 5 h of visible light yielded 29 cm3 STP of H2. It was observed that the promoted redox reactions led to the production of hydrogen and by‐products such as methane ethane ethylene acetaldehyde carbon monoxide carbon dioxide and hydrogen peroxide. These redox reactions could be modeled using an “in series‐parallel” reaction network and Langmuir Hinshelwood based kinetics. The proposed rate equations were validated using statistical analysis for the experimental data and calculated kinetic parameters. Furthermore Quantum yields (QYୌ%) based on the H produced were also established at promising levels: (a) 34.8% under near‐UV light and 1.00 g L−1 photocatalyst concen‐ tration; (b) 8.8% under visible light and 0.15 g L−1. photocatalyst concentration following 24 h of near‐UV.
Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting
Apr 2022
Publication
Electrocatalysts are capable of transforming water into hydrogen oxygen and therefore into energy in an environmentally friendly and sustainable manner. However the limitations in the research of high performance catalysts act as an obstructer in the development of using water as green energy. Here we report on a delicate method to prepare novel bimetallic metal organic framework derived electrocatalysts (C–NiCu–BDC–GO–CC) using graphene oxide (GO) modified carbon cloth as a 3D flexible and conductive substrate. The resultant electrocatalyst C–NiCu–BDC– GO–CC exhibited very low electron transfer resistance which benefited from its extremely thin 3D sponge-like morphology. Furthermore it showed excellent oxygen evolution reaction (OER) activity achieving 10 mA/cm2 at a low overpotential of 390 mV in 1 M KOH electrolyte with a remarkable durability of 10 h.
Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production
Dec 2021
Publication
Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis photovoltaic and energy storage due to their quantum confinement effect optoelectronic behavior and their stability. In particular TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein the methods used for the fabrication of TMCs characterization techniques employed and the different methods of solar hydrogen production by using different TMCs as photocatalyst are reviewed. This review provides a summary of TMC photocatalysts for hydrogen production.
Theoretical Insights into the Hydrogen Evolution Reaction on the Ni3N Electrocatalyst
Jun 2021
Publication
Ni-based catalysts are attractive alternatives to noble metal electrocatalysts for the hydrogen evolution reaction (HER). Herein we present a dispersion-corrected density functional theory (DFT-D3) insight into HER activity on the (111) (110) (001) and (100) surfaces of metallic nickel nitride (Ni3N). A combination of water and hydrogen adsorption was used to model the electrode interactions within the water splitting cell. Surface energies were used to characterise the stabilities of the Ni3N surfaces along with adsorption energies to determine preferable sites for adsorbate interactions. The surface stability order was found to be (111) < (100) < (001) < (110) with calculated surface energies of 2.10 2.27 2.37 and 2.38 Jm−2 respectively. Water adsorption was found to be exothermic at all surfaces and most favourable on the (111) surface with Eads = −0.79 eV followed closely by the (100) (110) and (001) surfaces at −0.66 −0.65 and −0.56 eV respectively. The water splitting reaction was investigated at each surface to determine the rate determining Volmer step and the activation energies (Ea) for alkaline HER which has thus far not been studied in detail for Ni3N. The Ea values for water splitting on the Ni3N surfaces were predicted in the order (001) < (111) < (110) < (100) which were 0.17 0.73 1.11 and 1.60 eV respectively overall showing the (001) surface to be most active for the Volmer step of water dissociation. Active hydrogen adsorption sites are also presented for acidic HER evaluated through the ΔGH descriptor. The (110) surface was shown to have an extremely active Ni–N bridging site with ΔGH = −0.05 eV.
Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments
May 2018
Publication
Direct internal reforming enables optimal heat integration and reduced complexity in solid oxide fuel cell (SOFC) systems but thermal stresses induced by the increased temperature gradients may inflict damage to the stack. Therefore the development of adequate control strategies requires models that can accurately predict the temperature profiles in the stack. A 1D dynamic modelling platform is developed in this study and used to simulate SOFCs in both single cell and stack configurations. The single cell model is used to validate power law and Hougen-Watson reforming kinetics derived from experiments in previous work. The stack model based on the same type of cells accounts for heat transfer in the inactive area and to the environment and is validated with data reported by the manufacturer. The reforming kinetics are then implemented in the stack model to simulate operation with direct internal reforming. Although there are differences between the temperature profiles predicted by the two kinetic models both are more realistic than assuming chemical equilibrium. The results highlight the need to identify rate limiting steps for the reforming and hydrogen oxidation reactions on anodes of functional SOFC assemblies. The modelling approach can be used to study off-design conditions transient operation and system integration as well as to develop adequate energy management and control strategies.
Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production
Mar 2017
Publication
The study is focused on the technology and manipulation of production strategies for the cultivation of biomass from four strains of microalgae. Species of microalgae studied are: Chlorella vulgaris Dunaliella Scenedesmus quadricauda and Synechococcus spp. The effects of the rate and amount of CO2 removal from the atmosphere and sequestration with dissolved oxygen on lipid production from accumulated biomass were studied. Also the rate of sequestration of both total and dissolved carbon was investigated. Daily measurements of total organic and inorganic carbon sequestrated optical densities proximate analysis and kinetic parameters of the growing and cultivated microalga were monitored and carried out during the two phases of cultivation: dark and light phases. The values of maximum rate of carbon (IV) oxide removed rmax varied from 11.73 mg L -1 min -1 to 18.84 mg L -1 min -1 from Chlorella vulgaris to Synechoccocus spp. Important parameters such as biomass productivity maximum pH values obtained at cultivation lipid content of the produced biomass and the hydraulic detection time for all four strains of microalgae were considered and presented in comparison and with their individual and collective effects. The ratios of the rate of CO2 absorption constant and the constant for the CO2 desorption rate (k1/k2) occurred highest in Dunaliella suggesting that with a high uptake of CO2 the algal strain is more effective in CO2 CO2 sequestration. The best biomass producer in this study was the C. vulgaris (Xmax = 5400 mg L-1 and Px = 35.1 mg L h -1) where biomass productivity is Px and the maximum cellular concentration is Xmax. C. vulgaris has the highest lipids productivity of 27% while Synechoccocus has the least (11.72%). In general biomass productivity may be inversely related; this fact may be explained by greater metabolic involvement of lipid biosynthesis. This pioneer study may be advanced further to developing models for strategic manipulation and optimisation approach in micro algal biomass cultivation.
High-stability, High-capacity Oxygen Carriers: Iron Oxide-perovskite Composite Materials for Hydrogen Production by Chemical Looping
Jun 2015
Publication
Iron oxide has been widely used as an oxygen carrier material (OCM) for hydrogen production by chemical looping due to its favourable thermodynamic properties. In spite of this iron oxide loses much of its activity after redox cycling mainly due to sintering and agglomeration. Perovskites such as La0.7Sr0.3FeO3-d (LSF731) have been suggested as potential candidate OCMs for hydrogen production due to their excellent oxygen transport properties and stability under cycling. However hydrogen production per cycle for a similar carrier weight is lower than with iron oxide. This work proposes the use of composite OCMs made of iron oxide clusters embedded in an LSF731 matrix. The perovskite matrix facilitates oxygen transport to the iron oxide clusters while preventing agglomeration. Two preparation methods mechanical mixing and a modified Pechini method were used to obtain composite materials with different iron oxide weight fractions 11 and 30 wt.%. The reactivity of these OCMs was studied in a thermogravimetric analyser. Hydrogen production and carrier stability were investigated in a microreactor over 25 redox cycles while periodically feeding carbon monoxide and water in order to produce carbon dioxide and hydrogen in separate streams. Hydrogen production was stable over 25 cycles for LSF731 and the composite OCM with 30 wt.% iron oxide produced by the modified Pechini method but iron oxide particles alone underwent a decrease in the hydrogen production with cycling. The hydrogen production during the 25th cycle was eight times higher for the composite material than for iron oxide alone and four times higher than for LSF731. The hydrogen production was therefore also higher than that expected from a simple combination of the iron oxide and LSF731 alone indicating a synergetic effect whereby the LSF731 may have a higher effective oxygen capacity when in the form of the composite material.
Electrochemical and Mechanical Stability of Catalyst Layers in Anion Exchange Membrane Water Electrolysis
Dec 2021
Publication
Anion exchange membrane (AEM) water electrolysis is considered a promising solution to future cost reduction of electrochemically produced hydrogen. We present an AEM water electrolyzer with CuCoOx as the anode catalyst and Aemion as membrane and electrode binder. Full cell experiments in pure water and 0.1 M KOH revealed that the optimum binder content depended on the type of electrolyte employed. Online dissolution measurements suggested that Aemion alone was not sufficient to establish an alkaline environment for thermodynamically stabilizing the synthesized CuCoOx in a neutral electrolyte feed. A feed of base is thus indispensable to ensure the thermodynamic stability of such non-noble catalyst materials. Particle loss and delamination of the catalyst layer during MEA operation could be reduced by employing a heat treatment step after electrode fabrication. This work summarizes possible degradation pathways for low-cost anodes in AEMWE and mitigation strategies for enhanced system durability and performance.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
No more items...