Safety
Analysis of Hydrogen-Induced Changes in the Cyclic Deformation Behaviour of AISI 300–Series Austenitic Stainless Steels Using Cyclic Indentation Testing
Jun 2021
Publication
The locally occurring mechanisms of hydrogen embrittlement significantly influence the fatigue behaviour of a material which was shown in previous research on two different AISI 300-series austenitic stainless steels with different austenite stabilities. In this preliminary work an enhanced fatigue crack growth as well as changes in crack initiation sites and morphology caused by hydrogen were observed. To further analyze the results obtained in this previous research in the present work the local cyclic deformation behaviour of the material volume was analyzed by using cyclic indentation testing. Moreover these results were correlated to the local dislocation structures obtained with transmission electron microscopy (TEM) in the vicinity of fatigue cracks. The cyclic indentation tests show a decreased cyclic hardening potential as well as an increased dislocation mobility for the conditions precharged with hydrogen which correlates to the TEM analysis revealing courser dislocation cells in the vicinity of the fatigue crack tip. Consequently the presented results indicate that the hydrogen enhanced localized plasticity (HELP) mechanism leads to accelerated crack growth and change in crack morphology for the materials investigated. In summary the cyclic indentation tests show a high potential for an analysis of the effects of hydrogen on the local cyclic deformation behaviour.
Towards Accident Prevention on Liquid Hydrogen: A Data-driven Approach for Releases Prediction
Mar 2023
Publication
Hydrogen is a clean substitute for hydrocarbon fuels in the marine sector. Liquid hydrogen (2 ) can be used to move and store large amounts of hydrogen. This novel application needs further study to assess the potential risk and safety operation. A recent study of 2 large-scale release tests was conducted to replicate spills of 2 inside the ship’s tank connection space and during bunkering operations. The tests were performed in a closed and outdoor facility. The 2 spills can lead to detonation representing a safety concern. This study analyzed the aforementioned 2 experiments and proposed a novel application of the random forests algorithm to predict the oxygen phase change and to estimate whether the hydrogen concentration is above the lower flammability limit (LFL). The models show accurate predictions in different experimental conditions. The findings can be used to select reliable safety barriers and effective risk reduction measures in 2 spills.
Improvement of MC Method in SAE J2601 Hydrogen Refuelling Protocol Using Dual-zone Dual-Temperature Model
Sep 2023
Publication
The MC method refuelling protocol in SAE J2601 has been published by the Society of Automotive Engineers (SAE) in order to safely and quickly refuel hydrogen vehicles. For the calculation method of the pressure target to control the refuelling stop we introduced a dual-zone dual-temperature model that distinguishes the hydrogen temperature in the tank from the wall temperature to replace the dual-zone single-temperature model of the original MC method. The total amount of heat transferred by convection between hydrogen and the inner tank wall during the filling process was expressed as an equation of final hydrogen temperature final wall temperature final refuelling time tank inner surface area and the correction factor. The correction factor equations were determined by fitting simulation data from the 0D1D model where hydrogen inside the tank is lumped parameter model (0D) and the tank wall is a one-dimensional model (1D). For the correction factor of the linear equation its first-order coefficient and constant term have a linear relationship with the initial pressure of the storage tank and their R2 values obtained from the fitting are greater than 0.99. Finally we derived a new equation to calculate the final hydrogen temperature which can be combined with the 100% SOC inside the vehicle tank to determine the pressure target. The simulation results show that the final SOC obtained are all greater than 96% using the modified pressure target and the correction factor of the linear equation.
Influence of Longitudinal Wind on Hydrogen Leakage and Hydrogen Concentration Sensor Layout of Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen has the physical and chemical characteristics of being flammable explosive and prone to leakage and its safety is the main issue faced by the promotion of hydrogen as an energy source. The most common scene in vehicle application is the longitudinal wind generated by driving and the original position of hydrogen concentration sensors (HCSs) did not consider the influence of longitudinal wind on the hydrogen leakage trajectory. In this paper the computational fluid dynamics (CFD) software STAR CCM 2021.1 is used to simulate the hydrogen leakage and diffusion trajectories of fuel cell vehicles (FCVs) at five different leakage locations the longitudinal wind speeds of 0 km/h 37.18 km/h and 114 km/h and it is concluded that longitudinal wind prolongs the diffusion time of hydrogen to the headspace and reduces the coverage area of hydrogen in the headspace with a decrease of 81.35%. In order to achieve a good detection effect of fuel cell vehicles within the longitudinal wind scene based on the simulated hydrogen concentration–time matrix the scene clustering method based on vector similarity evaluation was used to reduce the leakage scene set by 33%. Then the layout position of HCSs was optimized according to the proposed multi-scene full coverage response time minimization model and the response time was reduced from 5 s to 1 s.
Risk Management of Energy Communities with Hydrogen Production and Storage Technologies
Jul 2023
Publication
The distributed integration of renewable energy sources plays a central role in the decarbonization of economies. In this regard energy communities arise as a promising entity to coordinate groups of proactive consumers (prosumers) and incentivize investment on clean technologies. However the uncertain nature of renewable energy generation residential loads and trading tariffs pose important challenges both at the operational and economic levels. We study how this management can be directly undertaken by an arbitrageur that making use of an adequate price-based demand response (real-time pricing) system serves as an intermediary with the central electricity market to coordinate different types of prosumers under risk aversion. In particular we consider a sequential futures and spot market where the aggregated shortage or excess of energy within the community can be traded. We aim to study the impact of new hydrogen production and storage technologies on community operation and risk management. These interactions are modeled as a game theoretical setting in the form of a stochastic two-stage bilevel optimization problem which is later reformulated without approximation as a single-level mixed-integer linear problem (MILP). An extensive set of numerical experiments based on real data is performed to study the operation of the energy community under different technical and economical conditions. Results indicate that the optimal involvement in futures and spot markets is highly conditioned by the community’s risk aversion and self-sufficiency levels. Moreover the external hydrogen market has a direct effect on the community’s internal price-tariff system and depending on the market conditions may worsen the utility of individual prosumers.
Hybrid Model Predictive Control of Renewable Microgrids and Seasonal Hydrogen Storage
Jun 2023
Publication
Optimal energy management of microgrids enables efficient integration of renewable energies by considering all system flexibilities. For systems with significant seasonal imbalance between energy production and demand it may be necessary to integrate seasonal storage in order to achieve fully decarbonized operation. This paper develops a novel model predictive control strategy for a renewable microgrid with seasonal hydrogen storage. The strategy relies on data-based prediction of the energy production and consumption of an industrial power plant and finds optimized energy flows using a digital twin optimizer. To enable seasonal operation incentives for long-term energy shifts are provided by assigning a cost value to the storage charge and adding it to the optimization target function. A hybrid control scheme based on rule-based heuristics compensates for imperfect predictions. With only 6% oversizing compared to the optimal system layout the strategy manages to deliver enough energy to meet all demand while achieving balanced hydrogen production and consumption throughout the year.
Thermocouple Thermal Inertia During Refuelling of Hydrogen Tanks: CFD Validation
Sep 2023
Publication
Fueling and defueling of hydrogen composite tanks is an important issue for the safe handling of hydrogen. To prevent temperature rise during refuelling (maximum allowed T=+85°C) the rate of fueling must be carefully controlled. Using Computational Fluid Dynamics (CFD) we simulate the temperature and velocity distribution inside the tank during these processes including cases where thermal stratification occurs. Simulations of two tank configurations with tilted injectors are presented along with experimental data validation. A model is proposed to account for the thermal inertia of the thermocouples making it possible to compare more reliably CFD results with experimental measurements.
Enhancing Safety of Liquid and Vaporised Hydrogen Transfer Technologies in Public Areas for Mobile Applications
Sep 2023
Publication
Federico Ustolin,
Donatella Cirrone,
Vladimir V. Molkov,
Dmitry Makarov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Giordano Emrys Scarponi,
Alessandro Tugnoli,
Ernesto Salzano,
Valerio Cozzani,
Daniela Lindner,
Birgit Gobereit,
Bernhard Linseisen,
Stuart J. Hawksworth,
Thomas Jordan,
Mike Kuznetsov,
Simon Jallais and
Olga Aneziris
International standards related to cryogenic hydrogen transferring technologies for mobile applications (filling of trucks ships stationary tanks) are missing and there is lack of experience. The European project ELVHYS (Enhancing safety of liquid and vaporized hydrogen transfer technologies in public areas for mobile applications) aims to provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies which are the results of a detailed risk analysis. This is carried out by applying an inter-disciplinary approach to study both the cryogenic hydrogen transferring procedures and the phenomena that may arise from the loss of containment of a piece of equipment containing hydrogen. ELVHYS will provide critical inputs for the development of international standards by creating inherently safer and optimized procedures and guidelines for cryogenic hydrogen transferring technologies thus increasing their safety level and efficiency. The aim of this paper is twofold: present the state of the art of liquid hydrogen transfer technologies by focusing on previous research projects such as PRESLHY and introduce the objectives and methods planned in the new EU project ELVHYS.
Design for Reliability and Safety: Challenges and Opportunities in Hydrogen Mobility Assets
Sep 2023
Publication
Safety and reliability are important performance attributes of any engineered system where humanmachine interactions are present. However they are usually approached as afterthoughts or in some cases unintended consequences of the system design and development process that must be addressed and verified in subsequent design stages. In plain words safety and reliability are often seen as constraints that add layers of complexity and extra costs to the minimum functional system of interest. No longer. Shell Hydrogen is embedding the Design for Reliability and Safety approach to engineer our products and assets in such a way that safety and reliability are at the core of a concurrent engineering process throughout the system lifecycle. This has been achieved in practice by leveraging systems reliability and safety engineering methods along with the experience and expertise of Shell Hydrogen original equipment manufacturers and system integrators in designing building and operating hydrogen assets for mobility applications.<br/>The challenges in implementing this approach are many ranging from access to historical data on equipment and component safety and reliability performance to lack of standardization in the industry when dealing with hydrogen related hazards. In this paper we will describe the approach in more detail some of our early successes and failures during deployment and the continual improvement journey that lies ahead.
An Experimental Study on the Large-Volume Liquid Hydrogen Release in an Open Space
Apr 2024
Publication
Liquid hydrogen is one of the high-quality energy carriers but a large leak of liquid hydrogen can pose significant safety risks. Understanding its diffusion law after accidental leakage is an important issue for the safe utilization of hydrogen energy. In this paper a series of open-space large-volume liquid hydrogen release experiments are performed to observe the evolution of visible clouds during the release and an array of hydrogen concentration sensors is set up to monitor the fluctuation in hydrogen concentration at different locations. Based on the experimental conditions the diffusion of hydrogen clouds in the atmosphere under different release hole diameters and different ground materials is compared. The results show that with the release of liquid hydrogen the white visible cloud formed by air condensation or solidification is generated rapidly and spread widely and the visible cloud is most obvious near the ground. With the termination of liquid hydrogen release solid air is deposited on the ground and the visible clouds gradually shrink from the far field to the release source. Hydrogen concentration fluctuations in the far field in the case of the cobblestone ground are more dependent on spontaneous diffusion by the hydrogen concentration gradient. In addition compared with the concrete ground the cobblestone ground has greater resistance to liquid hydrogen extension; the diffusion of hydrogen clouds to the far field lags. The rapid increase stage of hydrogen concentration at N8 in Test 7 lags about 3 s behind N12 in Test 6 N3 lags about 7.5 s behind N1 and N16 lags about 8.25 s behind N14. The near-source space is prone to high-concentration hydrogen clouds. The duration of the high-concentration hydrogen cloud at N12 is about 15 s which is twice as long as the duration at N8 increasing the safety risk of the near-source space.
Effect of Ignition Energy and Hydrogen Addition on Laminar Flame Speed, Ignition Delay Time, and Flame Rising Time of Lean Methane/Air Mixtures
Mar 2022
Publication
A series of experiments were performed to investigate the effect of ignition energy (Eig) and hydrogen addition on the laminar burning velocity (Su 0 ) ignition delay time (tdelay) and flame rising time (trising) of lean methane−air mixtures. The mixtures at three different equivalence ratios (φ) of 0.6 0.7 and 0.8 with varying hydrogen volume fractions from 0 to 50% were centrally ignited in a constant volume combustion chamber by a pair of pin-to-pin electrodes at a spark gap of 2.0 mm. In situ ignition energy (Eig ∼2.4 mJ ÷ 58 mJ) was calculated by integration of the product of current and voltage between positive and negative electrodes. The result revealed that the Su 0 value increases non-linearly with increasing hydrogen fraction at three equivalence ratios of 0.6 0.7 and 0.8 by which the increasing slope of Su 0 changes from gradual to drastic when the hydrogen fraction is greater than 20%. tdelay and trising decrease quickly with increasing hydrogen fraction; however trising drops faster than tdelay at φ = 0.6 and 0.7 and the reverse is true at φ = 0.8. Furthermore tdelay transition is observed when Eig > Eigcritical by which tdelay drastically drops in the pre-transition and gradually decreases in the post-transition. These results may be relevant to spark ignition engines operated under lean-burn conditions.
An Experimental Study of Propagating Spherical Flames in Unconfined Hydrogen-oxygen Explosions
Sep 2021
Publication
The study to understand the flame propagation behaviors of hydrogen-oxygen explosions is required to make a precise risk assessment. Moreover although research has investigated the propagating spherical flames in unconfined hydrogen-air explosions no study to date has examined the hydrogen-oxygen explosions. The spherical flame propagation in unconfined hydrogen-oxygen explosions have been investigated using a soap bubble method. In the present experiments hydrogen-oxygen mixtures were filled in a 10 cm diameter soap bubble and ignited by an electric spark at the center. The flame propagation behaviors were measured by a high-speed Schlieren photography. The laminar burning velocities and critical flame radii for the onset of flame acceleration in unconfined hydrogen-oxygen explosions were estimated. Results demonstrated that the laminar burning velocities of hydrogenoxygen mixtures were much faster than those of hydrogen-air mixtures. In addition the shift value of maximum laminar burning velocity for hydrogen-oxygen mixtures towards a leaner equivalence ratio is observed. The experimental flame speeds for all experiments were increased owing to diffusionalthermal and Darrieus-Landau instabilities although the measured flame radii were small. The critical flame radius corresponding to the onset of flame acceleration decreased with the decrease in equivalence ratio.
Construction of Natural Gas Energy-measuring System in China: A Discussion
Feb 2022
Publication
During the 13th Five-Year Plan China's natural gas industry developed rapidly and a diversified supply and marketing pattern was formed including domestic conventional gas unconventional gas (shale gas tight sandstone gas coalbed methane etc.) coal-based synthetic natural gas imported LNG and imported pipeline gas. The gross calorific value of gas sources ranged from 34 MJ/m3 to 43 MJ/m3 and the maximum difference of calorific value between different gas sources exceeded 20%. On May 24th 2019 the National Development and Reform Commission and other three ministries/commissions jointly issued the Supervision Regulation on the Fair Access of Oil and Gas Pipeline Network Facilities and required that a natural gas energy measuring and pricing system shall be established within 24 months from the implementation date of this Regulation. In order to speed up the construction of China's natural gas energy measuring system this paper summarizes domestic achievements in the construction of natural gas energy measuring system from the aspects of value traceability and energy measurement standard and analyzes natural gas flowrate measurement technology calorific value determination technology value traceability localization intelligentization and application technology of key energy measurement equipment natural gas pipeline network energy balancing technology based on big data analysis multi-source quality tracking and monitoring technology and energy measurement standard system the need of new energy detection and measurement technology and put forward strategy for the development of natural gas measuring in China. And the following research results are obtained. First China's natural gas energy measuring system can basically meet the requirements of implementing natural gas energy measurement but it still falls behind the international leading level in terms of calibration and application of high-level flowmeter (such as 0.5 class) high-accuracy gas reference material level of calorific value reference equipment and measurement standard system and needs to be further improved. Second it is necessary for China to speed up the research and application of the localization and intelligentization technologies of key energy measurement equipment. Third natural gas pipeline network shall be equipped with measurement check method energy balancing system based on big data analysis and multi-source quality tracking and monitoring system so that the energy transmission loss index of natural gas pipeline network can be superior to the international leading level (0.10%). Fourth to realize the large-scale application of hydrogen energy and bio-energy and the mixed transportation of hydrogen bio-methane and natural gas it is necessary to carry out research on new technology and standardization of hydrogen/bio-methane blended natural gas detection and measurement.
Australians’ Considerations for Use of Hydrogen in the Transport Sector
Sep 2019
Publication
Hydrogen fuel cells power a range of vehicles including cars buses trucks forklifts and even trains. As fuel cell electric vehicles emit no carbon emissions and only produce water vapor as a by-product they present an attractive option for countries who are experiencing high pollution from transport. This paper presents the findings of ten focus groups and a subset of a national survey which focused specifically on use of hydrogen in the transport sector (N=948). When discussing hydrogen transport options Australian focus group participants felt that rolling out hydrogen fuel cell buses as a first step for fuel cell electric vehicle deployment would be a good way to increase familiarity with the technology. Deploying hydrogen public transport vehicles before personal vehicles was thought to be a positive way to demonstrate the safe use of hydrogen and build confidence in the technology. At the same time it was felt it would allow any issues to be ironed out before the roll out of large-scale infrastructure on a to support domestic use. Long haul trucks were also perceived to be a good idea however safety issues were raised in the focus groups when discussing these vehicles. Survey respondents also expressed positive support for the use of hydrogen fuel cell buses and long-haul trucks. They reported being happy to be a passenger in a fuel cell bus. Safety and environmental benefits remained paramount with cost considerations being the third most important issue. Respondents supportive of hydrogen technologies were most likely to report purchasing a hydrogen vehicle over other options
Development of a Flashback Correlation for Burner-stabilized Hydrogen-air Premixed Flames
Feb 2022
Publication
With a growing need for replacing fossil fuels with cleaner alternatives hydrogen has emerged as a viable candidate for providing heat and power. However stable and safe combustion of hydrogen is not simple and as such a number of key issues have been identified that need to be understood for a safe design of combustion chambers. One such issue is the higher propensity of hydrogen flames to flashback compared to that for methane flames. The flashback problem is coupled with higher burner temperatures that could cause strong thermal stresses in burners and could hinder their performance. In order to systematically investigate flashback in premixed hydrogen-air flames for finding a global flashback criteria in this study we use numerical simulations as a basic tool to study flashback limits of slit burners. Flashback limits are found for varying geometrical parameters and equivalence ratios and the sensitivity of each parameter on the flashback limit and burner temperatures are identified and analyzed. It is shown that the conventional flashback correlation with critical velocity gradient does not collapse the flashback data as it does not take into account stretch induced preferential diffusion effects. A new Karlovitz number definition is introduced with physical insights that collapses the flashback data at all tested conditions in an excellent manner.
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
Modelling of Boil‐Off and Sloshing Relevant to Future Liquid Hydrogen Carriers
Mar 2022
Publication
This study presents an approach for estimating fuel boil‐off behaviour in cryogenic energy carrier ships such as future liquid hydrogen (LH2) carriers. By relying on thermodynamic model‐ ling and empirical formulas for ship motion and propulsion the approach can be used to investigate boil‐off as a function of tank properties weather conditions and operating velocities during a laden voyage. The model is first calibrated against data from a liquefied natural gas (LNG) carrier and is consequently used to investigate various design configurations of an LH2 ship. Results indicate that an LH2 ship with the same tank volume and glass wool insulation thickness as a conventional LNG carrier stores 40% of the fuel energy and is characterised by a boil‐off rate nine times higher and twice as sensitive to sloshing. Adding a reliquefaction unit can reduce the LH2 fuel depletion rate by at least 38.7% but can increase its variability regarding velocity and weather conditions. In calm weather LH2 boil‐off rates can only meet LNG carrier standards by utilising at least 6.6 times the insulation thickness. By adopting fuel cell propulsion in an LH2 ship a 1.1% increase in fuel delivery is expected. An LH2 ship with fuel cells and reliquefaction is required to be at least 1.7 times larger than an existing LNG carrierto deliverthe same energy. Further comparison of alternative scenarios indicates that LH2 carriers necessitate significant redesigns if LNG carrier standards are desired. The present approach can assist future feasibility studies featuring other vessels and propulsion technologies and can be seen as an extendable framework that can predict boil‐off in real‐time.
Temperature Effect on the Mechanical Properties of Liner Materials used for Type IV Hydrogen Storage Tanks
Sep 2021
Publication
Type IV hydrogen storage tanks play an important role in hydrogen fuel cell vehicles (HFCVs) due to their superiority of lightweight good corrosion and fatigue resistance. It is planned to be used between -40℃ and 85℃ at which the polymer liner may have a degradation of mechanical properties and buckling collapse. This demand a good performance of liner materials in that temperature range. In this article the temperature effect on mechanical properties of polyamide 6 (PA6) liner material including specimens with weld seam was investigated via the stress-strain curve (S-S curve) macroscopic and microscopic morphology. Considering that the mechanical properties will change after the liner molding process this test takes samples directly from the liner. Results show that the tensile strength and tensile modulus increased by 2.46 times and 10.6 times respectively with the decrease of temperature especially in the range from 50℃ to -90℃. For the elongation at break and work of fracture they do not monotonously increase with the temperature up. Both of them reduce when the temperature rises from 20°C to 50°C especially for the work of fracture decreasing by 63%. The weld seam weakens the mechanical properties and the elongation at break and work of fracture are more obvious which are greater than 40% at each temperature. In addition the SEM images indicate that the morphology of fracture surface at -90°C is different from that at other temperatures which is a sufficient evidence of toughness reducing in low temperature.
Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity
Nov 2021
Publication
The near-wall flame structure and pollutant emissions of the laminar premixed biogashydrogen impinging flame were simulated with a detailed chemical mechanism. The spatial distributions of the temperature critical species and pollutant emissions near the wall of the laminar premixed biogas–hydrogen impinging flame were obtained and investigated quantitatively. The results show that the cold wall can influence the premixed combustion process in the flame front which is close to the wall but does not touch the wall and results in the obviously declined concentrations of OH H and O radicals in the premixed combustion zone. After flame quenching a high CO concentration can be observed near the wall at equivalence ratios (ϕ) of both 0.8 and 1.2. Compared with that at ϕ = 1.0 more unburned fuel is allowed to pass through the quenching zone and generate CO after flame quenching near the wall thanks to the suppressed fuel consumption rate near the wall and the excess fuel in the unburned gases at ϕ = 0.8 and 1.2 respectively. By isolating the formation routes of NO production it is found that the fast-rising trend of NO concentration near the wall in the post flame region at ϕ = 0.8 is attributed to the NO transportation from the NNH route primarily while the prompt NO production accounts for more than 90% of NO generation in the wall vicinity at ϕ = 1.2. It is thus known that thanks to the effectively increased surface-to-volume ratio the premixed combustion process in the downsized chamber will be affected more easily by the amplified cooling effects of the cold wall which will contribute to the declined combustion efficiency increased CO emission and improved prompt NO production.
Differentiating Gas Leaks from Normal Appliance Use
Jun 2021
Publication
DNV has carried out an investigation into potential uses for smart gas meter data as part of Phase 1 of the Modernising Energy Data Applications competition as funded by UK Research & Innovation. In particular a series of calculations have been carried out to investigate the possibility of differentiating accidental gas leaks from normal appliance use in domestic properties. This is primarily with the aim of preventing explosions but the detection of leaks also has environmental and financial benefits.
Three gases have been considered in this study:
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
Three gases have been considered in this study:
- A representative UK natural gas composition.
- A blend of 80% natural gas and 20% hydrogen.
- Pure hydrogen.
- Small holes of up to 1 mm rarely reach flammable gas/air concentrations for any gas except under the most unfavourable conditions such as small volumes combined with low ventilation rates. These releases would likely be detected within 6 to 12 hours.
- Medium holes between 1 mm and 6 mm give outflow rates equivalent to a moderate to high level of gas use by appliances. The ability to detect these leaks is highly dependent on the hole size the time at which the leak begins and the normal gas use profile in the building. The larger leaks in this category would be detected within 30 to 60 minutes while the smaller leaks could take several hours to be clearly differentiated from appliance use. This is quick enough to prevent some explosions.
- Large holes of over 6 mm give leak rates greater than any gas use by appliances. These releases rapidly reach a flammable gas/air mixture in most cases but would typically be detected within the first 30-minute meter output period. Again some explosions could be prevented in this timescale.
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
No more items...