Germany
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Conceptual Study and Development of an Autonomously Operating, Sailing Renewable Energy Conversion System
Jun 2022
Publication
With little time left for humanity to reduce climate change to a tolerable level a highly scalable and rapidly deployable solution is needed that can be implemented by any country. Offshore wind energy in international waters is an underused resource and could even be harnessed by landlocked countries. In this paper the use of sailing wind turbines operating autonomously in high seas to harvest energy is proposed. The electrical energy that is generated by the wind turbine is converted to a renewable fuel and stored onboard. Later the fuel will be transferred to shore or to other destinations of use. The presented idea is explored at the system level where the basic subsystems necessary are identified and defined such as energy conversion and storage as well as propulsion subsystems. Moreover various operating possibilities are investigated including a comparison of different sailing strategies and fuels for storage. Existing ideas are also briefly addressed and an example concept is suggested as well. In this paper the proposed sailing renewable energy conversion system is explored at a higher level of abstraction. Following up on this conceptual study more detailed investigations are necessary to determine whether the development of such a sailing renewable energy conversion system is viable from an engineering economic and environmental point of view.
Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept
Oct 2021
Publication
Germany’s energy transition known as ‘Energiewende’ was always very progressive. However it came technically to a halt at the question of large-scale seasonal energy storage for wind and solar which was not available. At the end of the 2000s we combined our knowledge of both electrical and process engineering imitated nature by copying photosynthesis and developed Power-to-Gas by combining water electrolysis with CO2 -methanation to convert water and CO2 together with wind and solar power to synthetic natural gas. Storing green energy by coupling the electricity with the gas sector using its vast TWh-scale storage facility was the solution for the biggest energy problem of our time. This was the first concept that created the term ‘sector coupling’ or ‘sectoral integration’. We first implemented demo sites presented our work in research industry and ministries and applied it in many macroeconomic studies. It was an initial idea that inspired others to rethink electricity as well as eFuels as an energy source and energy carrier. We developed the concept further to include Power-to-Liquid Power-to-Chemicals and other ways to ‘convert’ electricity into molecules and climate-neutral feedstocks and named it ‘Power-to-X’ at the beginning of the 2010s.
Renewable Power-to-Gas: A Technological and Economic Review
Aug 2015
Publication
The Power-to-Gas (PtG) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable methane via electrolysis and subsequent methanation. This article compares the available electrolysis and methanation technologies with respect to the stringent requirements of the PtG chain such as low CAPEX high efficiency and high flexibility. Three water electrolysis technologies are considered: alkaline electrolysis PEM electrolysis and solid oxide electrolysis. Alkaline electrolysis is currently the cheapest technology; however in the future PEM electrolysis could be better suited for the PtG process chain. Solid oxide electrolysis could also be an option in future especially if heat sources are available. Several different reactor concepts can be used for the methanation reaction. For catalytic methanation typically fixed-bed reactors are used; however novel reactor concepts such as three-phase methanation and micro reactors are currently under development. Another approach is the biochemical conversion. The bioprocess takes place in aqueous solutions and close to ambient temperatures. Finally the whole process chain is discussed. Critical aspects of the PtG process are the availability of CO2 sources the dynamic behaviour of the individual process steps and especially the economics as well as the efficiency.
Complex Hydrides for Hydrogen Storage – New Perspectives
Apr 2014
Publication
Since the 1970s hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached as discussed in this review but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed with a focus on metal borohydrides which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.
Hybrid Energy System Model in Matlab/Simulink Based on Solar Energy, Lithium‐Ion Battery and Hydrogen
Mar 2022
Publication
In this work a model of an energy system based on photovoltaics as the main energy source and a hybrid energy storage consisting of a short‐term lithium‐ion battery and hydrogen as the long‐term storage facility is presented. The electrical and the heat energy circuits and resulting flows have been modelled. Therefore the waste heat produced by the electrolyser and the fuel cell have been considered and a heat pump was considered to cover the residual heat demand. The model is designed for the analysis of a whole year energy flow by using a time series of loads weather and heat profile as input. This paper provides the main set of equations to derive the component properties and describes the implementation into MATLAB/Simulink. The novel model was created for an energy flow simulation over one year. The results of the simulation have been verified by comparing them with well‐established simulation results from HOMER Energy. It turns out that the novel model is well suited for the analysis of the dynamic system behaviour. Moreover different characteristics to achieve an energy balance an ideal dimensioning for the particular use case and further research possibilities of hydrogen use in the residential sector are covered by the novel model.
Fatigue Behavior of AA2198 in Liquid Hydrogen
Aug 2019
Publication
Tensile and fatigue tests were performed on an AA2198 aluminum alloy in the T851 condition in ambient air and liquid hydrogen (LH2). All fatigue tests were performed under load control at a frequency of 20 Hz and a stress ratio of R=0.1. The Gecks-Och-Function [1] was fitted on the measured cyclic lifetimes.<br/><br/>The tensile strength in LH2 was measured to be 46 % higher compared to the value determined at ambient conditions and the fatigue limit was increased by approximately 60 %. Both S-N curves show a distinct S-shape but also significant differences. Under LH2 environment the transition from LCF- to HCF-region as well as the transition to the fatigue limit is shifted to higher cyclic lifetimes compared to ambient test results. The investigation of the crack surfaces showed distinct differences between ambient and LH2 conditions. These observed differences are important factors in the fatigue behavior change.
Potentials of Hydrogen Technologies for Sustainable Factory Systems
Mar 2021
Publication
The industrial sector is the world’s second largest emitter of greenhouse gases hence a methodology for decarbonizing factory systems is crucial for achieving global climate goals. Hydrogen is an important medium for the transition towards carbon neutral factories due to its broad applicability within the factory including its use in electricity and heat generation and as a process gas or fuel. One of the main challenges is the identification of economically and environmentally suitable design scenarios such as for the entire value chain for hydrogen generation and application. For example the infrastructure for renewable electricity hydrogen generation hydrogen conversion (e.g. into synthetic fuels) storage and transport systems as well as application in the factory. Due to the high volatility of energy generation and the related dynamic interdependencies within a factory system a valid technical economic and environmental evaluation of benefits induced by hydrogen technologies can only be achieved using digital factory models. In this paper we present a framework to integrate hydrogen technologies into factory systems. This enables decision makers to identify promising measures according to their expected impact and collect data for appropriate factory modelling. Furthermore a concept for factory modelling and simulation is presented and demonstrated in a case study from the electronics industry assessing the use of hydrogen for decentralized power and heat generation.
Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C
Aug 2019
Publication
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite achieving an extraordinary balance of mechanical properties and alloying cost. In the present work two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.
Power-to-liquid via Synthesis of Methanol, DME or Fischer–Tropsch-fuels: A Review
Jul 2020
Publication
The conversion of H2 and CO2 to liquid fuels via Power-to-Liquid (PtL) processes is gaining attention. With their higher energy densities compared to gases the use of synthetic liquid fuels is particularly interesting in hard-to-abate sectors for which decarbonisation is difficult. However PtL poses new challenges for the synthesis: away from syngas-based continuously run large-scale plants towards more flexible small-scale concepts with direct CO2-utilisation. This review provides an overview of state of the art synthesis technologies as well as current developments and pilot plants for the most prominent PtL routes for methanol DME and Fischer–Tropsch-fuels. It should serve as a benchmark for future concepts guide researchers in their process development and allow a technological evaluation of alternative reactor designs. In the case of power-to-methanol and power-to-FT-fuels several pilot plants have been realised and the first commercial scale plants are planned or already in operation. In comparison power-to-DME is much less investigated and in an earlier stage of development. For methanol the direct CO2 hydrogenation offers advantages through less by-product formation and lower heat development. However increased water formation and lower equilibrium conversion necessitate new catalysts and reactor designs. While DME synthesis offers benefits with regards to energy efficiency operational experience from laboratory tests and pilot plants is still missing. Furthermore four major process routes for power-to-DME are possible requiring additional research to determine the optimal concept. In the case of Fischer–Tropsch synthesis catalysts for direct CO2 utilisation are still in an early stage. Consequently today’s Fischer–Tropsch-based PtL requires a shift to syngas benefiting from advances in co-electrolysis and reverse water-gas shift reactor design.
Hydrogen Storage Using a Hot Pressure Swing Reactor
Jun 2017
Publication
Our contribution demonstrates that hydrogen storage in stationary Liquid Organic Hydrogen Carrier (LOHC) systems becomes much simpler and significantly more efficient if both the LOHC hydrogenation and the LOHC dehydrogenation reaction are carried out in the same reactor using the same catalyst. The finding that the typical dehydrogenation catalyst for hydrogen release from perhydro dibenzyltoluene (H18-DBT) Pt on alumina turns into a highly active and very selective dibenzyltoluene hydrogenation catalyst at temperatures above 220 °C paves the way for our new hydrogen storage concept. Herein hydrogenation of H0-DBT and dehydrogenation of H18-DBT is carried out at the same elevated temperature between 290 and 310 °C with hydrogen pressure being the only variable for shifting the equilibrium between hydrogen loading and release. We demonstrate that the heat of hydrogenation can be provided at a temperature level suitable for effective dehydrogenation catalysis. Combined with a heat storage device of appropriate capacity or a high pressure steam system this heat could be used for dehydrogenation.
Single-catalyst High-weight% Hydrogen Storage in an N-heterocycle Synthesized from Lignin Hydrogenolysis Products and Ammonia
Oct 2016
Publication
Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein we report that catalytically modified lignin an indigestible abundantly available and hitherto barely used biomass can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Quantification of Hydrogen in Nanostructured Hydrogenated Passivating Contacts for Silicon Photovoltaics Combining SIMS-APT-TEM: A Multiscale Correlative Approach
Mar 2021
Publication
Multiscale characterization of the hydrogenation process of silicon solar cell contacts based on c-Si/SiOx/nc-SiCx(p) has been performed by combining dynamic secondary ion mass-spectrometry (D-SIMS) atom probe tomography (APT) and transmission electron microscopy (TEM). These contacts are formed by high-temperature firing which triggers the crystallization of SiCx followed by a hydrogenation process to passivate remaining interfacial defects. Due to the difficulty of characterizing hydrogen at the nm-scale the exact hydrogenation mechanisms have remained elusive. Using a correlative TEM-SIMS-APT analysis we are able to locate hydrogen trap sites and quantify the hydrogen content. Deuterium (D) a heavier isotope of hydrogen is used to distinguish hydrogen introduced during hydrogenation from its background signal. D-SIMS is used due to its high sensitivity to get an accurate deuterium-to-hydrogen ratio which is then used to correct deuterium profiles extracted from APT reconstructions. This new methodology to quantify the concentration of trapped hydrogen in nm-scale structures sheds new insights on hydrogen distribution in technologically important photovoltaic materials.
Zero-Emission Pathway for the Global Chemical and Petrochemical Sector
Jun 2021
Publication
The chemical and petrochemical sector relies on fossil fuels and feedstocks and is a major source of carbon dioxide (CO2 ) emissions. The techno-economic potential of 20 decarbonisation options is assessed. While previous analyses focus on the production processes this analysis covers the full product life cycle CO2 emissions. The analysis elaborates the carbon accounting complexity that results from the non-energy use of fossil fuels and highlights the importance of strategies that consider the carbon stored in synthetic organic products—an aspect that warrants more attention in long-term energy scenarios and strategies. Average mitigation costs in the sector would amount to 64 United States dollars (USD) per tonne of CO2 for full decarbonisation in 2050. The rapidly declining renewables cost is one main cause for this low-cost estimate. Renewable energy supply solutions in combination with electrification account for 40% of total emissions reductions. Annual biomass use grows to 1.3 gigatonnes; green hydrogen electrolyser capacity grows to 2435 gigawatts and recycling rates increase six-fold while product demand is reduced by a third compared to the reference case. CO2 capture storage and use equals 30% of the total decarbonisation effort (1.49 gigatonnes per year) where about one-third of the captured CO2 is of biogenic origin. Circular economy concepts including recycling account for 16% while energy efficiency accounts for 12% of the decarbonisation needed. Achieving full decarbonisation in this sector will increase energy and feedstock costs by more than 35%. The analysis shows the importance of renewables-based solutions accounting for more than half of the total emissions reduction potential which was higher than previous estimates.
Dislocation and Twinning Behaviors in High Manganese Steels in Respect to Hydrogen and Aluminum Alloying
Dec 2018
Publication
The dislocation and twinning evolution behaviors in high manganese steels Fe-22Mn-0.6C and Fe-17Mn-1.5Al-0.6C have been investigated under tensile deformation with and without diffusive hydrogen. The notched tensile tests were interrupted once primary cracks were detected using the applied direct current potential drop measurement. In parallel the strain distribution in the vicinity of the crack was characterized by digital image correlation using GOM optical system. The microstructure surrounding the crack was investigated by electron backscatter diffraction. Electron channeling contrast imaging was applied to reveal the evolution of dislocations stacking faults and deformation twins with respect to the developed strain gradient and amount of hydrogen. The results show that the diffusive hydrogen at the level of 26 ppm has a conspicuous effect on initiating stacking faults twin bundles and activating multiple deformation twinning systems in Fe-22Mn-0.6C. Eventually the interactions between deformation twins and grain boundaries lead to grain boundary decohesion in this material. In comparison hydrogen does not obviously affect the microstructure evolution namely the twinning thickness and the amount of activated twinning systems in Fe-17Mn-1.5Al-0.6C. The Al-alloyed grade reveals a postponed nucleation of deformation twins delayed onset of the secondary twinning system and develops finer twinning lamellae in comparison to the Al-free material. These observations explain the improved resistance to hydrogen-induced cracking in Al-alloyed TWIP steels.
Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications
Jan 2018
Publication
In the near future the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for e.g. the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs such as the blended-wing-body enable a more flexible integration of new storage technologies and energy converters e.g. cryogenic hydrogen tanks and fuel cells. Against this background a tank-design model is formulated which considers geometrical mechanical and thermal aspects as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass which is further improved by the use of a fuel cell.
Analyzing the Necessity of Hydrogen Imports for Net-zero Emission Scenarios in Japan
Jun 2021
Publication
With Japan’s current plans to reach a fully decarbonized society by 2050 and establish a hydrogen society substantial changes to its energy system need to be made. Due to the limited land availability in Japan significant amounts of hydrogen are planned to be imported to reach both targets. In this paper a novel stochastic version of the open-source multi-sectoral Global Energy System Model in conjunction with a power system dispatch model is used to analyze the impacts of both availability and price of hydrogen imports on the transformation of the Japanese energy system considering a net-zero emission target. This analysis highlights that hydrogen poses a valuable resource in specific sectors of the energy system. Therefore importing hydrogen can indeed positively impact energy system developments although up to 19mt of hydrogen will be imported in the case with the cheapest available hydrogen. In contrast without any hydrogen imports power demand nearly doubles in 2050 compared to 2019 due to extensive electrification in non-electricity sectors. However hydrogen imports are not necessarily required to reach net-zero emissions. In all cases however large-scale investments into renewable energy sources need to be made.
Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields
Nov 2018
Publication
Underground hydrogen storage is a potential way to balance seasonal fluctuations in energy production from renewable energies. The risks of hydrogen storage in depleted gas fields include the conversion of hydrogen to CH4(g) and H2S(g) due to microbial activity gas–water–rock interactions in the reservoir and cap rock which are connected with porosity changes and the loss of aqueous hydrogen by diffusion through the cap rock brine. These risks lead to loss of hydrogen and thus to a loss of energy. A hydrogeochemical modeling approach is developed to analyze these risks and to understand the basic hydrogeochemical mechanisms of hydrogen storage over storage times at the reservoir scale. The one-dimensional diffusive mass transport model is based on equilibrium reactions for gas–water–rock interactions and kinetic reactions for sulfate reduction and methanogenesis. The modeling code is PHREEQC (pH-REdox-EQuilibrium written in the C programming language). The parameters that influence the hydrogen loss are identified. Crucial parameters are the amount of available electron acceptors the storage time and the kinetic rate constants. Hydrogen storage causes a slight decrease in porosity of the reservoir rock. Loss of aqueous hydrogen by diffusion is minimal. A wide range of conditions for optimized hydrogen storage in depleted gas fields is identified.
Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers
Mar 2017
Publication
Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS) respectively. The physical properties of the coatings are thoroughly characterized by scanning electron atomic force microscopies (SEM AFM); and X-ray diffraction photoelectron spectroscopies (XRD XPS). The Ti coating (50μm) protects the stainless steel substrate against corrosion while a 50- fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/ Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000h of operation under nominal conditions showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.
Life Cycle Inventory Data Generation by Process Simulation for Conventional, Feedstock Recycling and Power-to-X Technologies for Base Chemical Production
Jan 2022
Publication
The article presents the methodology and applicable data for the generation of life cycle inventory for conventional and alternative processes for base chemical production by process simulation. Addressed base chemicals include lower olefins BTX aromatics methanol ammonia and hydrogen. Assessed processes include conventional chemical production processes from naphtha LPG natural gas and heavy fuel oil; feedstock recycling technologies via gasification and pyrolysis of refuse derived fuel; and power-to-X technologies from hydrogen and CO2. Further process variations with additional hydrogen input are covered. Flowsheet simulation in Aspen Plus is applied to generate datasets with conclusive mass and energy balance under uniform modelling and assessment conditions with available validation data. Process inventory data is generated with no regard to the development stage of the respective technology but applicable process data with high technology maturity is prioritized for model validation. The generated inventory data can be applied for life cycle assessments. Further the presented modelling and balancing framework can be applied for inventory data generation of similar processes to ensure comparability in life cycle inventory data.
Steel Manufacturing Clusters in a Hydrogen Economy – Simulation of Changes in Location and Vertical Integration of Steel Production in Northwestern Europe
Feb 2022
Publication
With the move to a hydrogen-based primary steel production envisioned for the near future in Europe existing regional industrial clusters loose major assets. Such a restructuring of industries may result in a new geographical distribution of the steel industry and also to another quality of vertical integration at sites. Both implications could turn out as drivers or barriers to invest in new technologies and are thus important in respect to vertical integration of sites and to regional policy. This paper describes an approach to model production stock invest for the steel industries in North-Western Europe. Current spatial structures are reproduced with capacity technical and energy efficiency data on the level of single facilities like blast furnaces. With the model developed both investments in specific technologies and at specific production sites can be modelled. The model is used to simulate different possible future scenarios. The case with a clear move to hydrogen-based production is compared to a reference scenario without technological shift. The scenarios show that existing trends like movement of production to the coast may be accelerated by the new technology but that sites in the hinterland can also adapt to a hydrogen economy. Possible effects of business cycles or a circular economy on regional value chains are explored with a Monte-Carlo analysis.
Decarbonizing Copper Production by Power-to-Hydrogen A Techno-Economic Analysis
Apr 2021
Publication
Electrifying energy-intensive processes is currently intensively explored to cut greenhouse gas (GHG) emissions through renewable electricity. Electrification is particularly challenging if fossil resources are not only used for energy supply but also as feedstock. Copper production is such an energy-intensive process consuming large quantities of fossil fuels both as reducing agent and as energy supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Planning, Optimisation and Evaluation of Small Power-to-Gas-to-Power Systems: Case Study of a German Dairy
May 2022
Publication
In the course of the energy transition distributed hybrid energy systems such as the combination of photovoltaic (PV) and battery storages is increasingly being used for economic and ecological reasons. However renewable electricity generation is highly volatile and storage capacity is usually limited. Nowadays a new storage component is emerging: the power-to-gas-to-power (PtGtP) technology which is able to store electricity in the form of hydrogen even over longer periods of time. Although this technology is technically well understood and developed there are hardly any evaluations and feasibility studies of its widespread integration into current distributed energy systems under realistic legal and economic market conditions. In order to be able to give such an assessment we develop a methodology and model that optimises the sizing and operation of a PtGtP system as part of a hybrid energy system under current German market conditions. The evaluation is based on a multi-criteria approach optimising for both costs and CO2 emissions. For this purpose a brute-force-based optimal design approach is used to determine optimal system sizes combined with the energy system simulation tool oemof.solph. In order to gain further insights into this technology and its future prospects a sensitivity analysis is carried out. The methodology is used to examine the case study of a German dairy and shows that PtGtP is not yet profitable but promising.
Free Stream Behavior of Hydrogen Released from a Fluidic Oscillating Nozzle
May 2021
Publication
The H2 internal combustion engine (ICE) is a key technology for complete decarbonization of the transport sector. To match or exceed the power density of conventional combustion engines H2 direct injection (DI) is essential. Therefore new injector concepts that meet the requirements of a H2 operation have to be developed. The macroscopic free stream behavior of H2 released from an innovative fluidic oscillating nozzle is investigated and compared with that of a conventional multi-hole nozzle. This work consists of H2 flow measurements and injection tests in a constant volume chamber using the Schlieren method and is accompanied by a LES simulation. The results show that an oscillating H2 free stream has a higher penetration velocity than the individual jets of a multi-hole nozzle. This behavior can be used to inject H2 far into the combustion chamber in the vertical direction while the piston is still near bottom dead center. As soon as the oscillation of the H2 free stream starts the spray angle increases and therefore H2 is also distributed in the horizontal direction. In this phase of the injection process spray angles comparable to those of a multi-hole nozzle are achieved. This behavior has a positive effect on H2 homogenization which is desirable for the combustion process.
Liquid Organic Hydrogen Carriers - A Technology to Overcome Common Risks of Hydrogen Storage
Sep 2021
Publication
In transport and storage of hydrogen the risks are mainly seen in its volatile nature its ability to form explosive mixtures with air and the harsh conditions (high pressure or low temperature) for efficient storage. The concept of Liquid Organic Hydrogen Carriers (LOHC) offers a technology to overcome the above mentioned threats. The present submission describes the basics of the LOHC technology. It contains a comparison of a selection of common LOHC materials with a view on physical properties. The advantages of a low viscosity at low temperatures and a high flash point are expressed. LOHCs are also discussed as a concept to import large amounts of energy/hydrogen. A closer look is taken on the environmental and safety aspects of hydrogen storage in LOHCs since here the main differences to pressurized and cryo-storage of hydrogen can be found. The aim of this paper is to provide an overview of the principles of the LOHC technology the different LOHC materials and their risks and opportunities and an impression of a large scale scenario on the basis of the LOHC technology.
Techno-economic Analysis of Hydrogen Enhanced Methanol to Gasoline Process from Biomass-derived Synthesis Gas
Mar 2021
Publication
In this paper the implications of the use of hydrogen on product yield and conversion efficiency as well as on economic performance of a hydrogen enhanced Biomass-to-Liquid (BtL) process are analyzed. A process concept for the synthesis of fuel (gasoline and LPG) from biomass-derived synthesis gas via Methanol-to-Gasoline (MtG) route with utilization of carbon dioxide from gasification by feeding additional hydrogen is developed and modeled in Aspen Plus. The modeled process produces 0.36 kg fuel per kg dry straw. Additionally 99 MW electrical power are recovered from purge and off gases from fuel synthesis in CCGT process covering the electricity consumption of fuel synthesis and synthesis gas generation. The hydrogen enhanced BtL procces reaches a combined chemical and electrical efficiency of 48.2% and overall carbon efficiency of 69.5%. The total product costs (TPC) sum up to 3.24 €/kg fuel. Raw materials (hydrogen and straw) make up the largest fraction of TPC with a total share of 75%. The hydrogen enhanced BtL process shows increased chemical energy and carbon efficiencies and thus higher product yields. However economic analysis shows that the process is unprofitable under current conditions due to high costs for hydrogen provision.
Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns
Feb 2022
Publication
Hydrogen is becoming an increasingly important energy carrier in sector integration for fuel cell transportation heat and electricity. Underground salt caverns are one of the most promising ways to store the hydrogen obtained from water electrolysis using power generation from renewable energy sources (RES). At the same time the production of hydrogen can be used to avoid energy curtailments during times of low electricity demand or low prices. The stored hydrogen can also be used during times of high energy demand for power generation e.g. with fuel cells to cover the fluctuations and shortages caused by low RES generation. This article presents an overview of the techniques that were used and proposed for using excess energy from RES for hydrogen production from water and its storage techniques especially in underground salt caverns for the aforementioned purpose and its feasibility. This paper compares and summarizes the competing technologies based on the current state-of-the-art identifies some of the difficulties in hydrogen production and storage and discusses which technology is the most promising. The related analysis compares cost and techno-economic feasibility with regard to hydrogen production and storage systems. The paper also identifies the potential technical challenges and the limitations associated with hydrogen integration into the power grid.
Flexible Electricity Use for Heating in Markets with Renewable Energy
Mar 2020
Publication
Using electricity for heating can contribute to decarbonization and provide flexibility to integrate variable renewable energy. We analyze the case of electric storage heaters in German 2030 scenarios with an open-source electricity sector model. We find that flexible electric heaters generally increase the use of generation technologies with low variable costs which are not necessarily renewables. Yet making customary night-time storage heaters temporally more flexible offers only moderate benefits because renewable availability during daytime is limited in the heating season. Respective investment costs accordingly have to be very low in order to realize total system cost benefits. As storage heaters feature only short-term heat storage they also cannot reconcile the seasonal mismatch of heat demand in winter and high renewable availability in summer. Future research should evaluate the benefits of longer-term heat storage.
SimSES: A Holistic Simulation Framework for Modeling and Analyzing Stationary Energy Storage Systems
Feb 2022
Publication
The increasing feed-in of intermittent renewable energy sources into the electricity grids worldwide is currently leading to technical challenges. Stationary energy storage systems provide a cost-effective and efficient solution in order to facilitate the growing penetration of renewable energy sources. Major technical and economical challenges for energy storage systems are related to lifetime efficiency and monetary returns. Holistic simulation tools are needed in order to address these challenges before investing in energy storage systems. One of these tools is SimSES a holistic simulation framework specialized in evaluating energy storage technologies technically and economically. With a modular approach SimSES covers various topologies system components and storage technologies embedded in an energy storage application. This contribution shows the capabilities and benefits of SimSES by providing in-depth knowledge of the implementations and models. Selected functionalities are demonstrated with two use cases showing the easy-to-use simulation framework while providing detailed technical analysis for expert users. Hybrid energy storage systems consisting of lithium-ion and redox-flow batteries are investigated in a peak shaving application while various system topologies are analyzed in a frequency containment reserve application. The results for the peak shaving case study show a benefit in favor of the hybrid system in terms of overall cost and degradation behavior in applications that have a comparatively low energy throughput during lifetime. In terms of system topology a cascaded converter approach shows significant improvements in efficiency for the frequency containment reserve application.
Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry
Apr 2017
Publication
This paper analyses some possible means by which renewable power could be integrated into the steel manufacturing process with techniques such as blast furnace gas recirculation (BF-GR) furnaces that utilize carbon capture a higher share of electrical arc furnaces (EAFs) and the use of direct reduced iron with hydrogen as reduction agent (H-DR). It is demonstrated that these processes could lead to less dependence on—and ultimately complete independence from—coal. This opens the possibility of providing the steel industry with power and heat by coupling to renewable power generation (sector coupling). In this context it is shown using the example of Germany that with these technologies reductions of 47–95% of CO2 emissions against 1990 levels and 27–95% of primary energy demand against 2008 can be achieved through the integration of 12–274 TWh of renewable electrical power into the steel industry. Thereby a substantial contribution to reducing CO2 emissions and fuel demand could be made (although it would fall short of realizing the German government’s target of a 50% reduction in power consumption by 2050).
Life Cycle Assessment of Improved High Pressure Alkaline Electrolysis
Aug 2015
Publication
This paper investigates environmental impacts of high pressure alkaline water electrolysis systems. An advanced system with membranes on polymer basis is compared to a state-of-the-art system with asbestos membranes using a Life Cycle Assessment (LCA) approach. For the advanced system a new improved membrane technology has been investigated within the EU research project “ELYGRID”. Results indicate that most environmental impacts are caused by the electricity supply necessary for operation. During the construction phase cell stacks are the main contributor to environmental impacts. New improved membranes have relatively small contributions to impacts caused by cell construction within the advanced systems. As main outcome the systems comparison illustrates a better ecological performance of the new developed system
Risk-adjusted Preferences of Utility Companies and Institutional Investors for Battery Storage and Green Hydrogen Investment
Feb 2022
Publication
Achieving climate-neutrality requires considerable investment in energy storage systems (ESS) to integrate variable renewable energy sources into the grid. However investments into ESS are often unprofitable in particular for grid-scale battery storage and green hydrogen technologies prompting many actors to call for policy intervention. This study investigates investor-specific risk-return preferences for ESS investment and derives policy recommendations. Insights are drawn from 1605 experimental investment-related decisions obtained from 42 high-level institutional investors and utility representatives. Results reveal that both investor groups view revenue stacking as key to making ESS investment viable. While the expected return on investment is the most important project characteristic risk-return preferences for other features diverge between groups. Institutional investors appear more open to exploring new technological ventures (20% of utility respondents would not consider making investments into solar photovoltaic-hydrogen) whereas utilities seem to prefer greenfield projects (23% of surveyed institutional investors rejected such projects). Interestingly both groups show strong aversion towards energy market price risk. Institutional investors require a premium of 6.87 percentage points and utilities 5.54 percentage points for moving from a position of fully hedged against market price risk to a scenario where only 20% of revenue is fixed underlining the need for policy support.
Life Cycle Assessment of Hydrogen from Proton Exchange Membrane Water Electrolysis in Future Energy Systems
Jan 2019
Publication
This study discusses the potential of H2 production by proton exchange membrane water electrolysis as an effective option to reduce greenhouse gas emissions in the hydrogen sector. To address this topic a life cycle assessment is conducted to compare proton exchange membrane water electrolysis versus the reference process - steam methane reforming. As a relevant result we show that hydrogen production via proton exchange membrane water electrolysis is a promising technology to reduce CO2 emissions of the hydrogen sector by up to 75% if the electrolysis system runs exclusively on electricity generated from renewable energy sources. In a future (2050) base-load operation mode emissions are comparable to the reference system.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications such as brake disks for windmills and trucks filtration systems in refineries and fossil power plants transfer rolls for hot-rolled steel strips and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i) alloy composition; (ii) microstructure; and (iii) number (type) of defects on the thermo-mechanical properties. Additionally environmental degradation of the alloys consisting of hydrogen embrittlement anodic or cathodic dissolution localized corrosion and oxidation resistance in different environments should be well known. Recently some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements environmental items and crystal structure on the deformation behavior of alloys. In this paper we will review the extensive work which has been done during the last decades to address each of the points mentioned above.
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape e.g. in case of tank rupture under a vehicle the non-instantaneous opening of tank walls etc. Two conservative correlations are built using theoretical analysis numerical simulations and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere
Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System
Feb 2022
Publication
Greenhouse gas emissions need to be drastically reduced to mitigate the environmental impacts caused by climate change and to lead to a transformation of the European energy system. A model landscape consisting of four final energy consumption sector models with high spatial (NUTS-3) and temporal (hourly) resolution and the multi-energy system model ISAaR is extended and applied to investigate the transformation pathway of the European energy sector in the deep emission mitigation scenario solidEU. The solidEU scenario describes not only the techno-economic but also the socio-political contexts and it includes the EU27 + UK Norway and Switzerland. The scenario analysis shows that volatile renewable energy sources (vRES) dominate the energy system in 2050. In addition the share of flexible sector coupling technologies increases to balance electricity generation from vRES. Seasonal differences are balanced by hydrogen storage with a seasonal storage profile. The deployment rates of vRES in solidEU show that a fast profound energy transition is necessary to achieve European climate protection goals.
A Review of Recent Developments in Molecular Dynamics Simulations of the Photoelectrochemical Water Splitting Process
Jun 2021
Publication
In this review we provide a short overview of the Molecular Dynamics (MD) method and how it can be used to model the water splitting process in photoelectrochemical hydrogen production. We cover classical non-reactive and reactive MD techniques as well as multiscale extensions combining classical MD with quantum chemical and continuum methods. Selected examples of MD investigations of various aqueous semiconductor interfaces with a special focus on TiO2 are discussed. Finally we identify gaps in the current state-of-the-art where further developments will be needed for better utilization of MD techniques in the field of water splitting.
Success Stories: A Partnership Dedicated to Clean Energy and Transport in Europe
Dec 2018
Publication
As 2018 marks the ten-year anniversary of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) it is inspiring to look back over the many accomplishments of the past decade. The projects described in these pages illustrate the approach of continuous learning exemplified by the FCH JU’s projects from creating low-carbon and sustainable solutions enabling market entry for new products developing ‘next generation’ products based on previous research to opening new markets for European expertise in fuel cell and hydrogen (FCH) technology.<br/>The FCH JU’s achievements are due in part to its multi-stakeholder structure: a public-private partnership between industry research and the European Commission. Industry-led research has pioneered new developments in FCH technology and brought many of them to the cusp of commercialisation. Market uptake from public authorities major companies and citizens alike has boosted confidence in these clean technologies establishing hydrogen as a cornerstone of Europe’s energy transition.<br/>DEVELOPING SOLUTIONS FOR A GREENER WORLD<br/>Citizens are at the heart of Europe’s Energy Union a strategy aimed at providing clean secure and affordable energy for all. For some years now and as a signatory to the Paris Agreement in 2015 the EU has been actively targeting reductions in carbon dioxide (CO2) emissions.
Is Direct Seawater Splitting Economically Meaningful?
Jun 2021
Publication
Electrocatalytic water splitting is the key process for the formation of green fuels for energy transport and storage in a sustainable energy economy. Besides electricity it requires water an aspect that seldomly has been considered until recently. As freshwater is a limited resource (<1% of earth's water) lately plentiful reports were published on direct seawater (around 96.5% of earth's water) splitting without or with additives (buffers or bases). Alternatively the seawater can be split in two steps where it is first purified by reverse osmosis and then split in a conventional water electrolyser. This quantitative analysis discusses the challenges of the direct usage of non-purified seawater. Further herein we compare the energy requirements and costs of seawater purification with those of conventional water splitting. We find that direct seawater splitting has substantial drawbacks compared to conventional water splitting and bears almost no advantage. In short it is less promising than the two-step scenario as the capital and operating costs of water purification are insignificant compared to those of electrolysis of pure water.
Modelling Decentralized Hydrogen Systems: Lessons Learned and Challenges from German Regions
Feb 2022
Publication
Green hydrogen produced by power‐to‐gas will play a major role in the defossilization of the energy system as it offers both carbon‐neutral chemical energy and the chance to provide flexibility. This paper provides an extensive analysis of hydrogen production in decentralized energy systems as well as possible operation modes (H2 generation or system flexibility). Modelling was realized for municipalities—the lowest administrative unit in Germany thus providing high spatial resolution—in the linear optimization framework OEMOF. The results allowed for a detailed regional analysis of the specific operating modes and were analyzed using full‐load hours share of used negative residual load installed capacity and levelized cost of hydrogen to derive the operation mode of power‐to‐gas to produce hydrogen. The results show that power‐to‐gas is mainly characterized by constant hydrogen production and rarely provides flexibility to the system. Main drivers of this dominant operation mode include future demand for hydrogen and the fact that high full‐load hours reduce hydrogen‐production costs. However changes in the regulatory market and technical framework could promote more flexibility and support possible use cases for the central technology to succeed in the energy transition.
A Comprehensive Comparison of State-of-the-art Manufacturing Methods for Fuel Cell Bipolar Plates Including Anticipated Future Industry Trends
Nov 2020
Publication
This article explains and evaluates contemporary methods for manufacturing bipolar plates (BPPs) for lowtemperature polymer electrolyte membrane fuel cells (LT-PEMFC) and highlights the potential of new improved approaches. BPPs are an essential component of fuel cells responsible for distributing reaction gases to facilitate efficient conversion of gaseous electrochemical energy to electricity. BPPs must balance technical properties such as electrical and thermal conductivities structural strength and corrosion resistance. Graphitic and metallic materials can meet the required specifications with each material offering distinct advantages and disadvantages. Each materials’ performance is complimented by a comparison of its manufacturability including: the material costs production rates and required capital investment. These results are contextualised with respect to the target applications to identify the challenges and advantages of manufacturing methods of choice for BPPs. This analysis shows that the optimal choice of BPP manufacturing method depends entirely on the needs of the target application in particular the relative importance of manufacturing rate cost and the expected operational life of the bipolar plate to the fuel cell designer.
Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminium Hexahydride
Feb 2021
Publication
A systematic study of different ratios of CO CO2 N2 gas components on the hydrogen storage properties of the Na3AlH6 complex hydride with 4 mol% TiCl3 8 mol% aluminum and 8 mol% activated carbon is presented in this paper. The different concentrations of CO and CO2in H2 and CO CO2 N2 in H2 mixture were investigated. Both CO and CO2gas react with the complex hydride forming Al oxy-compounds NaOH and Na2CO3 that consequently cause serious decline in hydrogen storage capacity. These reactions lead to irreversible damage of complex hydride under the current experimental condition. Thus after 10 cycles with 0.1 vol % CO + 99.9 vol %H2 and 1 vol % CO + 99 vol %H2 the dehydrogenation storage capacity of the composite material decreased by 17.2% and 57.3% respectively. In the case of investigation of 10 cycles with 1 vol % CO2 + 99 vol % H2 gas mixture the capacity degradation was 53.5%. After 2 cycles with 10 vol % CO +90 vol % H2 full degradation was observed whereas after 6 cycles with 10 vol % CO2+ 90 vol % H2 degradation of 86.8% was measured. While testing with the gas mixture of 1.5 vol % CO + 10 vol % CO2+ 27 vol % H2 + 61.5 vol % N2 the degradation of 94% after 6 cycles was shown. According to these results it must be concluded that complex aluminum hydrides cannot be used for the absorption of hydrogen from syngas mixtures without thorough purification.
Water Removal from LOHC Systems
Oct 2020
Publication
Liquid organic hydrogen carriers (LOHC) store hydrogen by reversible hydrogenation of a carrier material. Water can enter the system via wet hydrogen coming from electrolysis as well as via moisture on the catalyst. Removing this water is important for reliable operation of the LOHC system. Different approaches for doing this have been evaluated on three stages of the process. Drying of the hydrogen before entering the LOHC system itself is preferable. A membrane drying process turns out to be the most efficient way. If the water content in the LOHC system is still so high that liquid–liquid demixing occurs it is crucial for water removal to enhance the slow settling. Introduction of an appropriate packing can help to separate the two phases as long as the volume flow is not too high. Further drying below the rather low solubility limit is challenging. Introduction of zeolites into the system is a possible option. Water adsorbs on the surface of the zeolite and moisture content is therefore decreased.
Concepts for Hydrogen Internal Combustion Engines and Their Implications on the Exhaust Gas Aftertreatment System
Dec 2021
Publication
Hydrogen as carbon-free fuel is a very promising candidate for climate-neutral internal combustion engine operation. In comparison to other renewable fuels hydrogen does obviously not produce CO2 emissions. In this work two concepts of hydrogen internal combustion engines (H2 -ICEs) are investigated experimentally. One approach is the modification of a state-of-the-art gasoline passenger car engine using hydrogen direct injection. It targets gasoline-like specific power output by mixture enrichment down to stoichiometric operation. Another approach is to use a heavy-duty diesel engine equipped with spark ignition and hydrogen port fuel injection. Here a diesel-like indicated efficiency is targeted through constant lean-burn operation. The measurement results show that both approaches are applicable. For the gasoline engine-based concept stoichio-metric operation requires a three-way catalyst or a three-way NOX storage catalyst as the primary exhaust gas aftertreatment system. For the diesel engine-based concept state-of-the-art selective catalytic reduction (SCR) catalysts can be used to reduce the NOx emissions provided the engine calibration ensures sufficient exhaust gas temperature levels. In conclusion while H2 -ICEs present new challenges for the development of the exhaust gas aftertreatment systems they are capable to realize zero-impact tailpipe emission operation.
Protocol for Heavy-duty Hydrogen Refueling: A Modelling Benchmark
Sep 2021
Publication
For the successful deployment of the Heavy Duty (HD) hydrogen vehicles an associated infrastructure in particular hydrogen refueling stations (HRS) should be reliable compliant with regulations and optimized to reduce the related costs. FCH JU project PRHYDE aims to develop a sophisticated protocol dedicated to HD applications. The target of the project is to develop protocol and recommendations for an efficient refueling of 350 500 and 700 bar HD tanks of types III and IV. This protocol is based on modeling results as well as experimental data. Different partners of the PRHYDE European project are closely working together on this target. However modeling approaches and corresponding tools must first be compared and validated to ensure the high level of reliability for the modeling results. The current paper presents the benchmark performed in the frame of the project by Air Liquide Engie Wenger Engineering and NREL. The different models used were compared and calibrated to the configurations proposed by the PRHYDE project. In addition several scenarios were investigated to explore different cases with high ambient temperatures.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Are Sustainable Aviation Fuels a Viable Option for Decarbonizing Air Transport in Europe? An Environmental and Economic Sustainability Assessment
Jan 2022
Publication
The use of drop-in capable alternative fuels in aircraft can support the European aviation sector to achieve its goals for sustainable development. They can be a transitional solution in the short and medium term as their use does not require any structural changes to the aircraft powertrain. However the production of alternative fuels is often energy-intensive and some feedstocks are associated with harmful effects on the environment. In addition alternative fuels are often more expensive to produce than fossil kerosene which can make their use unattractive. Therefore this paper analyzes the environmental and economic impacts of four types of alternative fuels compared to fossil kerosene in a well-to-wake perspective. The fuels investigated are sustainable aviation fuels produced by power-to-liquid and biomass-to-liquid pathways. Life cycle assessment and life cycle costing are used as environmental and economic assessment methods. The results of this well-towake analysis reveal that the use of sustainable aviation fuels can reduce the environmental impacts of aircraft operations. However an electricity mix based on renewable energies is needed to achieve significant reductions. In addition from an economic perspective the use of fossil kerosene ranks best among the alternatives. A scenario analysis confirms this result and shows that the production of sustainable aviation fuels using an electricity mix based solely on renewable energy can lead to significant reductions in environmental impact but economic competitiveness remains problematic.
Development of Dispensing Hardware for Safe Fueling of Heavy Duty Vehicles
Sep 2021
Publication
The development of safe dispensing equipment for the fueling of heavy duty (HD) vehicles is critical to the expansion of this newly and quickly expanding market. This paper discusses the development of a HD dispenser and nozzles assembly (nozzle hose breakaway) for these new larger vehicles where flow rates are more than double compared to light duty (LD) vehicles. This equipment must operate at nominal pressures of 700 bar -40o C gas temperature and average flow rate of 5-10 kg/min at a high throughput commercial hydrogen fueling station without leaking hydrogen. The project surveyed HD vehicle manufacturers station developers and component suppliers to determine the basic specifications of the dispensing equipment and nozzle assembly. The team also examined existing codes and standards to determine necessary changes to accommodate HD components. From this information the team developed a set of specifications which will be used to design the dispensing equipment. In order to meet these goals the team performed computational fluid dynamic pressure modelling and temperature analysis in order to determine the necessary parameters to meet existing safety standards modified for HD fueling. The team also considered user operational and maintenance requirements such as freeze lock which has been an issue which prevents the removal of the nozzle from LD vehicles. The team also performed a failure mode and effects analysis (FMEA) to identify the possible failures in the design. The dispenser and nozzle assembly will be tested separately and then installed on an innovative HD fueling station which will use a HD vehicle simulator to test the entire system.
Using of an Electrochemical Compressor for Hydrogen Recirculation in Fuel Cell Vehicles
Jun 2020
Publication
The automotive industry sees hydrogen-powered fuel cell(FC) drives as a promising option with a high range and shortrefueling time. Current research aims to increase the profitabil-ity of the fuel cell system by reducing hydrogen consumption.This study suggests the use of an electrochemical hydrogencompressor (EHC) for hydrogen recirculation. Compared tomechanical compressors the EHC is very efficient due to thealmost isothermal conditions and due to its modular structurecan only take up a minimal amount of space in vehicles. Inaddition gas separation and purification of the hydrogentakes place in an EHC which is a significant advantage overthe standard recirculation with a blower or a jet pump. Thehigh purity of the hydrogen at the cathode outlet of the EHCalso increased partial pressure of the hydrogen at the fuel cellinlet and its efficiency. The study carried out shows that repla-cing the blower with the EHC reduces the hydrogen loss bypurging by up to ~95% and the efficiency of the FC systemcould be further improved. Thus the EHC has a great poten-tial for recycling hydrogen in FC systems in the automotiveindustry and is a great alternative to the current blower.
No more items...