Norway
A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation
Oct 2022
Publication
The energy transition with transformation into predominantly renewable sources requires technology development to secure power production at all times despite the intermittent nature of the renewables. Micro gas turbines (MGTs) are small heat and power generation units with fast startup and load-following capability and are thereby suitable backup for the future’s decentralized power generation systems. Due to MGTs’ fuel flexibility a range of fuels from high-heat to lowheat content could be utilized with different greenhouse gas generation. Developing micro gas turbines that can operate with carbon-free fuels will guarantee carbon-free power production with zero CO2 emission and will contribute to the alleviation of the global warming problem. In this paper the redevelopment of a standard 100-kW micro gas turbine to run with methane/hydrogen blended fuel is presented. Enabling micro gas turbines to run with hydrogen blended fuels has been pursued by researchers for decades. The first micro gas turbine running with pure hydrogen was developed in Stavanger Norway and launched in May 2022. This was achieved through a collaboration between the University of Stavanger (UiS) and the German Aerospace Centre (DLR). This paper provides an overview of the project and reports the experimental results from the engine operating with methane/hydrogen blended fuel with various hydrogen content up to 100%. During the development process the MGT’s original combustor was replaced with an innovative design to deal with the challenges of burning hydrogen. The fuel train was replaced with a mixing unit new fuel valves and an additional controller that enables the required energy input to maintain the maximum power output independent of the fuel blend specification. This paper presents the test rig setup and the preliminary results of the test campaign which verifies the capability of the MGT unit to support intermittent renewable generation with minimum greenhouse gas production. Results from the MGT operating with blended methane/hydrogen fuel are provided in the paper. The hydrogen content varied from 50% to 100% (volume-based) and power outputs between 35 kW to 100kW were tested. The modifications of the engine mainly the new combustor fuel train valve settings and controller resulted in a stable operation of the MGT with NOx emissions below the allowed limits. Running the engine with pure hydrogen at full load has resulted in less than 25 ppm of NOx emissions with zero carbon-based greenhouse gas production.
Value of Green Hydrogen When Curtailed to Provide Grid Balancing Services
Aug 2022
Publication
This paper evaluates the potential of grid services in France Italy Norway and Spain to provide an alternative income for electrolysers producing hydrogen from wind power. Grid services are simulated with each country's data for 2017 for energy prices grid services and wind power profiles from relevant wind parks. A novel metric is presented the value of curtailed hydrogen which is independent from several highly uncertain parameters such as electrolyser cost or hydrogen market price. Results indicate that grid services can monetise the unused spare capacity of electrolyser plants improving their economy in the critical deployment phase. For most countries up-regulation yields a value of curtailed hydrogen above 6 V/kg over 3 times higher than the EU's 2030 price target (without incentives). However countries with large hydro power resources such as Norway yield far lower results below 2 V/kg. The value of curtailed hydrogen also decreases with hydrogen production corresponding to the cases of symmetric and down-regulation.
CFD Modelling of Hydrogen and Hydrogen-methane Explosions - Analysis of Varying Concentration and Reduced Oxygen Atmospheres
Feb 2023
Publication
This paper evaluates the predictive capabilities of the advanced consequence model FLACS-CFD for deflagrations involving hydrogen. Two modelling approaches are presented: the extensively validated model system originally developed for hydrocarbons included in FLACS-CFD 22.1 and a Markstein number dependent model implemented in the in-house version FLACS-CFD 22.1 IH. The ability of the models to predict the overpressure and the flame arrival time for scenarios with different concentrations of hydrogen and thus different Lewis and Markstein numbers is assessed. Furthermore the effect of adding methane or nitrogen on overpressure for different regimes of premixed combustion are investigated. The validation dataset includes deflagrations in the open or in congested open areas and vented deflagrations in empty or congested enclosures. The overpressure predictions by FLACS-CFD 22.1 IH are found to be more accurate than those obtained with FLACS-CFD 22.1 for scenarios with varying hydrogen concentrations and/or added nitrogen or methane in the mixture. The predictions by FLACS-CFD 22.1 IH for lean hydrogen mixtures are within a factor of 2 of the values observed in the experiments. Further development of the model is needed for more accurate prediction of deflagrations involving rich hydrogen mixtures as well as scenarios with other fuels and/or conditions where the initial pressure or temperature deviate significantly from ambient conditions.
Techno-economic Assessment of Blue and Green Ammonia as Energy Carriers in a Low-carbon Future
Feb 2022
Publication
Ammonia is an industrial chemical and the basic building block for the fertilizer industry. Lately attention has shifted towards using ammonia as a carbon-free energy vector due to the ease of transportation and storage in liquid state at − 33 ◦C and atmospheric pressure. This study evaluates the prospects of blue and green ammonia as future energy carriers; specifically the gas switching reforming (GSR) concept for H2 and N2 co-production from natural gas with inherent CO2 capture (blue) and H2 generation through an optimized value chain of wind and solar power electrolysers cryogenic N2 supply and various options for energy storage (green). These longer term concepts are benchmarked against conventional technologies integrating CO2 capture: the Kellogg Braun & Root (KBR) Purifier process and the Linde Ammonia Concept (LAC). All modelled plants utilize the same ammonia synthesis loop for a consistent comparison. A cash flow analysis showed that the GSR concept achieved an attractive levelized cost of ammonia (LCOA) of 332.1 €/ton relative to 385.1–385.9 €/ton for the conventional plants at European energy prices (6.5 €/GJ natural gas and 60 €/MWh electricity). Optimal technology integration for green ammonia using technology costs representative of 2050 was considerably more expensive: 484.7–772.1 €/ton when varying the location from Saudi Arabia to Germany. Furthermore the LCOA of the GSR technology drops to 192.7 €/ton when benefitting from low Saudi Arabian energy costs (2 €/GJ natural gas and 40 €/MWh electricity). This cost difference between green and blue ammonia remained robust in sensitivity analyses where input energy cost (natural gas or wind/solar power) was the most influential parameter. Given its low production costs and the techno-economic feasibility of international ammonia trade advanced blue ammonia production from GSR offers an attractive pathway for natural gas exporting regions to contribute to global decarbonization.
Determining the Spanish Public’s Intention to Adopt Hydrogen Fuel-Cell Vehicles
Aug 2025
Publication
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy such as hydrogen fuel-cell vehicles (HFCVs) is a key factor in their deployment. To analyse the direct and indirect effects of key attitudinal variables that could influence the intention to use HFCVs in Spain an online questionnaire was administered to a representative sample of the Spanish population (N = 1000). A path analysis Structural Equation Model (SEM) was applied to determine the effect of different attitudinal variables. A high intention to adopt HFCVs in Spain was found (3.8 out of 5) assuming their wider availability in the future. The path analysis results indicated that general acceptance of hydrogen technology and perception of its benefits had the greatest effect on the public’s intention to adopt HFCVs. Regarding indirect effects the role of trust in hydrogen technology was notable having significant mediating effects not only through general acceptance of hydrogen energy and local acceptance of hydrogen refuelling stations (HRS) but also through positive and negative emotions and benefits perception. The findings will assist in focusing the future hydrogen communication strategies of both the government and the private (business) sector.
Technical Failures in Green Hydrogen Production and Reliability Engineering Responses: Insights from Database Analysis and a Literature Review
Nov 2024
Publication
Green hydrogen represents a promising solution for renewable energy application and carbon footprint reduc tion. However its production through renewable energy powered water electrolysis is hindered by significant cost arising from repair maintenance and economic losses due to unexpected downtimes. Although reliability engineering is highly effective in addressing such issues there is limited research on its application in the hydrogen field. To present the state-of-the-art research this study aims to explore the potential of reducing these events through reliability engineering a widely adopted approach in various industries. For this purpose it examines past accidents occurred in water electrolysis plants from the hydrogen incident and accident database (HIAD 2.1). Besides a literature review is performed to analyze the state-of-the-art application of reliability engineering techniques such as failure analysis reliability assessment and reliability-centered maintenance in the hydrogen sector and similar industries. The study highlights the contributions and potentials of reliability engineering for efficient and stable green hydrogen production while also discussing the gaps in applying this approach. The unique challenges posed by hydrogen’s physical properties and innovative technologies in water electrolysis plants necessitate advancement and specialized approaches for reliability engineering.
Multi-stage Monitoring of Hydrogen Systems for Improved Maintenance Approaches: An Extensive Review
Jan 2025
Publication
Hydrogen is considered a promising solution for global decarbonisation as an alternative to fossil fuels. However it can interact with and brittle most metallic materials and is highly flammable. These properties call for a systematic investigation of physical and chemical hazards and for the definition of a comprehensive risk management and monitoring framework including proper maintenance planning. This study aims at establishing a hydrogen monitoring scheme and it provides a descriptive bibliometric and interpretative review of the current state-of-the-art of suitable techniques to ensure the safe handling of hydrogen systems. The descriptive analysis outlines the technologies available to supervise the hydrogen-material interactions and detect hydrogen leaks and flames. The bibliometric analysis shows quantitative data to identify the most relevant research groups. The interpretative study discusses the findings and examines the possibility of combining the identified techniques with maintenance programs to prevent catastrophic events.
Repurposing Natural Gas Pipelines for Hydrogen: Limits and Options from a Case Study in Germany
Jul 2024
Publication
We investigate the challenges and options for repurposing existing natural gas pipelines for hydrogen transportation. Challenges of re-purposing are mainly related to safety and due to the risk of hydrogen embrittlement of pipeline steels and the smaller molecular size of the gas. From an economic perspective the lower volumetric energy density of hydrogen compared to natural gas is a challenge. We investigate three pipeline repurposing options in depth: a) no modification to the pipeline but enhanced maintenance b) use of gaseous inhibitors and c) the pipe-in-pipe approach. The levelized costs of transportation of these options are compared for the case of the German Norddeutsche Erdgasleitung (NEL) pipeline. We find a similar cost range for all three options. This indicates that other criteria such as the sunk costs public acceptance and consumer requirements are likely to shape the decision making for gas pipeline repurposing.
Thermo-economic Analysis of Green Hydrogen Production Onboard LNG Carriers through Solid Oxide Electrolysis Powered by Organic Rankine Cycles
Nov 2024
Publication
LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H2 production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles coupled separately with a solid oxide electrolysis (SOEC) have been simulated and compared. The hydrogen (H2) produced is then compressed at 150 bar for subsequent use as required. According to the results the 2P-ORC generates 14.79 % more power compared to ORC allowing for an increased energy supply to the SOEC; hence producing more H2 (34.47 kg/h compared to 31.14 kg/h). Including the 2P-ORC in the H2 production plant results in a cheaper H2 cost by 0.04 $/kgH2 compared to ORC a 1.13 %LHV higher system efficiency when leveraging all the available waste heat. The plant including 2P-ORC exploits more than 86 % of the of the available waste compared to 70 % when using ORC. Excluding the compression system decreases the capital cost by almost the half regardless of the WH recovery system used yet it plays in favour of the plant with ORC making the cost of H2 cheaper by 0.29 $/kgH2 in this case. Onboard H2 production is a versatile process independent from the propulsion system ensuring the ship's safety and availability throughout a sea journey.
Analysis of Hydrogen Value Chain Events: Implications for Hydrogen Refueling Stations’ Safety
Apr 2024
Publication
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport in addition to fuel cell vehicles it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The characteristics and properties of hydrogen make ensuring the safe operation of these facilities a crucial element for their successful deployment and implementation. This paper shows the outcomes of an analysis of hydrogen incidents and accidents considering their potential application to HRSs. For this purpose the HIAD 2.0 was reviewed and a total of 224 events that could be repeated in any of the major industrial processes related to hydrogen refueling stations were analyzed. This analysis was carried out using a mixed methodology of quantitative and qualitative techniques considering the following hydrogen value chain: production storage delivery and industrial use. The results provide general information segmented by event frequency damage classes and failure typology. The analysis shows the main processes of the value chain allow the identification of key aspects for the safety management of refueling facilities.
Evaluating the Offshore Wind Business Case and Green Hydrogen Production: A Case Study of a Future North Sea Offshore Grid
Jun 2024
Publication
The European Union aims to increase its climate ambition and achieve climate neutrality by 2050. This necessitates expanding offshore wind energy and green hydrogen production especially for hard-to-abate industrial sectors. A study examines the impact of green hydrogen on offshore wind projects specifically focusing on a potential future North Sea offshore grid. The study utilizes data from the TYNDP 2020 Global Ambition scenario 2040 considering several European countries. It aims to assess new transmission and generation capacity utilization and understand the influencing factors. The findings show that incorporating green hydrogen production increases offshore wind utilization and capture prices. The study estimates that by 2040 the levelized cost of hydrogen could potentially decrease to e1.2-1.6/kg H2 assuming low-cost electricity supply and declining capital costs of electrolysers. These results demonstrate the potential benefits and cost reductions of integrating green hydrogen production into North Sea offshore wind projects.
New Flow Simulation Framework for Underground Hydrogen Storage Modelling Considering Microbial and Geochemical Reactions
Jul 2025
Publication
The widespread use of hydrogen as an energy source relies on efficient large-scale storage techniques. Underground Hydrogen Storage (UHS) is a promising solution to balance the gap between renewable energy production and constant energy demand. UHS employs geological structures like salt caverns depleted reservoirs or aquifers for hydrogen storage enabling long-term and scalable storage capacity. Therefore robust and reliable predictive tools are essential to assess the risks associated with geological hydrogen storage. This paper presents a novel reactive transport model called “Underground Gas Flow simulAtions with Coupled bio-geochemical reacTions” or “UGFACT” designed for various gas injection processes accounting for geochemical and microbial reactions. The flow module and geochemical reactions in the UGFACT model were verified against two commercial reservoir simulators E300 and CMG-GEM showing excellent agreement in fluid flow variables and geochemical behaviour. A major step forward of this model is to integrate flow dynamics geochemical reactions and microbial activity. UGFACT was used to conduct a simple storage cycle in a 1D geometry across three different reservoirs each with different mineralogies and water compositions: Bentheimer sandstone Berea sandstone and Grey Berea sandstone under three microbial conditions (“No Reaction” “Moderate Rate” “High Rate”). The findings suggest that Bentheimer sandstone and Berea sandstone sites may experience severe effects from ongoing microbial and geochemical reactions whereas Grey Berea sandstone shows no significant H2 loss. Additionally the model predicts that under the high-rate microbial conditions the hydrogen consumption rate can reach to as much as 11 mmol of H2 per kilogram of water per day (mmol / kg⋅day) driven by methanogenesis and acetogenesis.
Essentials of Hydrogen Storage and Power Systems for Green Shipping
Jan 2025
Publication
This paper establishes a framework of boundary conditions for implementing hydrogen energy systems in ships identifying what is feasible within maritime constraints. To support a comprehensive understanding of hydrogen systems onboard vessels an extensive technical review of hydrogen storage and power systems is provided covering the entire power value chain. Key aspects include equipment arrangement integration of fuel cell powertrain and presentation of the complete storage system in compliance with regulations. Engineering considerations such as material selection and insulation equipment specifications (e.g. pressure relief valves and hydrogen purity) and system configurations are analysed. Key findings reveal that fuel cells must achieve operational lifespans exceeding 46000 h to be viable for maritime applications. Additionally reliance solely on volumetric energy density underestimates storage needs necessitating provisions for cofferdams ullage space tank heels and hydrogen conditioning areas. Regulatory gaps are identified including inadequate safety provisions and inappropriate material guidelines.
Renewable Hydrogen Trade, in a Global Decarbonised Energy System
Jan 2025
Publication
Renewable hydrogen has emerged as a potentially critical energy carrier for achieving climate change mitigation goals. International trade could play a key role in meeting hydrogen demand in a globally decarbonized energy system. To better understand this role we have developed a modelling framework that incorporates hydrogen supply and demand curves and a market equilibrium model to maximize social welfare. Applying this framework we investigate two scenarios: an unrestricted trade scenario where hydrogen trade is allowed between all regions globally and a regional independence scenario where trade is restricted to be intra-regional only. Under the unrestricted trade scenario global hydrogen demand could reach 234 Mt by 2050 with 31.2% met through international trade. Key trade routes identified include North Africa to Europe the Middle East to Developing Asia and South America to Japan and South Korea. In the regional independence scenario most regions could meet their demand domestically except for Japan and South Korea due to self-insufficiency. Finally this analysis reveals that producers in North Africa and South America are likely to gain more economic value from international trade compared to other producing regions. The results offer key insights for policymakers and investors for shaping future hydrogen trade policies and investment decisions.
The Geopolitics of Hydrogen, Volume 1: European Strategies in Global Perspective
Jan 2024
Publication
Rainer Quitzow,
Yana Zabanova,
Almudena Nunez,
Ines Bouacida,
Michał Smoleń,
Wojciech Żelisko,
John Szabo,
Ignacio Urbasos,
Gonzalo Escribano,
Andrea Prontera,
Roelof Stam,
Coby van der Linder,
Pier Stapersma,
Stefan Ćetković,
Janek Stockburger,
Jon Birger Skjærseth,
Per Ove Eikeland,
Tor Håkon Jackson Inderberg and
Mari Lie Larsen
Chapters:<br/>♦ Introduction by Rainer Quitzow and Yana Zabanova<br/>♦ The EU in the Global Hydrogen Race: Bringing Together Climate Action Energy Security and Industrial Policy by Yana Zabanova<br/>♦ Germany’s Hydrogen Strategy: Securing Industrial Leadership in a Carbon–Neutral Economy by Almudena Nunez and Rainer Quitzow<br/>♦ France’s Hydrogen Strategy: Focusing on Domestic Hydrogen Production to Decarbonise Industry and Mobility by Ines Bouacida<br/>♦ International Dimension of the Polish Hydrogen Strategy. Conditions and Potential for Future Development by Michał Smoleń and Wojciech Żelisko<br/>♦ Hydrogen Affairs in Hungary’s Politically Confined Ambition byJohn Szabo<br/>♦ Spain’s Hydrogen Ambition: Between Reindustrialisation and Export-Led Energy Integration with the EU by Ignacio Urbasos and Gonzalo Escribano<br/>♦ Italian Hydrogen Policy: Drivers Constraints and Recent Developments by Andrea Prontera<br/>♦ Hydrogen Policy in the Netherlands: Laying the Foundations for a Scalable Hydrogen Value Chain by Roelof Stam Coby van der Linde and Pier Stapersma<br/>♦ Hydrogen Strategy of Sweden: Unpacking the Multiple Drivers and Potential Barriers to Hydrogen Development by Stefan Ćetković and Janek Stockburger<br/>♦ Norway’s Hydrogen Strategy: Unveiling Green Opportunities and Blue Export Ambitions by Jon Birger Skjærseth Per Ove Eikeland Tor Håkon Jackson Inderberg and Mari Lie Larsen<br/>♦ The Geopolitics of Hydrogen in Europe: The Interplay between EU and Member State Policies by Rainer Quitzow and Yana Zabanova
Computational Fluid Dynamics Simulations of Hydrogen Releases and Vented Deflagrations in Large Enclosures
Nov 2019
Publication
This paper presents model predictions obtained with the CFD tool FLACS for hydrogen releases and vented deflagrations in containers and larger enclosures. The paper consists of two parts. The first part compares experimental results and model predictions for two test cases: experiments performed by Gexcon in 20-foot ISO containers (volume 33 m3 ) as part of the HySEA project and experiments conducted by SRI International and Sandia National Laboratories in a scaled warehouse geometry (volume 45.4 m3 ). The second part explores the use of the model system validated in the first part to accidental releases of hydrogen from forklift trucks inside a full-scale warehouse geometry (32 400 m3 ). The results demonstrate the importance of using realistic and reasonably accurate geometry models of the systems under consideration when performing CFD-based risk assessment studies. The discussion highlights the significant inherent uncertainty associated with quantitative risk assessments for vented hydrogen deflagrations in complex geometries. The suggestions for further work include a pragmatic approach for developing empirical correlations for pressure loads from vented hydrogen deflagrations in industrial warehouses with hydrogen-powered forklift trucks.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly
Jul 2022
Publication
Anion exchange membrane (AEM) electrolysis aims to combine the benefits of alkaline electrolysis such as stability of the cheap catalyst and advantages of proton-exchange membrane systems like the ability to operate at differential pressure fast dynamic response low energy losses and higher current density. However as of today AEM electrolysis is limited by AEMs exhibiting insufficient ionic conductivity as well as lower catalyst activity and stability. Herein recent developments and outlook of AEM electrolysis such as cost-efficient transition metal catalysts for hydrogen evolution reaction and oxygen evolution reaction AEMs ionomer electrolytes ionomer catalyst–electrolyte interaction and membrane-electrode assembly performance and stability are described.
Carbon-negative Hydrogen: Exploring the Techno-economic Potential of Biomass Co-gasification with CO2 Capture
Sep 2021
Publication
The hydrogen economy is receiving increasing attention as a complement to electrification in the global energy transition. Clean hydrogen production is often viewed as a competition between natural gas reforming with CO2 capture and electrolysis using renewable electricity. However solid fuel gasification with CO2 capture presents another viable alternative especially when considering the potential of biomass to achieve negative CO2 emissions. This study investigates the techno-economic potential of hydrogen production from large-scale coal/ biomass co-gasification plants with CO2 capture. With a CO2 price of 50 €/ton the benchmark plant using commercially available technologies achieved an attractive hydrogen production cost of 1.78 €/kg with higher CO2 prices leading to considerable cost reductions. Advanced configurations employing hot gas clean-up membrane-assisted water-gas shift and more efficient gasification with slurry vaporization and a chemical quench reduced the hydrogen production cost to 1.50–1.62 €/kg with up to 100% CO2 capture. Without contingencies added to the pre-commercial technologies the lowest cost reduces to 1.43 €/kg. It was also possible to recover waste heat in the form of hot water at 120 ◦C for district heating potentially unlocking further cost reductions to 1.24 €/kg. In conclusion gasification of locally available solid fuels should be seriously considered next to natural gas and electrolysis for supplying the emerging hydrogen economy.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Hydrogen for Harvesting the Potential of Offshore Wind: A North Sea Case Study
Dec 2023
Publication
Economical offshore wind developments depend on alternatives for cost-efficient transmission of the generated energy to connecting markets. Distance to shore availability of an offshore power grid and scale of the wind farm may impede export through power cables. Conversion to H2 through offshore electrolysis may for certain offshore wind assets be a future option to enable energy export. Here we analyse the cost sensitivity of offshore electrolysis for harvesting offshore wind in the North Sea using a technology-detailed multi-carrier energy system modelling framework for analysis of energy export. We include multiple investment options for electric power and hydrogen export including HVDC cables new hydrogen pipelines tie-in to existing pipelines and pipelines with linepacking. Existing hydropower is included in the modelling and the effect on offshore electrolysis from increased pumping capacity in the hydropower system is analysed. Considering the lack of empirical cost data on offshore electrolysis as well as the high uncertainty in future electricity and H2 prices we analyse the cost sensitivity of offshore electrolysis in the North Sea by comparing costs relative to onshore electrolysis and energy prices relative to a nominal scenario. Offshore electrolysis is shown to be particularly sensitive to the electricity price and an electricity price of 1.5 times the baseline assumption was needed to provide sufficient offshore energy for any significant offshore electrolysis investments. On the other hand too high electricity prices would have a negative impact on offshore electrolysis because the energy is more valuable as electricity even at the cost of increased wind power curtailment. This shows that there is a window-of-opportunity in terms of onshore electricity where offshore electrolysis can play a significant role in the production of H2 . Pumped hydropower increases the maximum installed offshore electrolysis at the optimal electricity and H2 prices and makes offshore electrolysis more competitive at low electricity prices. Linepacking can make offshore electrolysis investments more robust against low H2 and high electricity prices as it allow for more variable H2 production through storing excess energy from offshore. The increased electrolysis capacity needed for variable electrolyser operation and linepacking is installed onshore due to its lower CAPEX compared to offshore installations.
Are Green and Blue Hydrogen Competitive or Complementary? Insights from a Decarbonised European Power System Analysis
Jun 2023
Publication
Hydrogen will be important in decarbonized energy systems. The primary ways to produce low emission hydrogen are from renewable electricity using electrolyzers called green hydrogen and by reforming natural gas and capturing and storing the CO2 known as blue hydrogen. In this study the degrees to which blue and green hydrogen are complementary or competitive are analyzed through a sensitivity analysis on the electrolyzer costs and natural gas price. This analysis is performed on four bases: what is the cost-effective relative share between blue and green hydrogen deployment how their deployment influences the price of hydrogen how the price of CO2 changes with the deployment of these two technologies and whether infrastructure can economically be shared between these two technologies. The results show that the choice of green and blue hydrogen has a tremendous impact where an early deployment of green leads to higher hydrogen costs and CO2 prices in 2030. Allowing for blue hydrogen thus has notable benefits in 2030 giving cheaper hydrogen with smaller wider socioeconomic impacts. In the long term these competitive aspects disappear and green and blue hydrogen can coexist in the European market without negatively influencing one another.
Climate Change Mitigation Potentials of on Grid-connected Power-to-X Fuels and Advanced Biofuels for the European Maritime Transport
Jul 2023
Publication
This study proposes a country-based life-cycle assessment (LCA) of several conversion pathways related 10 to both on grid-connected Power-to-X (PtX) fuels and advanced biofuel production for maritime transport 11 in Europe. We estimate the biomass resource availability (both agricultural and forest residues and 12 second-generation energy crops from abandoned cropland) electricity mix and a future-oriented 13 prospective LCA to assess how future climate change mitigation policies influence the results. Our results 14 indicate that the potential of PtX fuels to achieve well-to-wake greenhouse gas intensities lower than 15 those of fossil fuels is limited to countries with a carbon intensity of the electricity mix below 100 gCO2eq kWh-1 16 . The more ambitious FuelEU Maritime goal could be achieved with PtX only if connected to electricity sources below ca. 17 gCO2eq kWh-1 17 which can become possible for most of the national 18 electricity mix in Europe by 2050 if renewable energy sources will become deployed at large scales. For 19 drop-in and hydrogen-based biofuels biomass residues have a higher potential to reduce emissions than 20 dedicated energy crops. In Europe the potentials of energy supply from all renewable and low-carbon 21 fuels (RLFs) range from 32-149% of the current annual fuel consumption in European maritime transport. 22 The full deployment of RLFs with carbon capture and storage technologies could mitigate up to 184% of 23 the current well-to-wake shipping emissions in Europe. Overall our study highlights how the strategic use 24 of both hydrogen-based biofuels and PtX fuels can contribute to the climate mitigation targetsfor present 25 and future scenarios of European maritime transport.
Microfluidic Storage Capacity and Residual Trapping During Cyclic Injections: Implications for Underground Storage
Apr 2023
Publication
Long-term and large-scale H2 storage is vital for a sustainable H2 economy. Research in underground H2 storage (UHS) in porous media is emerging but the understanding of H2 reconnection and recovery mechanisms under cyclic loading is not yet adequate. This paper reports a qualitative and quantitative investigation of H2 reconnection and recovery mechanisms in repeated injection-withdrawal cycles. Here we use microfluidics to experimentally investigate up to 5 cycles of H2 injection and withdrawal under a range of injection rates at shallow reservoir storage conditions. We find that H2 storage capacities increase with increasing injection rate and range between ~10% and 60%. The residual H2 saturation is in the same range between cycles (30e40%) but its distribution in the pore space visually appears to be hysteretic. In most cases the residually trapped H2 reconnects in the subsequent injection cycle predominantly in proximity to the large pore clusters. Our results provide valuable experimental data to advance the understanding of multiple H2 injection cycles in UHS schemes.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
Renewable Hydrogen and Synthetic Fuels Versus Fossil Fuels for Trucking, Shipping and Aviation: A Holistic Cost Model
Aug 2023
Publication
Potential carbon neutrality of the global trucking shipping and aviation sectors by 2050 could be achieved by substituting fossil fuels with renewable hydrogen and synthetic fuels. To investigate the economic impact of fuel substitution over time a holistic cost model is developed and applied to three case studies in Norway an early adopter of carbon-neutral freight transport. The model covers the value chains from local electricity and fuel production (hydrogen ammonia Fischer–Tropsch e-fuel) to fuel consumption for long-haul trucking short-sea shipping and mid-haul aviation. The estimates are internally consistent and allow cross-mode and cross-fuel comparisons that set this work apart from previous studies more narrowly focused on a given transport mode or fuel. The model contains 150 techno-economic parameters to identify which components along the value chains drive levelized costs. This paper finds a cost reduction potential for renewable fuels of 41% to 68% until 2050 but carbon-neutral transport will suffer asymmetric cost disadvantages. Fuel substitution is most expensive in short-sea shipping followed by mid-haul aviation and long-haul trucking. Cost developments of electricity direct air capture of carbon vehicle expenses and fuel-related payload losses are significant drivers.
Modelling of Fast Fueling of Pressurized Hydrogen Tanks for Maritime Applications
Apr 2023
Publication
This paper studies fast fueling of gaseous hydrogen into large hydrogen (H2) tanks suitable for maritime applications. Three modeling methods have been developed and evaluated: (1) Two-dimensional computational fluid dynamic (CFD) modeling (2) One-dimensional wall discretized modeling and (3) Zero-dimensional modeling. A detailed 2D CFD simulation of a small H2-tank was performed and validated with data from literature and then used to simulate a large H2-tank. Results from the 2D-model show non-uniform temperature distribution inside the large tank but not in the small H2-tank. The 1D-model can predict the mean temperature in small H2-tanks but not the inhomogeneous temperature field in large H2-tanks. The 0D-model is suitable as a screening tool to obtain rough estimates. Results from the modeling of the large H2-tank show that the heat transfer to the wall during fast filling is inhibited by heat conduction in the wall which leads to an unacceptably high mean hydrogen temperature.
Simulating Offshore Hydrogen Production via PEM Electrolysis using Real Power Production Data from a 2.3 MW Floating Offshore Wind Turbine
Mar 2023
Publication
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs and hydrogen production system efficiency and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e. utilization factor of approximately 68%) the lowest hydrogen production cost was 4.53 $/kg H2 and the system efficiency was in the range 56.1e56.9% in all cases.
Critical and Strategic Materials for Electrolysers, Fuel Cells, Metal Hydrides and Hydrogen Seperation Technologies
May 2024
Publication
This paper provides an in-depth examination of critical and strategic raw materials (CRMs) and their crucial role in the development of electrolyzer and fuel cell technologies within the hydrogen economy. It methodically analyses a range of electrolyzer technologies including alkaline proton-exchange membrane solid-oxide anion-exchange membrane and proton-conducting ceramic systems. Each technology is examined for its specific CRM dependencies operational characteristics and the challenges associated with CRM availability and sustainability. The study further extends to hydrogen storage and separation technologies focusing on the materials employed in high-pressure cylinders metal hydrides and hydrogen separation processes and their CRM implications. A key aspect of this paper is its exploration of the supply and demand dynamics of CRMs offering a comprehensive view that encompasses both the present sttate and future projections. The aim is to uncover potential supply risks understand strategies and identify potential bottlenecks for materials involved in electrolyzer and fuel cell technologies addressing both current needs and future demands as well as supply. This approach is essential for the strategic planning and sustainable development of the hydrogen sector emphasizing the importance of CRMs in achieving expanded electrolyzer capacity leading up to 2050.
Sonochemical and Sonoelectrochemical Production of Hydrogen
Aug 2018
Publication
Reserves of fossil fuels such as coal oil and natural gas on earth are finite. The continuous use and burning of these fossil fuel resources in the industrial domestic and transport sectors has resulted in the extremely high emission of greenhouse gases GHGs (e.g. CO2) and solid particulates into the atmosphere. Therefore it is necessary to explore pollution free and more efficient energy sources in order to replace depleting fossil fuels. The use of hydrogen (H2) as an alternative fuel source is particularly attractive due to its very high specific energy compared to other conventional fuels and its zero GHG emission when used in a fuel cell. Hydrogen can be produced through various process technologies such as thermal electrolytic photolytic and biological processes. Thermal processes include gas reforming renewable liquid and biooil processing biomass and coal gasification; however these processes release a huge amount of greenhouse gases. Production of electrolytic hydrogen from water is an attractive method to produce clean hydrogen. It could even be a more promising technology when combining water electrolysis with power ultrasound to produce hydrogen efficiently where sonication enhances the electrolytic process in several ways such as enhanced mass transfer removal of hydrogen and oxygen (O2) gas bubbles and activation of the electrode surface. In this review production of hydrogen through sonochemical and sonoelectrochemical methods along with a brief description of current hydrogen production methods and power ultrasound are discussed.
Review of Sampling and Analysis of Particulate Matter in Hydrogen Fuel
Sep 2023
Publication
This review presents state-of-the-art for representative sampling of hydrogen from hydrogen refueling stations. Documented sampling strategies are presented as well as examples of commercially available equipment for sampling at the hydrogen refueling nozzle. Filter media used for sampling is listed and the performance of some of the filters evaluated. It was found that the filtration efficiency of 0.2 and 5 mm filters were not significantly different when exposed to 200 and 300 nm particles. Several procedures for gravimetric analysis are presented and some of the challenges are identified to be filter degradation pinhole formation and conditioning of the filter prior to measurement. Lack of standardization of procedures was identified as a limitation for result comparison. Finally the review summarizes results including particulate concentration in hydrogen fuel quality data published. It was found that less than 10% of the samples were in violation with the tolerance limit.
Systems-Based Safety Analysis for Hydrogen-Driven Autonomous Ships
Jun 2024
Publication
In the maritime domain hydrogen fuel cell propulsion and autonomous vessels are two important issues that are yet to be implemented together because of a few challenges. It is obvious that there are several individual safety studies on Maritime Autonomous Surface Ships and hydrogen storage as well as fuel cells based on various risk assessment tools but the combined safety studies that include hydrogen fuel cells on autonomous vessels with recent risk analysis methods are extremely limited. This research chooses the “System-Theoretic Process Analysis” (STPA) method which is a recent method for potential risk identification and mitigation. Both hydrogen and autonomous vessels are analyzed and assessed together with the STPA method. Results are not speculative but rather flexible compared to conventional systems. The study finds a total of 44 unsafe control actions (UCAs) evolved from human and central control unit controllers through STPA. Further the loss scenarios (LS) are identified that lead to those UCAs so that loss scenarios can be assessed and UCAs can be mitigated for safe operation. The objective of this study is to ensure adequate safety for hydrogen fuel cell propulsion on autonomous vessels.
Integration Assessment of Turquoise Hydrogen in the European Energy System
Mar 2024
Publication
Turquoise hydrogen from natural gas pyrolysis has recently emerged as a promising alternative for low-carbon hydrogen production with a high-value pure carbon by-product. However the implications of this technology on the broader energy system are not well understood at present. To close this literature gap this study presents an assessment of the integration of natural gas pyrolysis into a simplified European energy system. The energy system model minimizes the cost by optimizing investment and hourly dispatch of a broad range of electricity and fuel production transmission and storage technologies as well as imports/exports on the global market. Norway is included as a major natural gas producer and Germany as a major energy importer. Results reveal that pyrolysis is economically attractive at modest market shares where the carbon by-product can be sold into highvalue markets for 400 €/ton. However pyrolysis-dominated scenarios that employ methane as a hydrogen carrier also hold promise as they facilitate deep decarbonization without the need for vast expansions of international electricity hydrogen and CO2 transmission networks. The simplicity and security benefits of such pyrolysis-led decarbonization pathways justify the modest 11 % cost premium involved for an energy system where natural gas is the only energy trade vector. In conclusion there is a strong case for turquoise hydrogen in future energy systems and further efforts for commercialization of natural gas pyrolysis are recommended.
Can Hydrogen Storage in Metal Hydrides be Economically Competitive with Compressed and Liquid Hydrogen Storage? A Techno-economical Perspective for the Maritime Sector
Aug 2023
Publication
The aim of this work is to evaluate if metal hydride hydrogen storage tanks are a competitive alternative for onboard hydrogen storage in the maritime sector when compared to compressed gas and liquid hydrogen storage. This is done by modelling different hydrogen supply and onboard storage scenarios and evaluating their levelized cost of hydrogen variables. The levelized cost of hydrogen for each case is calculated considering the main components that are required for the refueling infrastructure and adding up the costs of hydrogen production compression transport onshore storage dispensing and the cost of the onboard tanks when known. The results show that the simpler refueling needs of metal hydride-based onboard tanks result in a significant cost reduction of the hydrogen handling equipment. This provides a substantial leeway for the investment costs of metal hydride-based storage which depending on the scenario can be between 3400 - 7300 EUR/kgH2 while remaining competitive with compressed hydrogen storage.
Spent Coffee Grains (SCG) to Biofuels: A Comparative Techno-economic Evaluation for Hydrogen and Methane Production
Jul 2025
Publication
Environmental concerns regarding greenhouse gases have spurred research into alternative energy sources. One of the most prevalent waste products in the beverage industry is spent coffee grains (SCG) an estimated 60 million tons globally each year. These quantities justify the need to find effective ways to recycle this waste through the adoption of closed-loop circular economies (CE) and sustainable biofuel strategies. One promising approach is the conversion of SCG into biofuels particularly biohydrogen and biomethane through biological processes. However prior to commercialization it is critical to validate its potential profitability via technical and economic analyses such as techno-economic assessment (TEA). To this end in this study the profitability of two scenarios for biohydrogen and biomethane production has been assessed to explore feasible processing routes for SCG valorization. First a two-step dark fermentation and anaerobic digestion (DF-AD) process and second a two-step dark fermentation and photo fermentation (DF-PF) process. The profitability and sensitivity analysis results clarified that Scenario I should be chosen over Scenario II due to its higher net present value (NPV) of 138 million $ internal rate of return (IRR) of 15.3 % gross margin (GM) of 56.9 % return on investment (ROI) of 12.7 % and shorter payback period (PBP) of 6.2 years.
Hydrogen Embrittlement as a Conspicuous Material Challenge - Comprehensive Review and Future Directions
May 2024
Publication
Hydrogen is considered a clean and efficient energy carrier crucial for shapingthe net-zero future. Large-scale production transportation storage and use of greenhydrogen are expected to be undertaken in the coming decades. As the smallest element inthe universe however hydrogen can adsorb on diffuse into and interact with many metallicmaterials degrading their mechanical properties. This multifaceted phenomenon isgenerically categorized as hydrogen embrittlement (HE). HE is one of the most complexmaterial problems that arises as an outcome of the intricate interplay across specific spatialand temporal scales between the mechanical driving force and the material resistancefingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in thefield as well as our collective understanding this Review is devoted to treating HE as a whole and providing a constructive andsystematic discussion on hydrogen entry diffusion trapping hydrogen−microstructure interaction mechanisms and consequencesof HE in steels nickel alloys and aluminum alloys used for energy transport and storage. HE in emerging material systems such ashigh entropy alloys and additively manufactured materials is also discussed. Priority has been particularly given to these lessunderstood aspects. Combining perspectives of materials chemistry materials science mechanics and artificial intelligence thisReview aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts ofvarious paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
Superconductivity and Hydrogen Economy: A Roadmap to Synergy
Aug 2022
Publication
Hydrogen as an energy carrier is a promising alternative to fossil fuels and it becomes more and more popular in developed countries as a carbon-free fuel. The low boiling temperature of hydrogen (20 K or −253.15 ◦C) provides a unique opportunity to implement superconductors with a critical temperature above 20 K such as MgB2 or high-temperature superconductors. Superconductors increase efficiency and reduce the loss of energy which could compensate for the high price of LH2 to some extent. Norway is one of the pioneer countries with adequate infrastructure for using liquid hydrogen in the industry especially in marine technology where a superconducting propulsion system can make a remarkable impact on its economy. Using superconductors in the motor of a propulsion system can increase its efficiency from 95% to 98% when the motor operates at full power. The difference in efficiency is even greater when the motor does not work at full power. Here we survey the applications of liquid hydrogen and superconductors and propose a realistic roadmap for their synergy specifically for the Norwegian economy in the marine industry.
A Comparative Analysis of the Efficiency Coordination of Renewable Energy and Electric Vehicles in a Deregulated Smart Power System
Mar 2025
Publication
Deregulation in the energy sector has transformed the power systems with significant use of competition innovation and sustainability. This paper outlines a comparative study of renewable energy sources with electric vehicles (RES-EV) integration in a deregulated smart power system to highlight the learning on system efficiency effectiveness viability and the environment. This study depicts the importance of solar and wind energy in reducing carbon emissions and the challenges of integrating RES into present energy grids. It touches on the aspects of advanced energy storage systems demand-side management (DSM) and smart charging technologies for optimizing energy flows and stabilizing grids because of fluctuating demands. Findings were presented to show that based on specific pricing thresholds hybrid renewable energy systems can achieve grid parity and market competitiveness. Novel contributions included an in-depth exploration of the economic and technical feasibility of integrating EVs at the distribution level improvements in power flow control mechanisms and strategies to overcome challenges in decentralized energy systems. These insights will help policymakers and market participants make headway in the adoption of microgrids and smart grids within deregulated energy systems which is a step toward fostering a sustainable and resilient power sector.
Large-scale Experimental Study of Open, Impinging and Confined Hydrogen Jet Fires
Mar 2025
Publication
Hydrogen tanks used in transportation are equipped with thermal pressure relief devices to prevent a tank rapture in case of fire exposure. The opening of the pressure relief valve in such a scenario would likely result in an impinging and (semi-) confined hydrogen jet fire. Therefore twelve largescale experiments of hydrogen jet fires and one large-scale propane reference experiment have been conducted with various degrees of confinement orientations of the jet and distances from the nozzle to the impinging surface. Infrared and visible light videos temperatures heat fluxes and mass flow rate of hydrogen or propane were recorded in each experiment. It was found that the hydrogen flame can be visible under certain conditions. The main difference between an open impinging jet and an enclosed impinging jet fire is the extent of the high-temperature region in the steel target. During the impinging jet fire test 51% of the exposed target area exceeded 400C while 80% of the comparable area exceeded 400C during the confined jet fire test. A comparison was also made to an enclosed propane jet fire. The temperature distribution during the propane fire was more uniform than during the hydrogen jet fire and the localized hot spot in the impact region as seen in the hydrogen jet fires was not recorded.
Lessons Learned from HIAD 2.0: Inspection and Maintenance to Avoid Hydrogen-induced Material Failures
Feb 2023
Publication
Hydrogen has the potential to make countries energetically self-sufficient and independent in the long term. Nevertheless its extreme combustion properties and its capability of permeating and embrittling most metallic materials produce significant safety concerns. The Hydrogen Incidents and Accidents Database 2.0 (HIAD 2.0) is a public repository that collects data on hydrogen-related undesired events mainly occurred in chemical and process industry. This study conducts an analysis of the HIAD 2.0 database mining information systematically through a computer science approach known as Business Analytics. Moreover several hydrogen-induced ma terial failures are investigated to understand their root causes. As a result a deficiency in planning effective inspection and maintenance activities is highlighted as the common cause of the most severe accidents. The lessons learned from HIAD 2.0 could help to promote a safety culture to improve the abnormal and normal events management and to stimulate a widespread rollout of hydrogen technologies.
Biohydrogen Production from Industrial Wastewater: An Overview
Jun 2019
Publication
Biohydrogen production from industrial wastewater has been a focus of interest in recent years. The in depth knowledge in lab scale parameters and emerging strategies are needed to be investigated in order to implement the biohydrogen production process at large scale. The operating parameters have great influence on biohydrogen productivity. With the aim to gain major insight into biohydrogen production process this review summarizes recent updates on dark fermentation inoculum pretreatment methods operating parameters (hydraulic retention time organic loading rate pH temperature volatile fatty acids bioreactor configuration nutrient availability partial pressure etc.). The challenges and limitations associated with the biohydrogen production are lack of biohydrogen producers biomass washout and accumulation of metabolites are discussed in detail. The advancement strategies to overcome these limitations are also briefly discussed.
From Policy to Practice: Upper Bound Cost Estimates of Europe's Green Hydrogen Ambitions
Jul 2025
Publication
As the European countries strive to meet their ambitious climate goals renewable hydrogen has emerged to aid in decarbonizing energy-intensive sectors and support the overall energy transition. To ensure that hydrogen production aligns with these goals the European Commission has introduced criteria for additionality temporal correlation and geographical correlation. These criteria are designed to ensure that hydrogen production from renewable sources supports the growth of renewable energy. This study assesses the impact of these criteria on green hydrogen production focusing on production costs and technology impacts. The European energy market is simulated up to 2048 using stochastic programming applying these requirements exclusively to green hydrogen production without the phased-in compliance period outlined in the EU regulations. The findings show that meeting the criteria will increase expected system costs by €82 billion from 2024 to 2048 largely due to the rapid shift from fossil fuels to renewable energy. The additionality requirement which mandates the use of new renewable energy installations for electrolysis proves to be the most expensive but also the most effective in accelerating renewable energy adoption.
Energy Transition Outlook - UK 2025
Feb 2025
Publication
In the wake of unprecedented global weather events and the ever-pressing urgency of climate change the discourse around energy transition has become more critical than ever.<br/>The United Kingdom once at the forefront of the energy transition movement finds itself at a crossroads. The initial rapid progress towards a low-carbon future is now facing hurdles threatening the achievement of the 'net zero by 2050' target.<br/>This revelation comes from the third edition of our UK Energy Transition Outlook (ETO) which leverages an independent model incorporating the UK's energy system's extensive connections with Europe and beyond.<br/>This report has a comprehensive analysis of:<br/>♦ Renewable energy technology scaling and costs<br/>♦ The continuing dependence on fossil fuel and need to decarbonize<br/>♦ Energy demand by sector and source<br/>♦ Energy efficiency<br/>♦ Energy supply<br/>♦ Electricity and infrastructure<br/>♦ Hydrogen<br/>♦ Energy expenditure<br/>♦ Policies driving the transition<br/>♦ Digitalization.
Large-scale LH2 Pipeline Infrastructure Concept for Airports
Aug 2025
Publication
Infrastructure and processes for handling liquid hydrogen (LH2) is needed to decarbonize aviation with hydrogen aircraft. Large airports benefit from pipeline refuelling systems which must be operated to keep the fuel subcooled due to LH2 vaporization challenges. In this paper we estimate LH2 demand for aircraft and the gaseous H2 demand for ground support equipment (GSE) at Schipol in 2050. Modelling and simulation of aircraft refuelling via pipelines show that continuous LH2 recycling is required to maintain subcooling. Vaporization of LH2 during refuelling is heavily influenced by pipeline temperatures. Refuelling aircraft in the morning causes the highest vaporization (2.2 %) due to a long period with low LH2 flow (no refuelling at night). The vaporization decreases to 0 % throughout the day. Furthermore increasing the recycle rate during night lowers the pipeline temperatures reducing the vaporization to 1.7 %. The amount of vaporized hydrogen corresponds well with the GSE demand for gaseous H2.
Unlocking Solar and Hydrogen Potentials: A Comparative Analysis of Solar Tracking Systems for South Africa's Energy Transition
Aug 2025
Publication
This study explores the potential of solar tracking technologies to enhance South Africa’s energy transition focusing on their role in supporting green hydrogen production for domestic use and export. Using the Global Energy System Model (GENeSYS-MOD) it evaluates four solar tracking technologies — horizontal axis tilted horizontal axis vertical axis and dual-axis — across six scenarios: tracking and non-tracking versions of a Business-as-Usual (BAU) scenario a 2 ◦C scenario and a high hydrogen demand and export (HighH2) scenario. The results identify horizontal axis tracking as the most cost-effective option followed by tilted horizontal axis tracking which is particularly prominent in the HighH2 scenario. Tracking systems enhance hydrogen production by extending power output and increasing electrolyzer full-load hours. In the HighH2 scenario they reduce hydrogen production costs in 2050 from 1.47 e/kg to 1.34 e/kg and system cost by 0.66% positioning South Africa competitively in the global hydrogen market. By integrating tracking technologies South Africa can align hydrogen production ambitions with renewable energy growth while mitigating grid and financial challenges. The research underscores the need for targeted energy investments and policies to maximize renewable energy and hydrogen potential ensuring a just energy transition that supports export opportunities domestic energy security and equitable socio-economic growth.
Process Flexibility of Soprtion-enhanced Steam Reforming for Hydrogen Production from Gas Mixtures Representative of Biomass-derived Syngas
Sep 2025
Publication
Hydrogen is a critical enabler of CO2 valorization essential for the synthesis of carbon-neutral fuels such as efuels and advanced biofuels. Biohydrogen produced from renewable biomass is a stable and dispatchable source of low-carbon hydrogen helping to address supply fluctuations caused by the intermittency of renewable electricity and the limited availability of electrolytic hydrogen. This study experimentally demonstrates that sorption-enhanced steam reforming (SESR) is a robust and adaptable process for hydrogen production from biomass-derived syngas-like gas streams. By incorporating in situ CO2 capture SESR overcomes the thermodynamic limits of conventional reforming achieving high hydrogen yields (>96 %) and purities (up to 99.8 vol%) across a wide range of syngas compositions. The process maintains high conversion efficiency despite variations in CO CH4 and CO2 concentrations and sustains performance even with H2-rich feeds conditions that typically inhibit reforming reactions. Among the operating parameters temperature has the greatest influence on performance followed by the steam-to-carbon ratio and space velocity. Multi-objective optimization shows that SESR can maintain high hydrogen yield (>96 %) selectivity (>99 %) and purity (>99.5 vol%) within a moderately flexible operating window. Methane reforming is identified as the main performance-limiting step with a stronger constraint on H2 yield and purity than CO conversion through the water–gas shift reaction. In addition to hydrogen SESR produces a concentrated CO2 stream suitable for downstream utilization or storage. These results support the potential of SESR as a flexible and efficient approach for hydrogen production from heterogeneous renewable feedstocks.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Multi-state Load Model for Multiple Hydrogen Electrolysers Operation in the Power Grid
Jan 2025
Publication
This paper presents multiple hydrogen electrolysers integrations in the power grid and their operational stra tegies for better performance. Electrolysers have been considered as electrical loads and multi-state load model for the operation of an electrolysers have been proposed. Strategy for the operation of multiple electrolysers at different positions in a grid are formulated and Multi-State Round Robin strategy is proposed. The proposed strategy is validated by implementing that to a coastal power grid and to meet the hydrogen energy demand of vessels at the ports. Simulation has been conducted modeling the grid and electrolysers in DIgSILENT Power factory. A comparison has been performed between two state load model and multi state load model considering Multi-State Round Robin operational strategy. Line loading and hydrogen production are the considered per formance indicators. The results show that the proposed model and strategy improves the hydrogen production and operational flexibility of the system.
European Hydrogen Train the Trainer Programme for Responders: The Impact of HyResponder on Training Across Europe
Jan 2025
Publication
Síle Brennan,
Christian Brauner,
Dennis Davis,
Natalie DeBacker,
Alexander Dyck,
César García Hernández,
André Vagner Gaathaug,
Petr Kupka,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Laurent Lecomte,
Eric Maranne,
Pippa Steele,
Paola Russo,
Adolfo Pinilla,
Gerhard Schoepf,
Tom Van Esbroeck and
Vladimir V. Molkov
The impact of the HyResponder project on the training of responders in 10 European countries is described. An overview is presented of training activities undertaken within the project in Austria Belgium Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. National leads with training expertise are given and the longer-term plans in each region are mentioned. Responders from each region took part in a specially tailored “train the trainer” programme and then delivered training within their regions. A flexible approach to training within the HyResponder network has enabled fit for purpose region appropriate activities to be delivered impacting over 1250 individuals during the project and many more beyond. Teaching and learning materials in hydrogen safety for responders have been made available in 8 languages: English Czech Dutch French German Italian Norwegian Spanish. They are being used to inform training within each of the partner countries. Dedicated national working groups focused on hydrogen safety training for responders have been established in Belgium the Czech Republic Italy and Switzerland.
A Multi-model Assessment of the Global Warming Potential of Hydrogen
Jun 2023
Publication
With increasing global interest in molecular hydrogen to replace fossil fuels more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas but its chemical reactions change the abundances of the greenhouse gases methane ozone and stratospheric water vapor as well as aerosols. Here we use a model ensemble of five global atmospheric chemistry models to estimate the 100-year time-horizon Global Warming Potential (GWP100) of hydrogen. We estimate a hydrogen GWP100 of 11.6 ± 2.8 (one standard deviation). The uncertainty range covers soil uptake photochemical production of hydrogen the lifetimes of hydrogen and methane and the hydroxyl radical feedback on methane and hydrogen. The hydrogeninduced changes are robust across the different models. It will be important to keep hydrogen leakages at a minimum to accomplish the benefits of switching to a hydrogen economy.
Developing Hydrogen Energy Hubs: The Role of H2 Prices, Wind Power and Infrastructure Investments in Northern Norway
Aug 2024
Publication
Hydrogen is seen as a key energy carrier to reduce CO2 emissions. Two main production options for hydrogen with low CO2 intensity are water electrolysis and natural gas reforming with Carbon Capture and Storage known as green and blue hydrogen. Northern Norway has a surplus of renewable energy and natural gas availability from the Barents Sea which can be used to produce hydrogen. However exports are challenging due to the large distances to markets and lack of energy infrastructure. This study explores the profitability of hydrogen exports from this Arctic region. It considers necessary investments in hydrogen technology and capacity expansions of wind farms and the power grid. Various scenarios are investigated with different assumptions for investment decisions. The critical question is how exogenous factors shape future regional hydrogen production and export. The results show that production for global export may be profitable above 90 €/MWh excluding costs for storage and transport with blue hydrogen being cheaper than green. Depending on the assumptions a combination of liquid hydrogen and ammonia export might be optimal for seaborne transport. Exports to Sweden can be profitable at prices above 60 €/MWh transported by pipelines. Expanding power generation capacity can be crucial and electricity and hydrogen exports are unlikely to co-exist.
A Review on Hydrogen Embrittlement and Risk-based Inspection of Hydrogen Technologies
May 2023
Publication
Hydrogen could gradually replace fossil fuels mitigating the human impact on the environment. However equipment exposed to hydrogen is subjected to damaging effects due to H2 absorption and permeation through metals. Hence inspection activities are necessary to preserve the physical integrity of the containment systems and the risk-based (RBI) methodology is considered the most beneficial approach. This review aims to provide relevant information regarding hydrogen embrittlement its effect on materials’ properties and the synergistic interplay of the factors influencing its occurrence. Moreover an overview of predictive maintenance strategies is presented focusing on the RBI methodology. A systematic review was carried out to identify examples of the application of RBI to equipment exposed to hydrogenated environments and to identify the most active research groups. In conclusion a significant lack of knowledge has been highlighted along with difficulties in applying the RBI methodology for equipment operating in a pure hydrogen environment.
Validation of a Hydrogen Jet Fire Model in FDS
Sep 2023
Publication
Hydrogen jet fire occurs with high probability when hydrogen leaks from high-pressure equipment. The hydrogen jet fire is characterized by its high velocity and energy. Computational Fluid Dynamics (CFD) numerical analysis is a prominent way to predict the potential hazards associated with hydrogen jet fire. Validation of the CFD model is essential to ensure and quantify the accuracy of numerical results. This study focuses on the validation of the hydrogen jet fire model using Fire Dynamic Simulation (FDS). Hydrogen release is modeled using high-speed Lagrangian particles released from a virtual nozzle thus avoiding the modeling of the actual nozzle. The mesh size sensitivity analysis of the model is carried out in a container-size domain with 0.04m – 0.08m resolution of the jet. The model is validated by comparing gas temperatures and heat fluxes with test data. The promising results demonstrated that the model could predict the hazardous influence of the jet fire.
Artificial Intelligence-Driven Innovations in Hydrogen Safety
Jun 2024
Publication
This review explores recent advancements in hydrogen gas (H2 ) safety through the lens of artificial intelligence (AI) techniques. As hydrogen gains prominence as a clean energy source ensuring its safe handling becomes paramount. The paper critically evaluates the implementation of AI methodologies including artificial neural networks (ANN) machine learning algorithms computer vision (CV) and data fusion techniques in enhancing hydrogen safety measures. By examining the integration of wireless sensor networks and AI for real-time monitoring and leveraging CV for interpreting visual indicators related to hydrogen leakage issues this review highlights the transformative potential of AI in revolutionizing safety frameworks. Moreover it addresses key challenges such as the scarcity of standardized datasets the optimization of AI models for diverse environmental conditions etc. while also identifying opportunities for further research and development. This review foresees faster response times reduced false alarms and overall improved safety for hydrogen-related applications. This paper serves as a valuable resource for researchers engineers and practitioners seeking to leverage state-of-the-art AI technologies for enhanced hydrogen safety systems.
The Potential of Hydrogen-battery Storage Systems for a Sustainable Renewable-based Electrification of Remote Islands in Norway
Oct 2023
Publication
Remote locations and off-grid regions still rely mainly on diesel generators despite the high operating costs and greenhouse gas emissions. The exploitation of local renewable energy sources (RES) in combination with energy storage technologies can be a promising solution for the sustainable electrification of these areas. The aim of this work is to investigate the potential for decarbonizing remote islands in Norway by installing RES-based energy systems with hydrogen-battery storage. A national scale assessment is presented: first Norwegian islands are characterized and classified according to geographical location number of inhabitants key services and current electrification system. Then 138 suitable installation sites are pinpointed through a multiple-step sorting procedure and finally 10 reference islands are identified as representative case studies. A site-specific methodology is applied to estimate the electrical load profiles of all the selected reference islands. An optimization framework is then developed to determine the optimal system configuration that minimizes the levelized cost of electricity (LCOE) while ensuring a reliable 100% renewable power supply. The LCOE of the RES-based energy systems range from 0.21 to 0.63 €/kWh and a clear linear correlation with the wind farm capacity factor is observed (R2 equal to 0.87). Hydrogen is found to be crucial to prevent the oversizing of the RES generators and batteries and ensure long-term storage capacity. The techno-economic feasibility of alternative electrification strategies is also investigated: the use of diesel generators is not economically viable (0.87–1.04 €/kWh) while the profitability of submarine cable connections is highly dependent on the cable length and the annual electricity consumption (0.14–1.47 €/kWh). Overall the cost-effectiveness of RES-based energy systems for off-grid locations in Northern Europe can be easily assessed using the correlations derived in this analysis.
Strength of Knowledge and Uncertainties in Safety Regulation of Hydrogen as an Energy Carrier
Sep 2023
Publication
Ahead of a potential large-scale implementation of hydrogen as an energy carrier in society safety regulation systems should be in place to provide a systematic consideration of safety related concerns. Knowledge is essential for regulatory activities. At the same time it is challenging to obtain sufficient information when regulating emerging technologies – it may be difficult to address informational shortcomings in regulatory matters as analysts can be prone to under-communicate the significance of uncertainties. Furthermore Strength of Knowledge (SoK) has been developed to address the quality of background knowledge in risk analyses. An example of a SoK framework is based on the following four conditions that is used to assess whether knowledge can be considered weak or strong: the issue of simplifications availability and reliability of data consensus among experts and general understanding of the phenomena in question. In theory this concept seems relevant for the introduction of hydrogen as an energy carrier mainly because there is little historical data to develop sound analyses creating uncertainties. However there are no clear-cut guidelines as to how knowledge gaps should be handled in the development of regulatory requirements. In this paper we consider the relevance of a specific approach for SoK assessment in the context of safety and security regulation of hydrogen as an energy carrier in society. We conclude that there are some challenges with the proposed framework and argue that further research should be conducted to identify or develop a method for handling uncertainties in regulatory processes regarding hydrogen systems as energy carriers in societies.
Blue Hydrogen and Industrial Base Products: The Future of Fossil Fuel Exporters in a Net-zero World
May 2022
Publication
Is there a place for today’s fossil fuel exporters in a low-carbon future? This study explores trade channels between energy exporters and importers using a novel electricity-hydrogen-steel energy systems model calibrated to Norway a major natural gas producer and Germany a major energy consumer. Under tight emission constraints Norway can supply Germany with electricity (blue) hydrogen or natural gas with re-import of captured CO2. Alternatively it can use hydrogen to produce steel through direct reduction and supply it to the world market an export route not available to other energy carriers due to high transport costs. Although results show that natural gas imports with CO2 capture in Germany is the least-cost solution avoiding local CO2 handling via imports of blue hydrogen (direct or embodied in steel) involves only moderately higher costs. A robust hydrogen demand would allow Norway to profitably export all its natural gas production as blue hydrogen. However diversification into local steel production as one example of easy-to-export industrial base products offers an effective hedge against the possibility of lower European blue hydrogen demand. Looking beyond Europe the findings of this study are also relevant for the world’s largest energy exporters (e.g. OPEC+) and importers (e.g. developing Asia). Thus it is recommended that large hydrocarbon exporters consider a strategic energy export transition to a diversified mix of blue hydrogen and climate-neutral industrial base products.
Techno-economic Modelling of Zero-emission Marine Transport with Hydrogen Fuel and Superconducting Propulsion System: Case Study of a Passenger Ferry
Mar 2023
Publication
This paper proposes a techno-economic model for a high-speed hydrogen ferry. The model can describe the system properties i.e. energy demand weight and daily operating expenses of the ferry. A novel aspect is the consideration of superconductivity as a measure for cost saving in the setting where liquid hydrogen (LH2) can be both coolant and fuel. We survey different scenarios for a high-speed ferry that could carry 300 passengers. The results show that despite higher energy demand compressed hydrogen gas is more economical compared with LH2 for now; however constructing large-scale hydrogen liquefaction plants make it competitive in the future. Moreover compressed hydrogen gas is restricted to a shorter distance while LH2 makes longer distances possible and whenever LH2 is accessible using a superconducting propulsion system has a beneficial impact on both energy and cost savings. These effects strengthen if the operational time or the weight of the ferry increases.
HYDRIDE4MOBILITY: An EU Project on Hydrogen Powered Forklift using Metal Hydrides for Hydrogen Storage and H2 Compression
Jan 2025
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Ivan Tolj,
José Bellosta von Colbe,
Roman V. Denys,
Moegamat Wafeeq Davids,
S. Nyallang Nyamsi,
Dana Swanepoel,
V.V. Berezovets,
I.Yu. Zavaliy,
Suwarno Suwarno,
I.J. Puszkiel,
Julian Jepsen,
Inês Abreu Ferreira,
Claudio Pistidda,
Yuanyuan Shang,
Sivakumar Pasupathi and
Vladimir Linkov
The EU Horizon2020 RISE project 778307 “Hydrogen fuelled utility and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) worked on the commercialization of hydrogen powered forklifts using metal hydride (MH) based hydrogen stores. The project consortium joined forces of 9 academic and industrial partners from 4 countries. The work program included a) Development of the materials for hydrogen storage and compression; b) Theoretical modelling and optimisation of the materials performance and system integration; c) Advanced fibre reinforced composite cylinder systems for H2 storage and compression; d) System validation. Materials development was focused on i) Zr/Ti-based Laves type high entropy alloys; ii) Mg-rich composite materials; iii) REMNiSn intermetallics; iv) Mg based materials for the hydrolysis process; v) Cost-efficient alloys. For the optimized AB2±x alloys the Zr/Ti content was optimized at A = Zr78-88Ti12–22 while B=Ni10Mn5.83VFe. These alloys provided a) Low hysteresis of hydrogen absorption-desorption; b) Excellent kinetics of charge and discharge; c) Tailored thermodynamics; d) Long cycle life. Zr0.85Ti0.15TM2 alloy provided a reversible H storage and electrochemical capacity of 1.6 wt% H and 450 mAh/g. The tanks development targeted: i) High efficiency of heat and hydrogen exchange; ii) Reduction of the weight and increasing the working H2 pressure; iii) Modelling testing and optimizing the H2 stores with fast performance. The system for power generation was validated at the Implats plant in a fuel cell powered forklift with on-board MH hydrogen storage and on-site H2 refuelling. The outcome on the HYDRIDE4MOBILITY project (2017–2024) (http://hydride4mobility.fesb.unist. hr) was presented in 58 publications.
Hydrogen Supply Design for the Decarbonization of Energy-intensive Industries Addressing Cost, Inherent Safety and Environmental Performance
Sep 2025
Publication
Through mathematical modeling this paper integrates economic safety and environmental assessments to evaluate alternative hydrogen supply options (on-site production and external supply) and various hydrogenbased system configurations for decarbonizing energy-intensive industries. The model is applied to a case study in the glass sector. While reliance on natural gas remains the most cost-effective and safest solution it does not align with decarbonization objectives. Assuming a complete hydrogen transition on-site production reduces emissions by 85 % compared to current levels and improves safety performance over external supply. External supply of grey hydrogen becomes counterproductive increasing emissions by 68 % compared to natural gas operations. Nevertheless hydrogen cost rises from 3.6 €/kg with external supply to 4.2 €/kg with on-site production doubling the fuel cost relative to natural gas. To address the trade-offs the paper explores how specific constraints influence system design. A sensitivity analysis on key factors affecting hydrogen-related decisions provides additional support for strategic decision-making.
An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines
Feb 2024
Publication
The utilization of hydrogen fuel in gas turbines brings significant changes to the thermophysical properties of flue gas including higher specific heat capacities and an enhanced steam content. Therefore hydrogen-fueled gas turbines are susceptible to health degradation in the form of steam-induced corrosion and erosion in the hot gas path. In this context the fault diagnosis of hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge there is a scarcity of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The present study however develops an artificial neural network (ANN)-based fault diagnosis model using the MATLAB environment. Prior to the fault detection isolation and identification modules physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the fault detection and isolation. Moreover the feedforward neural network-based regression algorithm showed quite good training testing and validation accuracies in terms of the root mean square error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms thereby prompting other incorrect faults during the fault detection and isolation modules. Additionally the performance of the fault identification module for the hydrogen fuel scenario was found to be marginally lower than that of the natural gas case due to assumption of small magnitudes of faults arising from hydrogen-induced corrosion.
A Renewable Power System for an Off-grid Sustainable Telescope Fueled by Solar Power, Batteries and Green Hydrogen
Jul 2023
Publication
A large portion of astronomy’s carbon footprint stems from fossil fuels supplying the power demand of astronomical observatories. Here we explore various isolated low-carbon power system setups for the newly planned Atacama Large Aperture Submillimeter Telescope and compare them to a business-as-usual diesel power generated system. Technologies included in the designed systems are photovoltaics concentrated solar power diesel generators batteries and hydrogen storage. We adapt the electricity system optimization model highRES to this case study and feed it with the telescope’s projected energy demand cost assumptions for the year 2030 and site-specific capacity factors. Our results show that the lowest-cost system with LCOEs of $116/MWh majorly uses photovoltaics paired with batteries and fuel cells running on imported and on-site produced green hydrogen. Some diesel generators run for backup. This solution would reduce the telescope’s power-side carbon footprint by 95% compared to the businessas-usual case.
Solar-driven (Photo)electrochemical Devices for Green Hydrogen Production and Storage: Working Principles and Design
Feb 2024
Publication
The large-scale deployment of technologies that enable energy from renewables is essential for a successful transition to a carbon-neutral future. While photovoltaic panels are one of the main technologies commonly used for harvesting energy from the Sun storage of renewable solar energy still presents some challenges and often requires integration with additional devices. It is believed that hydrogen – being a perfect energy carrier – can become one of the broadly utilised storage alternatives that would effectively mitigate the energy supply and demand issues associated with the intermittent nature of renewable energy sources. Current pathways in the development of green technologies indicate the need for more sustainable material utilisation and more efficient device operation. To address this requirement integration of various technologies for renewable energy harvesting conversion and storage in a single device appears as an advantageous option. From the hydrogen economy perspective systems driven by green solar electricity that allow for (photo)electrochemical water splitting would generate hydrogen with the minimal CO2 footprint. If at the same time one of the device electrodes could store the generated gas and release it on demand the utilisation of critical and often costly elements would be reduced with possible gain in more effective device operation. Although conceptually attractive this cross-disciplinary concept has not gained yet enough attention and only limited number of experimental setups have been designed tested and reported. This review presents the first exhaustive overview and critical examination of various laboratory-scale prototype setups that attempt to combine both the hydrogen production and storage processes in a single unit via integration of a metal hydride-based electrode into a photoelectrochemical cell. The architectures of presented configurations enables direct solar energy to hydrogen conversion and its subsequent storage in a single device which – in some cases – can also release the stored (hydrogen) energy on demand. In addition this work explores perspectives and challenges related with the potential upscaling of reviewed solar-to-hydrogen storage systems trying to map and indicate the main future directions of their technological development and optimization. Finally the review also combines information and expertise scattered among various research fields with the aim of stimulating much-needed exchange of knowledge to accelerate the progress in the development and deployment of optimum green hydrogen-based solutions.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
Public Perception of Hydrogen: Response to an Open-ended Questions
Sep 2023
Publication
Widespread use of hydrogen and hydrogen-based fuels as energy carriers in society may enable the gradual replacement of fossil fuels by renewable energy sources. Although the development and deployment of the associated technologies and infrastructures represent a considerable bottleneck it is generally acknowledged that neither the technical feasibility nor the economic viability alone will determine the extent of the future use of hydrogen as an energy carrier. Public perception beliefs awareness and knowledge about hydrogen will play a significant role in the further development of the hydrogen economy. To this end the present study examines public perception and awareness of hydrogen in Norway. The approach adopted entailed an open-ended question examining spontaneous associations with the term ‘hydrogen’. The question was fielded to 2276 participants in Wave 25 of the Norwegian Citizen Panel (NCP) an on-line panel that derives random samples from the general population registry. The analysis focused on classifying the responses into negative associations (i.e. barriers towards widespread implementation of hydrogen in society) neutral associations (e.g. basic facts) and positive associations (i.e. drivers towards widespread implementation of hydrogen in society). Each of the 2194 responses were individually assessed by five researchers. The majority of the responses highlighted neutral associations using words such as ‘gas’ ‘water’ and ‘element’. When considering barriers vs. drivers the overall responses tend towards positive associations. Many respondents perceive hydrogen as a clean and environmentally friendly fuel and hydrogen technologies are often associated with the future. The negative sentiments were typically associated with words such as ‘explosive’ ‘hazardous’ and ‘expensive’. Despite an increase in the mentioning of safety-related properties relative to a previous study in the same region the frequency of such references was rather low (4%). The responses also reveal various misconceptions such as hydrogen as a prospective ‘source’ of clean energy.
Social Risk Approach for Assessing Public Safety of Large-scale Hydrogen Systems
Sep 2023
Publication
Social risk is a comprehensive concept that considers not only internal/external physical risks but also risks (which are multiple varied and diverse) associated with social activity. It should be considered from diverse perspectives and requires a comprehensive evaluation framework that takes into account the synergistic impact of each element on others rather than evaluating each risk individually. Social risk assessment is an approach that is not limited to internal system risk from an engineering perspective but also considers the stakeholders development stage and societal readiness and resilience to change. This study aimed to introduce a social risk approach to assess the public safety of large-scale hydrogen systems. Guidelines for comprehensive social risk assessment were developed to conduct appropriate risk assessments for advanced science and technology activities with high uncertainties to predict major impacts on society before an accident occurs and to take measures to mitigate the damage and to ensure good governance are in place to facilitate emergency response and recovery in addition to preventive measures. In a case study this approach was applied to a hydrogen refueling station in Japan and risk-based multidisciplinary approaches were introduced. These approaches can be an effective supporting tool for social implementation with respect to large-scale hydrogen systems such as liquefied hydrogen storage tanks. The guidelines for social risk assessment of large-scale hydrogen systems are under the International Energy Agency Technology Collaboration Program Hydrogen Safety Task 43. This study presents potential case studies of social risk assessment for large-scale hydrogen systems for future.
A Comprehensive Review on Liquid Hydrogen Transfer Operations and Safety Considerations for Mobile Applications
Dec 2024
Publication
The adoption of liquid hydrogen (LH2) as an energy carrier presents significant opportunities for distributing large quantities of hydrogen efficiently. However ensuring safety of LH2 transfer operations requires the evo lution of suitable technologies and regulatory framework. This study offers an extensive overview of technical considerations and safety aspects pertaining to liquid hydrogen installations and mobile applications. A signif icant lack of regulations specifically tailored for LH2 transfer operations is highlighted. Additionally experi mental findings and outcomes of the modelling activities carried out in previous research are presented shedding light on the combustion and ignition behaviour of liquid hydrogen during accident scenarios. The identification of research gaps and ongoing research projects underscores the importance of continued investigation and development of this critical area.
Market Dynamics and Power Risks in Green Technology Materials: Platinum under the EU 2030 Hydrogen Target
Jan 2025
Publication
The central role of hydrogen in the EU’s decarbonization strategy has increased the importance of critical raw materials. To address this the EU has taken legislative steps including the 2023 Critical Raw Materials Act (CRMA) to ensure a stable supply. Using a leader–follower Stackelberg game framework this study analyzes CRM market dynamics integrating CRMA compliance through rules on sourcing and stockpiling value chain resilience via the inclusion of supply diversification strategies and geopolitical influences by modeling exporter behaviors and trade dependencies. Results highlight the potential for strategic behavior by major exporters stressing the benefits of diversifying export sources and maintaining strategic stockpiles to stabilize supply. The findings provide insights into the EU’s efforts to secure CRM supplies key to achieving decarbonization goals and fostering a sustainable energy transition. Future research should explore alternative cost-reduction strategies mitigate exporter market power and evaluate the implications for pricing mechanisms market outcomes and consumer welfare
Design of Gravimetric Primary Standards for Field-testing of Hydrogen Refuelling Stations
Apr 2020
Publication
The Federal Institute of Metrology METAS developed a Hydrogen Field Test Standard (HFTS) that can be used for field verification and calibration of hydrogen refuelling stations. The testing method is based on the gravimetric principle. The experimental design of the HFTS as well as the description of the method are presented here.
Underground Hydrogen Storage (UHS) in Natural Storage Sites: A Perspective of Subsurface Characterization and Monitoring
Jan 2024
Publication
With the long-standing efforts of green transition in our society underground hydrogen storage (UHS) has emerged as a viable solution to buffering seasonal fluctuations of renewable energy supplies and demands. Like operations in hydrocarbon production and geological CO2 storage a successful UHS project requires a good understanding of subsurface formations while having different operational objectives and practical challenges. Similar to the situations in hydrocarbon production and geological CO2 storage in UHS problems the information of subsurface formations at the field level cannot be obtained through direct measurements due to the resulting high costs. As such there is a need for subsurface characterization and monitoring at the field scale which uses a certain history matching algorithm to calibrate a numerical subsurface model based on available field data. Whereas subsurface characterization and monitoring have been widely used in hydrocarbon production activities for a better understanding of hydrocarbon reservoirs to the best of our knowledge at present it appears to be a relatively less touched area in UHS problems. This work aims to narrow this noticed gap and investigates the use of an ensemble-based workflow for subsurface characterization and monitoring in a 3D UHS case study. Numerical results in this case study indicate that the ensemble-based workflow works reasonably well while also identifying some particular challenges that would be relevant to real-world problems.
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Techno-economic Analysis of the Effect of a Novel Price-based Control System on the Hydrogen Production of an Offshore 1.5 GW Wind-hydrogen System
Feb 2024
Publication
The cost of green hydrogen production is very dependent on the price of electricity. A control system that can schedule hydrogen production based on forecast wind speed and electricity price should therefore be advantageous for large-scale wind-hydrogen systems. This work presents a novel price-based control system integrated in a techno-economic analysis of hydrogen production from offshore wind. A polynomial regression model that predicts wind power production from wind speed input was developed and tested with real-world datasets from a 2.3 MW floating offshore wind turbine. This was combined with a mathematical model of a PEM electrolyzer and used to simulate hydrogen production. A novel price-based control system was developed to decide when the system should produce hydrogen and when it should sell electricity to the grid. The model and control system can be used in real-world wind-hydrogen systems and require only the forecast wind speed electricity price and selling price of hydrogen as inputs. 11 test scenarios based on 10 years of real-world wind speed and electricity price data are proposed and used to evaluate the effect the price-based control system has on the levelized cost of hydrogen (LCOH). Both current and future (2050) costs and technologies are used and the results show that the novel control system lowered the LCOH in all scenarios by 10–46%. The lowest LCOH achieved with current technology and costs was 6.04 $/kg H2. Using the most optimistic forecasts for technology improvements and cost reductions in 2050 the model estimated a LCOH of 0.96 $/kg H2 for a grid-connected offshore wind farm and onshore hydrogen production 0.82 $/kg H2 using grid electricity (onshore) and 4.96 $/kg H2 with an offgrid offshore wind-hydrogen system. When the electricity price from the period 2013–2022 was used on the 2050 scenarios the resulting LCOH was approximately twice as high.
The Impact of Methane Leakage on the Role of Natural Gas in the European Energy Transition
Sep 2023
Publication
Decarbonising energy systems is a prevalent topic in the current literature on climate change mitigation but the additional climate burden caused by methane emissions along the natural gas value chain is rarely discussed at the system level. Considering a two-basket greenhouse gas neutrality objective (both CO2 and methane) we model cost-optimal European energy transition pathways towards 2050. Our analysis shows that adoption of best available methane abatement technologies can entail an 80% reduction in methane leakage limiting the additional environmental burden to 8% of direct CO2 emissions (vs. 35% today). We show that while renewable energy sources are key drivers of climate neutrality the role of natural gas strongly depends on actions to abate both associated CO2 and methane emissions. Moreover clean hydrogen (produced mainly from renewables) can replace natural gas in a substantial proportion of its end-uses satisfying nearly a quarter of final energy demand in a climate-neutral Europe.
Functional Resonance Analysis for Emerging Risks in Hydrogen Handling: An Analysis of an Experimental Test
Oct 2024
Publication
Hydrogen is on the rise as a substitute for fossil fuel in the energy sector. While this substitution does not happen dramatically the steady increase in hydrogen related research might be a good indicator of such desire. As it stands there are issues regarding its safe handling and use; consequently the health and safety subsectors observe the situation conspicuously. As we yet to know the behavior of hydrogen in critical situations uncertainties make these tasks prone to emerging risks. Thus hydrogen safety falls under emerging risk studies. Conventional perspective on safety especially regarding the flammable material focuses on calculating the hypothetical risks of failures in system. Resilience Engineering has another perspective as it focuses on normal operations offering new perspectives to tackle emerging risks from a new angle. Born from the heart of Resilience Engineering the Functional Resonance Analysis Method (FRAM) captures sociotechnical systems’ essence in a tangible way. In this study FRAM has been used to model a series of experiments done on hydrogen management to analyze its jet fire. FRAM is used to test whether the method could be suitable to model a system in which emerging risks are present. It is the conclusion of this study that FRAM seems promising in raising risk awareness especially when available data is limited.
Decarbonizing the European Energy System in the Absence of Russian Gas: Hydrogen Uptake and Carbon Capture Developments in the Power, Heat and Industry Sectors
Dec 2023
Publication
Hydrogen and carbon capture and storage are pivotal to decarbonize the European energy system in a broad range of pathway scenarios. Yet their timely uptake in different sectors and distribution across countries are affected by supply options of renewable and fossil energy sources. Here we analyze the decarbonization of the European energy system towards 2060 covering the power heat and industry sectors and the change in use of hydrogen and carbon capture and storage in these sectors upon Europe’s decoupling from Russian gas. The results indicate that the use of gas is significantly reduced in the power sector instead being replaced by coal with carbon capture and storage and with a further expansion of renewable generators. Coal coupled with carbon capture and storage is also used in the steel sector as an intermediary step when Russian gas is neglected before being fully decarbonized with hydrogen. Hydrogen production mostly relies on natural gas with carbon capture and storage until natural gas is scarce and costly at which time green hydrogen production increases sharply. The disruption of Russian gas imports has significant consequences on the decarbonization pathways for Europe with local energy sources and carbon capture and storage becoming even more important. Given the highlighted importance of carbon capture and storage in reaching the climate targets it is essential that policymakers ameliorate regulatory challenges related to these value chains.
Cost Reduction in Low-carbon Hydrogen: Effective but Insufficient to Mitigate Carbon Emissions
Jun 2023
Publication
Many countries have announced hydrogen promotion strategies to achieve net zero CO2 emissions around 2050. The cost of producing low-carbon (green and blue) hydrogen has been projected to fall considerably as production is scaled up although more so for green hydrogen than for blue hydrogen. This article uses a global computable general equilibrium (CGE) model to explore whether the cost reduction of green and blue hydrogen production can mitigate the use of fossil fuels and related carbon emissions. The results show that cost reduction can raise low-carbon hydrogen consumption markedly in relative terms but marginally in absolute terms resulting in a modest decrease in fossil fuel use and related carbon emissions. The cost reduction of low-carbon hydrogen slightly lowers the use of coal and gas but marginally increases the use of oil. If regional CO2 taxes are introduced the increase in green hydrogen production is considerably larger than in the case of low-carbon hydrogen cost reduction alone. However if cost reduction in low-carbon hydrogen is introduced in addition to the CO2 tax the emissions from fossil fuels are only marginally reduced. Hence synergy efects between the two measures on emissions are practically absent. A low-carbon hydrogen cost reduction alone is efective but insufcient to have a substantial climate impact. This study also calls for modeling development to capture special user preferences for low-carbon hydrogen related to climate mitigation when phasing in new energy carriers like hydrogen.
Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review
Jul 2019
Publication
Polymer electrolyte membrane (PEM) fuel cells and electrolysers offer efficient use and production of hydrogen for emission-free transport and sustainable energy systems. Perfluorosulfonic acid (PFSA) membranes like Nafion® and Aquivion® are the state-of-the-art PEMs but there is a need to increase the operating temperature to improve mass transport avoid catalyst poisoning and electrode flooding increase efficiency and reduce the cost and complexity of the system. However PSFAs-based membranes exhibit lower mechanical and chemical stability as well as proton conductivity at lower relative humidities and temperatures above 80 ◦C. One approach to sustain performance is to introduce inorganic fillers and improve water retention due to their hydrophilicity. Alternatively polymers where protons are not conducted as hydrated H3O+ ions through liquid-like water channels as in the PSFAs but as free protons (H+) via Brønsted acid sites on the polymer backbone can be developed. Polybenzimidazole (PBI) and sulfonated polyetheretherketone (SPEEK) are such materials but need considerable acid doping. Different composites are being investigated to solve some of the accompanying problems and reach sufficient conductivities. Herein we critically discuss a few representative investigations of composite PEMs and evaluate their significance. Moreover we present advances in introducing electronic conductivity in the polymer binder in the catalyst layers.
Investments in Green Hydrogen as a Flexibility Source for the European Power System by 2050: Does it Pay Off?
Oct 2024
Publication
The European Union aims to deploy a high share of renewable energy sources in Europe’s power system by 2050. Large-scale intermittent wind and solar power production requires flexibility to ensure an adequate supply–demand balance. Green hydrogen (GH) can increase power systems’ flexibility and decrease renewable energy production’s curtailment. However investing in GH is costly and dependent on electricity prices which are important for operational costs in electrolysis. Moreover the use of GH for power system flexibility might not be economically viable if there is no hydrogen demand from the hydrogen market. If so questions would arise as to what would be the incentives to introduce GH as a source of flexibility in the power system and how would electrolyzer costs hydrogen demand and other factors affect the economic viability of GH usage for power system flexibility. The paper implements a European power system model formulated as a stochastic program to address these questions. The authors use the model to compare various instances with hydrogen in the power system to a no-hydrogen instance. The results indicate that by 2050 deployment of approximately 140 GW of GH will pay off investments and make the technology economically viable. We find that the price of hydrogen is estimated to be around €30/MWh.
Technical and Cost Analysis of Zero-emission High-speed Ferries: Retrofitting from Diesel to Green Hydrogen
Feb 2024
Publication
This paper proposes a technical and cost analysis model to assess the change in costs of a zeroemission high-speed ferry when retrofitting from diesel to green hydrogen. Both compressed gas and liquid hydrogen are examined. Different scenarios explore energy demand energy losses fuel consumption and cost-effectiveness. The methodology explores how variation in the ferry's total weight and equipment efficiency across scenarios impact results. Applied to an existing diesel high-speed ferry on one of Norway's longest routes the study under certain assumptions identifies compressed hydrogen gas as the current most economical option despite its higher energy consumption. Although the energy consumption of the compressed hydrogen ferry is slightly more than the liquid hydrogen counterpart its operating expenses are considerably lower and comparable to the existing diesel ferry on the route. However constructing large hydrogen liquefaction plants could reduce liquid hydrogen's cost and make it competitive with both diesel and compressed hydrogen gas. Moreover liquid hydrogen allows the use of a superconducting motor to enhance efficiency. Operating the ferry with liquid hydrogen and a superconducting motor besides its technical advantages offers promising economic viability in the future comparable to diesel and compressed hydrogen gas options. Reducing the ferry's speed and optimizing equipment improves fuel efficiency and economic viability. This research provides valuable insights into sustainable zero-emission high-speed ferries powered by green hydrogen.
Environmental and Climate Impacts of a Large-scale Deployment of Green Hydrogen in Europe
Apr 2024
Publication
Green hydrogen is expected to play a vital role in decarbonizing the energy system in Europe. However large-scale deployment of green hydrogen has associated potential trade-offs in terms of climate and other environmental impacts. This study aims to shed light on a comprehensive sustainability assessment of this large-scale green hydrogen deployment based on the EMPIRE energy system modeling compared with other decarbonization paths. Process-based Life Cycle Assessment (LCA) is applied and connected with the output of the energy system model revealing 45% extra climate impact caused by the dedicated 50% extra renewable infrastructure to deliver green hydrogen for the demand in the sectors of industry and transport in Europe towards 2050. Whereas the analysis shows that green hydrogen eventually wins on the climate impact within four designed scenarios (with green hydrogen with blue hydrogen without green hydrogen and baseline) mainly compensated by its clean usage and renewable electricity supply. On the other hand green hydrogen has a lower performance in other environmental impacts including human toxicity ecotoxicity mineral use land use and water depletion. Furthermore a monetary valuation of Life Cycle Impact (LCI) is estimated to aggregate 13 categories of environmental impacts between different technologies. Results indicate that the total monetized LCI cost of green hydrogen production is relatively lower than that of blue hydrogen. In overview a large-scale green hydrogen deployment potentially shifts the environmental pressure from climate and fossil resource use to human health mineral resource use and ecosystem damage due to its higher material consumption of the infrastructure.
Fuel Cell Systems for Long-endurance Autonomous Underwater Vehicles - Challenges and Benefits
Jun 2019
Publication
Autonomous underwater vehicles (AUVs) are programmable robotic vehicles that can drift drive or glide through the ocean without real-time control by human operators. AUVs that also can follow a planned trajectory with a chosen depth profile are used for geophysical surveys subsea pipeline inspection marine archaeology and more. Most AUVs are followed by a mother ship that adds significantly to the cost of an AUV mission. One pathway to reduce this need is to develop long-endurance AUVs by improving navigation autonomy and energy storage. Long-endurance AUVs can open up for more challenging mission types than what is possible today. Fuel cell systems are a key technology for increasing the endurance of AUVs beyond the capability of batteries. However several challenges exist for underwater operation of fuel cell systems. These are related to storage or generation of hydrogen and oxygen buoyancy and trim and the demanding environment of the ambient seawater. Protecting the fuel cell inside a sealed container brings along more challenges related to condensation cooling and accumulation of inert gases or reactants. This paper elaborates on these technical challenges and describes the solutions that the Norwegian Defence Research Establishment (FFI) has chosen in its development of a fuel cell system for long-endurance AUVs. The reported solutions enabled a 24 h demonstration of FFI's fuel cell system under water. The remaining work towards a prototype sea trial is outlined.
Biogeochemical Interactions and Their Role in European Underground Hydrogen Storage
Sep 2025
Publication
Integrating renewable energy requires robust large-scale storage solutions to balance intermittent supply. Underground hydrogen storage (UHS) in geological formations such as salt caverns depleted hydrocarbon reservoirs or aquifers offers a promising way to store large volumes of energy for seasonal periods. This review focuses on the biological aspects of UHS examining the biogeochemical interactions between H2 reservoir minerals and key hydrogenotrophic microorganisms such as sulfate-reducing bacteria methanogens acetogens and iron-reducing bacteria within the gas–liquid–rock–microorganism system. These microbial groups use H2 as an electron donor triggering biogeochemical reactions that can affect storage efficiency through gas loss and mineral dissolution–precipitation cycles. This review discusses their metabolic pathways and the geochemical interactions driven by microbial byproducts such as H2S CH4 acetate and Fe2+ and considers biofilm formation by microbial consortia which can further change the petrophysical reservoir properties. In addition the review maps 76 ongoing European projects focused on UHS showing 71% target salt caverns 22% depleted hydrocarbon reservoirs and 7% aquifers with emphasis on potential biogeochemical interactions. It also identifies key knowledge gaps including the lack of in situ kinetic data limited field-scale monitoring of microbial activity and insufficient understanding of mineral–microbe interactions that may affect gas purity. Finally the review highlights the need to study microbial adaptation over time and the influence of mineralogy on tolerance thresholds. By analyzing these processes across different geological settings and integrating findings from European research initiatives this work evaluates the impact of microbial and geochemical factors on the safety efficiency and long-term performance of UHS.
Energy Asset Stranding in Resource-rich Developing Countries and the Just Transition - A Framework to Push Research Frontiers
Jun 2024
Publication
Climate policy will inevitably lead to the stranding of fossil energy assets such as production and transport assets for coal oil and natural gas. Resourcerich developing countries are particularly aected as they have a higher risk of asset stranding due to strong fossil dependencies and wider societal consequences beyond revenue disruption. However there is only little academic and political awareness of the challenge to manage the asset stranding in these countries as research on transition risk like asset stranding is still in its infancy. We provide a research framework to identify wider societal consequences of fossil asset stranding. We apply it to a case study of Nigeria. Analyzing dierent policy measures we argue that compensation payments come with implementation challenges. Instead of one policy alone to address asset stranding a problem-oriented mix of policies is needed. Renewable hydrogen and just energy transition partnerships can be a contribution to economic development and SDGs. However they can only unfold their potential if fair benefit sharing and an improvement to the typical institutional problems in resource-rich countries such as the lack of rule of law are achieved. We conclude with presenting a future research agenda for the global community and acade
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
Evaluating the Hydrogen Storage Potential of Shut Down Oil and Gas Fields Along the Norwegian Continental Shelf
Apr 2023
Publication
The underground hydrogen storage (UHS) capacities of shut down oil and gas (O&G) fields along the Norwegian continental shelf (NCS) are evaluated based on the publicly available geological and hydrocarbon production data. Thermodynamic equilibrium and geochemical models are used to describe contamination of hydrogen loss of hydrogen and changes in the mineralogy. The contamination spectrum of black oil fields and retrograde gas fields are remarkably similar. Geochemical models suggest limited reactive mineral phases and meter-scale hydrogen diffusion into the caprock. However geochemical reactions between residual oil reservoir brine host rock and hydrogen are not yet studied in detail. For 23 shut down O&G fields a theoretical maximum UHS capacity of ca. 642 TWh is estimated. We conclude with Frigg Nordost Frigg and Odin as the best-suited shut down fields for UHS having a maximum UHS capacity of ca. 414 TWh. The estimates require verification by site-specific dynamic reservoir models.
Safe Pipelines for Hydrogen Transport
Jun 2024
Publication
The hydrogen compatibility of two X65 pipeline steels for transport of hydrogen gas is investigated through microstructural characterization hydrogen permeation measurements and fracture mechanical testing. The investigated materials are a quenched and tempered pipeline steel with a fine-grained homogeneously distributed ferrite-bainite microstructure and hot rolled pipeline steel with a ferrite-pearlite banded microstructure. All tests are performed both under electrochemical and gaseous hydrogen charging conditions. A correlation between electrochemical hydrogen charging and gaseous charging is determined. The results point to inherent differences in the interaction between hydrogen and the two material microstructures. Further research is needed to unveil the influence of material microstructure on hydrogen embrittlement.
Economic Framework for Green Shipping Corridors: Evaluating Cost-effective Transition from Fossil Fuels Towards Hydrogen
Aug 2024
Publication
Global warming’s major cause is the emission of greenhouse-effect gases (GHG) especially carbon dioxide (CO2) whose main source is the combustion of fossil fuels. Fossil fuels serve as the primary energy source in many industries including shipping which is the focus of this study. One of the measures proposed to tackle GHG emissions is the development of green shipping corridors - carbon-free shipping routes that require the transition to alternative fuels which are gaining competitiveness. One of the reasons for that is carbon pricing which taxes CO2 emissions. However the lack of consensus on the most cost-advantageous alternative fuel in the long run results in the delay of the implementation of green shipping corridors. To make it more accessible for stakeholders to conduct an economic analysis of the various options a framework to determine and minimize the costs of transitioning from fossil fuels to any alternative fuel is proposed over the period of one voyage considering the lost opportunity cost the deployment cost of bunkering vessels at the necessary call ports the cost of converting the vessel the car-bon emissions tax cost and the fuel cost. This will allow stakeholders to choose the most economical alternative fuel accelerating the development of green shipping corridor initiatives. To validate the effectiveness of the framework it was applied in a case study involving a shipowner seeking to transition from heavy fuel oil (HFO) to Ammonia Hydrogen Liquefied Natural Gas (LNG) or Methanol. This study faced limitations due to the unknown costs of installing bunkering vessels for Ammonia and Hydrogen. However it evaluates the cost-effectiveness of alternative fuels providing insights into their short-term economic viability. The results showed that Hydrogen is the most costadvantageous fuel until a deployment cost per bunkering vessel of 1990285$ for a sailing speed of 22 knots and 2190171$ for a sailing speed of 18 knots is reached after which LNG becomes the most economical option regardless of variations in the carbon tax. Moreover a sensitivity analysis was conducted to determine the effects of variations in parameters such as carbon tax fuel prices and vessel conversion costs in the total cost of each fuel option. Results highlighted that even though HFO remains the most economical fuel option even when considering a high increase in carbon tax the cost gap between HFO and alternative fuels narrows significantly with the increase in carbon tax. Furthermore the sailing speed impacts the fuels’ competitiveness as the cost difference between HFO and alternative fuels decreases at higher speeds.
Estimating the Replacement Potential of Norwegian High-speed Passenger Vessels with Zero-emission Solutions
Sep 2021
Publication
High-speed passenger vessels have high greenhouse gas emissions per passenger kilometre trav elled and require optimizations to provide a role in a low carbon society. This article works to wards this goal as a study of the potential for replacing high-speed passenger vessels with compressed hydrogen or battery electric zero emission solutions. To do this a model was developed based on automatic identification system data to calculate energy use for the existing Norwegian fleet in 2018. Using modelled energy consumption and assuming a maximum battery weight or compressed hydrogen volume each vessel can carry the most likely candidates for replacement were identified. Results showed that 51 out of 73 vessels are most suitable for hydrogen propulsion with 12 also suitable for battery electric propulsion. However timetable and route changes are required for more vessels to be suitable. Route optimisation studies are therefore required along with further detailed feasibility studies of the identified candidates and infrastructure requirements.
Exploring European Hydrogen Demand Variations under Tactical Uncertainty with Season Hydrogen Storage
Aug 2025
Publication
Achieving a net-zero energy system in Europe by 2050 will likely require large-scale deployment of hydrogen and seasonal energy storage to manage variability in renewable supply and demand. This study addresses two key objectives: (1) to develop a modeling framework that integrates seasonal storage into a stochastic multihorizon capacity expansion model explicitly capturing tactical uncertainty across timescales; and (2) to assess the impact of seasonal hydrogen storage on long-term investment decisions in European power and hydrogen infrastructure under three hydrogen demand scenarios. To this end the multi-horizon stochastic programming model EMPIRE is extended with tactical stages within each investment period enabling operational decisions to be modeled as a multi-stage stochastic program. This approach captures short-term uncertainty while preserving long-term investment foresight. Results show that seasonal hydrogen storage considerably enhances system flexibility displacing the need for up to 600 TWh/yr of dispatchable generation in Europe after 2040 and sizing down cross-border hydrogen transmission capacities by up to 12%. Storage investments increase by factors of 5–14 which increases the investments in variable renewables and improve utilization particularly solar. Scenarios with seasonal storage also show up to 6% lower total system costs and more balanced infrastructure deployment across regions. These findings underline the importance of modeling temporal uncertainty and seasonal dynamics in long-term energy system planning.
Energy and Cost Analysis of a Hydrogen Driven High Speed Passenger Ferry
Apr 2020
Publication
BACKGROUND: Norway is facing the challenge of reducing transport emissions. High speed crafts(HSC) are the means of transport with highest emissions. Currently there is little literature or experienceof using hydrogen systems for HSC.OBJECTIVE: Evaluate the economic feasibility of fuel cell (FC) powered HSC vs diesel and biodieseltoday and in a future scenario based on real world operation profile.<br/>METHOD: Historical AIS position data from the route combined with the speed-power characteristicsof a concept vessel was used to identify the energy and power demand. From the resulting data a suitableFC system was defined and an economic comparison made based on annual costs including annualizedinvestment and operational costs.<br/>RESULTS: HSC with a FC-system has an annual cost of 12.6 MNOK. It is 28% and 12% more expensivethan diesel and biodiesel alternative respectively. A sensitivity analysis with respect to 7 key design pa-rameters indicates that highest impact is made by hull energy efficiency FC system cost and hydrogen fuelcost. In a future scenario (2025–2030) with moderate technology improvements and cost developmentthe HSC with FC-systems can become competitive with diesel and cheaper than biodiesel.<br/>CONCLUSIONS: HSC with FC-systems may reach cost parity with conventional diesel in the period2025–2030.
Environmental Implications of Alternative Production, Distribution, Storage, and Leakage Rates of Hydrogen from Offshore Wind in Norway
Jun 2025
Publication
Renewable hydrogen offers compelling climate mitigation prospects with Norway possessing the opportunity to become a main global producer given its unique combination of wind energy potential available infrastructure and political motivation. However comprehensive environmental impact assessments of hydrogen from offshore wind are lacking and hydrogen leakage rates remain uncertain. A life-cycle assessment of hydrogen production from offshore wind farms in Norway is presented where different combinations of turbines (floating or bottomfixed) storage options (tank or salt cavern) and distribution methods (trucks or pipelines) are considered. Climate change impacts are assessed across the supply chain using global warming potential 100 (GWP100) and 20 (GWP20) and include hydrogen leakage contributions. The results range from 1.56 ± 0.14–2.28 ± 0.14 kg CO2-eq/kg H2 for GWP100 and 2.96 ± 0.76 and 3.75 ± 0.76 kg CO2-eq/kg H2 for GWP20 and are on average 55 % and 45 % lower than those of blue hydrogen respectively. At a default rate of 5 % hydrogen leakage contributes 50–63 % of the total impact for GWP20 and 25–37 % for GWP100. If higher-end leakage rates from literature are considered the impacts increase to 3.46 kg CO2-eq/kg H2 for GWP100 which is still lower than that of blue hydrogen. The scenario combining bottom-fixed turbines salt cavern storage and pipeline distribution presents the lowest environmental impacts. However while bottom-fixed turbines generally offer lower impacts floating turbines pose lesser risk to marine biodiversity. Overall infrastructure represents the main driver of environmental impacts. Mitigation in this area will improve potential benefits.
Geopolitics of Renewables: Asymmetries, New Interdependencies, and Cooperation around Portuguese Solar Energy and Green Hydrogen Strategies
Oct 2025
Publication
This article explores how the implementation of solar PV and transportation infrastructure – grid or hydrogen pipeline – has implications for various aspects of security cooperation and geopolitical powershifts. Highlighting the emerging intra-European green hydrogen pipeline project H2Med we examine the Portuguese geopolitical ambitions related to their geographical advantage for solar PV energy production. Using media and document analysis we identified two main axes of solar PV implementation in Portugal – one centered on resilience and one on exports – and further explored underlying and resulting tensions in neighboring countries’ energy strategies and cleantech innovation policies. Our analysis revealed that policy prioritizations in solar PV diffusion result in unequal effects on resilience energy security and power shifts. In particular solar PV implementations such as individual to local or regional grid-based ‘prosumption’ setups result in notably different geopolitical effects compared to large-scale solar PV to green hydrogen-production for storage and export. Thereby emerging possibilities of storage and long-distance trade of renewable energies have more significant implications on geopolitics and energy security than what is typically recognized.
Modeling and Simulation of Coupled Biochemical and Two-phase Compositional Flow in Underground Hydrogen Storage
Aug 2025
Publication
Integrating microbial activity into underground hydrogen storage models is crucial for simulating longterm reservoir behavior. In this work we present a coupled framework that incorporates bio-geochemical reactions and compositional flow models within the Matlab Reservoir Simulation Toolbox (MRST). Microbial growth and decay are modeled using a double Monod formulation with populations influenced by hydrogen and carbon dioxide availability. First a refined Equation of State (EoS) is employed to accurately capture hydrogen dissolution thereby improving phase behavior and modeling of microbial activity. The model is then discretized using a cell-centered finite-volume method with implicit Euler time discretization. A fully coupled fully implicit strategy is considered. Our implementation builds upon MRST’s compositional module by incorporating the Søreide–Whitson EoS microbial reaction kinetics and specific effects such as bio-clogging and molecular diffusion. Through a series of 1D 2D and 3D simulations we analyze the effects of microbialinduced bio-geochemical transformations on underground hydrogen storage in porous media.These results highlight that accounting for bio-geochemical effects can substantially impact hydrogen loss purity and overall storage performance.
A Review of Caprock Integrity in Underground Hydrogen Storage Sites: Implication of Wettability, Interfacial Tension, and Diffusion
Oct 2025
Publication
As industry moves from fossil fuels to green energy substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns depleted hydrocarbon fields and saline aquifers. Among other criteria these storage solutions must ensure storage safety and prevent leakage. The ability of a caprock to prevent fluid from flowing out of the reservoir is thus of utmost importance. In this review the main factors influencing fluid flow are examined. These are the wettability of the caprock formation the interfacial tension (IFT) between the rock and the gas or liquid phases and the ability of gases to diffuse through it. To achieve effective sealing the caprock formation should possess low porosity a disconnected or highly complicated pore system low permeability and remain strongly water-wet regardless of pressure and temperature conditions. In addition it must exhibit low rock–liquid IFT while presenting high rock–gas and liquid–gas IFT. Finally the effective diffusion coefficient should be the lowest possible. Among all of the currently reviewed formations and minerals the evaporites low-organic-content shales mudstones muscovite clays and anhydrite have been identified as highly effective caprocks offering excellent sealing capabilities and preventing hydrogen leakages.
Energy Storage in the Energy Transition and Blue Economy: Challenges, Innovations, Future Perspectives, and Educational Pathways
Sep 2025
Publication
Transitioning to renewable energy is vital to achieving decarbonization at the global level but energy storage is still a major challenge. This review discusses the role of energy storage in the energy transition and the blue economy focusing on technological development challenges and directions. Effective storage is vital for balancing intermittent renewable energy sources like wind solar and marine energy with the power grid. The development of battery technologies hydrogen storage pumped hydro storage and emerging technologies like sodium-ion and metal-air batteries is discussed for their potential for large-scale deployment. Shortages in critical raw materials environmental impact energy loss and costs are some of the challenges to large-scale deployment. The blue economy promises opportunities for offshore energy storage notably through ocean thermal energy conversion (OTEC) and compressed air energy storage (CAES). Moreover the capacity of datadriven optimization and artificial intelligence to enhance storage efficiency is discussed. Policy interventions and economic incentives are necessary to spur the development and deployment of sustainable energy storage technology. Education and workforce training are also important in cultivating future researchers engineers and policymakers with the ability to drive energy innovation. Merging sustainability training with an interdisciplinary approach can potentially establish an efficient workforce that is capable of addressing energy issues. Future work needs to focus on higher energy density efficiency recyclability and cost-effectiveness of the storage technologies without sacrificing their environmental sustainability. The study underlines the need for converging technological economic and educational approaches to enable a sustainable and resilient energy future.
The Total Costs of Energy Transitions With and Without Nuclear Energy
Oct 2025
Publication
Within energy system analysis there is discourse regarding the role and economic benefits of nuclear energy in terms of overall system costs. The reported findings range from considerable drawbacks to substantial benefits depending on the chosen models scenarios and underlying assumptions. This article addresses existing gaps by demonstrating how subtle variations in model assumptions significantly impact analysis outcomes. Historically uncertainties associated with nuclear energy costs have been well documented whereas renewable energy costs have steadily declined and have been relatively predictable. However as land availability increasingly constrains future renewable expansion development is shifting from onshore to offshore locations where cost uncertainties are greater and anticipated cost reductions are less reliable. This study emphasizes this fundamental shift highlighting how uncertainties in future renewable energy costs could strengthen the economic case of nuclear energy within fully integrated sector-coupled energy systems especially when the costs of all technologies and weather conditions are set in the moderate range. Focusing specifically on Denmark this article presents a thorough sensitivity analysis of renewable energy costs and weather conditions within anticipated future ranges providing a nuanced perspective on the role of nuclear energy. Ultimately the findings underscore that when examining total annual system costs the differences between scenarios with low and high nuclear energy shares are minimal and are within ±5 % for the baseline assumptions while updated adjustments reduce this variation to ±1 %.
Hydrogen-based Technologies towards Energy-resilient Low-carbon Buildings: Opportunities and Challenges Review
Oct 2025
Publication
Towards low-carbon buildings with resilient energy performance renewable energy resources and flexible energy assets play key roles in managing the electrical and heat demands. Hydrogen-based systems represent a promising solution through renewable hydrogen production and long-term storage. This paper systematically reviews 35 peer-reviewed studies (1990–2024) on hydrogen integration in buildings focusing on demand-side management (DSM) optimization methods and system performance. The review covers the environmental impacts feasibility and economic viability of integrating different hydrogen systems for supplying energy. Across critical reviews case studies hydrogen supplementary systems achieved CO2 reductions between 12 % and 87 % operational cost decreases of up to 40 % and efficiency gains exceeding 80 %. Payback periods varied widely between 9 and 20 years demonstrating high investment costs. Key gaps include limited field validation economic feasibility and public acceptance of hydrogen homes. One key area for future investigation is optimizing energy flows across production storage and demand particularly in Vehicle-to-Building (V2B) applications. This review paper highlights opportunities especially the potential of hydrogen system in decarbonization of buildings by long-term energy storage barriers and policy needs for implementing hydrogen technologies in grid-connected and remote areas to enhance sustainable and resilient buildings.
Off-grid Shore-to-ship Power System Optimisation with a Hydrogen-in-loop Buffering Scheme Drien by Hydrokinetic Wave-wind Energy
Oct 2025
Publication
The environmentally vulnerable Arctic’s harsh climate and remote geography demand innovative green energy solutions. This study introduces a hybrid off-grid system that integrates wave and wind energy with hydrogenelectricity conversion technologies. Designed to power cruise ships at berth fuel-cell hybrid electric vehicles and residential heating the system tackles the challenge of energy variability through dual optimization schemes. External optimization identifies a cost-effective architecture achieving a net present cost of $1.1M and a levelized hydrogen cost of $20.1/kg without a fuel cell. Internal optimizations employing multi-objective game theory and HYBRID algorithms further improve performance reducing the net present cost to $666K with a levelized hydrogen cost of $13.74/kg (game theory) and $729K with a levelized hydrogen of $15.63/kg (HYBRID). A key innovation is hydrokinetic turbines which streamline the design by cutting cumulative cash flow requirements by $470K from $1.85M to $1.38M. This approach prioritizes intelligent energy management shifting reliance from variable wind and wave inputs to optimized electrolyzer and battery operations. These results underscore the feasibility of cost-effective and scalable renewable energy systems and provide a compelling blueprint for addressing energy challenges in remote and resource-constrained environments.
No more items...