United States
Analysis to Support Revised Distances between Bulk Liquid Hydrogen Systems and Exposures
Sep 2021
Publication
The minimum distances between exposures and bulk liquid hydrogen listed in the National Fire Protection Agency’s Hydrogen Technology Code NFPA 2 are based on historical consensus without a documented scientific analysis. This work follows a similar analysis as the scientific justification provided in NFPA 2 for exposure distances from bulk gaseous hydrogen storage systems but for liquid hydrogen. Validated physical models from Sandia’s HyRAM software are used to calculate distances to a flammable concentration for an unignited release the distance to critical heat flux values and the visible flame length for an ignited release and the overpressure that would occur for a delayed ignition of a liquid hydrogen leak. Revised exposure distances for bulk liquid hydrogen systems are calculated. These distances are related to the maximum allowable working pressure of the tank and the line size as compared to the current exposure distances which are based on system volume. For most systems the exposure distances calculated are smaller than the current distances for Group 1 they are similar for Group 2 while they increase for some Group 3 exposures. These distances could enable smaller footprints for infrastructure that includes bulk liquid hydrogen storage tanks especially when using firewalls to mitigate Group 3 hazards and exposure distances. This analysis is being refined as additional information on leak frequencies is incorporated and changes have been proposed to the 2023 edition of NFPA 2.
Protocol for Heavy-duty Hydrogen Refueling: A Modelling Benchmark
Sep 2021
Publication
For the successful deployment of the Heavy Duty (HD) hydrogen vehicles an associated infrastructure in particular hydrogen refueling stations (HRS) should be reliable compliant with regulations and optimized to reduce the related costs. FCH JU project PRHYDE aims to develop a sophisticated protocol dedicated to HD applications. The target of the project is to develop protocol and recommendations for an efficient refueling of 350 500 and 700 bar HD tanks of types III and IV. This protocol is based on modeling results as well as experimental data. Different partners of the PRHYDE European project are closely working together on this target. However modeling approaches and corresponding tools must first be compared and validated to ensure the high level of reliability for the modeling results. The current paper presents the benchmark performed in the frame of the project by Air Liquide Engie Wenger Engineering and NREL. The different models used were compared and calibrated to the configurations proposed by the PRHYDE project. In addition several scenarios were investigated to explore different cases with high ambient temperatures.
Cost of Long-Distance Energy Transmission by Different Carriers
Nov 2021
Publication
This paper compares the relative cost of long-distance large-scale energy transmission by electricity and by gaseous and liquid carriers (e-fuels). The results indicate that the cost of electrical transmission per delivered MWh can be up to eight times higher than for hydrogen pipelines about eleven times higher than for natural gas pipelines and twenty to fifty times higher than for liquid fuels pipelines. These differences generally hold for shorter distances as well. The higher cost of electrical transmission is primarily due to lower carrying capacity (MW per line) of electrical transmission lines compared to the energy carrying capacity of the pipelines for gaseous and liquid fuels. The differences in the cost of transmission are important but often unrecognized and should be considered as a significant cost component in the analysis of various renewable energy production distribution and utilization scenarios.
Numerical Modelling of H2 Storage with Cushion Gas of CO2 in Subsurface Porous Media: Filter Effects of CO2 Solubility
Jun 2022
Publication
The central objective of this study is to improve the understanding of flow behaviour during hydrogen (H2) storage in subsurface porous media with a cushion gas of carbon dioxide (CO2). In this study we investigate the interactions between various factors driving the flow behaviour including the underlying permeability heterogeneity viscous instability and the balance between the viscous and gravity forces. In particular we study the impact of CO2 solubility in water on the level of H2 purity. This effect is demonstrated for the first time in the context of H2 storage. We have performed a range of 2D vertical cross-sectional simulations at the decametre scale with a very fine cell size (0.1 m) to capture the flow behaviour in detail. This is done since it is at this scale that much of the mixing between injected and native fluids occurs in physical porous media. It is found that CO2 solubility may have different (positive and negative) impacts on the H2 recovery performance (i.e. on the purity of the produced H2) depending on the flow regimes in the system. In the viscous dominated regime the less viscous H2 may infiltrate and bypass the cushion gas of CO2 during the period of H2 injection. This leads to a quick and dramatic reduction in the H2 purity when back producing H2 due to the co-production of the previously bypassed CO2. Interestingly the impurity levels in the H2 are much less severe in the case when CO2 solubility in water is considered. This is because the bypassed CO2 will redissolve into the water surrounding the bypassed zones which greatly retards the movement of CO2 towards the producer. In the gravity dominated scenario H2 accumulates at the top of the model and displaces the underlying cushion gas in an almost piston-like fashion. Approximately 58% of H2 can be recovered at a purity level above 98% (combustion requirements by ISO) in this gravity-dominated case. However when CO2 solubility is considered the H2 recovery performance is slightly degraded. This is because the dissolved CO2 is also gradually vaporised during H2 injection which leads to an expansion of mixing zone of CO2 and H2. This in turn reduces the period of high H2 purity level (>98%) during back-production.
Development of Dispensing Hardware for Safe Fueling of Heavy Duty Vehicles
Sep 2021
Publication
The development of safe dispensing equipment for the fueling of heavy duty (HD) vehicles is critical to the expansion of this newly and quickly expanding market. This paper discusses the development of a HD dispenser and nozzles assembly (nozzle hose breakaway) for these new larger vehicles where flow rates are more than double compared to light duty (LD) vehicles. This equipment must operate at nominal pressures of 700 bar -40o C gas temperature and average flow rate of 5-10 kg/min at a high throughput commercial hydrogen fueling station without leaking hydrogen. The project surveyed HD vehicle manufacturers station developers and component suppliers to determine the basic specifications of the dispensing equipment and nozzle assembly. The team also examined existing codes and standards to determine necessary changes to accommodate HD components. From this information the team developed a set of specifications which will be used to design the dispensing equipment. In order to meet these goals the team performed computational fluid dynamic pressure modelling and temperature analysis in order to determine the necessary parameters to meet existing safety standards modified for HD fueling. The team also considered user operational and maintenance requirements such as freeze lock which has been an issue which prevents the removal of the nozzle from LD vehicles. The team also performed a failure mode and effects analysis (FMEA) to identify the possible failures in the design. The dispenser and nozzle assembly will be tested separately and then installed on an innovative HD fueling station which will use a HD vehicle simulator to test the entire system.
Influence of Non-equilibrium Conditions on Liquid Hydrogen Storage Tank Behavior
Sep 2021
Publication
In a liquid hydrogen storage tank hydrogen vapor exists above the cryogenic liquid. A common modeling assumption of a liquid hydrogen tank is thermodynamic equilibrium. However this assumption may not hold in all conditions. A non-equilibrium storage tank with a pressure relief valve and a burst disc in parallel was modeled in this work. The model includes different boiling regimes to handle scenarios with high heat transfer. The model was first validated with a scenario where normal boil-off from an unused tank was compared to experimental data. Then four abnormal tank scenarios were explored: a loss of vacuum in the insulation layer a high ambient temperature (to simulate an engulfing fire) a high ambient temperature with a simultaneous loss of vacuum and high conduction through the insulation layer. The burst disc of the tank opened only in the cases with extreme heat transfer to the tank (i.e. fire with a loss of vacuum and high insulation conductivity) quickly releasing the hydrogen. In the cases with only a loss of vacuum or only external heat from fire the pressure relief valve on the tank managed to moderate the pressure below the burst disc activation pressure. The high insulation conductivity case highlights differences between the equilibrium and non-equilibrium tank models. The mass loss from the tank through the burst disc is slower using a non-equilibrium model because mass transfer from the liquid to gas phase within the tank becomes limiting. The implications of this model and how it can be used to help inform safety codes and standards are discussed.
Safety Compliance Verification of Fuel Cell Electric Vehicle Exhaust
Sep 2021
Publication
NREL has been developing compliance verification tools for allowable hydrogen levels prescribed by the Global Technical Regulation Number 13 (GTR-13) for hydrogen fuel cell electric vehicles (FCEVs). As per GTR-13 FCEV exhaust is to remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 and that this requirement is to be verified with an analyzer that has a response time of less than 300 ms. To be enforceable a means to verify regulatory requirements must exist. In response to this need NREL developed a prototype analyzer that meets the GTR metrological requirements for FCEV exhaust analysis. The analyzer was tested on a commercial fuel cell electric vehicle (FCEV) under simulated driving conditions using a chassis dynamometer at the Emissions Research and Measurement Section of Environment and Climate Change Canada and FCEV exhaust was successfully profiled. Although the prototype FCEV Exhaust Analyzer met the metrological requirements of GTR-13 the stability of the hydrogen sensor was adversely impacted by condensed water in the sample gas. FCEV exhaust is at an elevated temperature and nearly saturated with water vapor. Furthermore condensed water is present in the form of droplets. Condensed water in the sample gas collected from FCEV exhaust can accumulate on the hydrogen sensing element which would not only block access of hydrogen to the sensing element but can also permanently damage the sensor electronics. In the past year the design of the gas sampling system was modified to mitigate against the transport of liquid water to the sensing element. Laboratory testing confirmed the effectiveness of the modified sampling system water removal strategy while maintaining the measurement range and response time required by GTR-13. Testing of the upgraded analyzer design on an FCEV operating on a chassis dynamometer is scheduled for the summer of 2021.
Hydrogen Component Leak Rate Quantification for System Risk and Reliability Assessment through QRA and PHM Frameworks
Sep 2021
Publication
The National Renewable Energy Laboratory’s (NREL) Hydrogen Safety Research and Development (HSR&D) program in collaboration with the University of Maryland’s Systems Risk and Reliability Analysis Laboratory (SyRRA) are working to improve reliability and reduce risk in hydrogen systems. This approach strives to use quantitative data on component leaks and failures together with Prognosis and Health Management (PHM) and Quantitative Risk Assessment (QRA) to identify atrisk components reduce component failures and downtime and predict when components require maintenance. Hydrogen component failures increase facility maintenance cost facility downtime and reduce public acceptance of hydrogen technologies ultimately increasing facility size and cost because of conservative design requirements. Leaks are a predominant failure mode for hydrogen components. However uncertainties in the amount of hydrogen emitted from leaking components and the frequency of those failure events limit the understanding of the risks that they present under real-world operational conditions. NREL has deployed a test fixture the Leak Rate Quantification Apparatus (LRQA) to quantify the mass flow rate of leaking gases from medium and high-pressure components that have failed while in service. Quantitative hydrogen leak rate data from this system could ultimately be used to better inform risk assessment and Regulation Codes and Standards (RCS). Parallel activity explores the use of PHM and QRA techniques to assess and reduce risk thereby improving safety and reliability of hydrogen systems. The results of QRAs could further provide a systematic and science-based foundation for the design and implementation of RCS as in the latest versions of the NFPA 2 code for gaseous hydrogen stations. Alternatively data-driven techniques of PHM could provide new damage diagnosis and health-state prognosis tools. This research will help end users station owners and operators and regulatory bodies move towards risk-informed preventative maintenance versus emergency corrective maintenance reducing cost and improving reliability. Predictive modelling of failures could improve safety and affect RCS requirements such as setback distances at liquid hydrogen fueling sites. The combination of leak rate quantification research PHM and QRA can lead to better informed models enabling data-based decision to be made for hydrogen system safety improvements.
H-Mat Hydrogen Compatibility of NBR Elastomers
Sep 2021
Publication
The H2@Scale program of the U.S. Department of Energy (DOE) Hydrogen and Fuel Cell Technologies Office (HFTO) is supporting work on the hydrogen compatibility of polymers to improve the durability and reliability of materials for hydrogen infrastructure. The hydrogen compatibility program (H-Mat) seeks “to address the challenges of hydrogen degradation by elucidating the mechanisms of hydrogen-materials interactions with the goal of providing science-based strategies to design materials (micro)structures and morphology with improved resistance to hydrogen degradation.” Previous work on ethylene propylene diene indicated hydrogen interaction with plasticizer increased its migration to the surface and coalescing within the elastomer compound. New research on nitrile butadiene (NBR) has found hydrogen and pressure interactions with a series model rubber-material compounds to behave similarly in some compounds and improved in other compounds that is demonstrated through volume change and compression-set differences in the materials. Further studies were conducted using a helium-ion microscope (HeIM) which revealed significant morphological changes in the plasticizer-incorporating compounds after static exposure and pressure cycling as evidenced by time-of-flight secondary ion mass spectrometry. Additional studies using x-ray chromatography revealed that more micro-voids/-cracks developed after gas decompression in unfilled materials than in filled materials; transmission electron microscopy (TEM) probed at the nano-meter level showing change in filler distribution and morphology around Zinc-based particles.
Decarbonization Roadmaps for ASEAN and their Implications
Apr 2022
Publication
The objective of this paper is to derive for the first time decarbonization roadmaps for the ten nations of ASEAN. This study first presents a regional view of ASEAN’s fossil and renewable energy usage and energy-related CO2 emission. Results show that renewable energies have been losing ground to fossil energies in the last two decades and fossil fuels will likely continue to be an important part of ASEAN’s energy mix for the next few decades. Therefore decarbonizing efforts should focus not only on increasing the share of renewable energies in electricity generation but also on technologies to reduce CO2 emission from fossil power and industrial plants. This study next performs a technology mapping exercise for all ten ASEAN countries to determine decarbonization technologies that have high impact and high readiness for individual countries. Besides installing more sustainable renewable energies common themes coming from these roadmaps include switching from coal to gas for power generation using carbon capture and storage (CCS) technologies to decarbonize fossil and industrial plants replacing internal combustion vehicles by electric vehicles and for countries that have coal and natural gas resources upgrading them to blue hydrogen by chemical processes and using CCS to mitigate the emitted CO2. Blue hydrogen can be used to decarbonize hard-to-decarbonize industries. Policy implications of these roadmaps include imposing a credible carbon tax establishing a national hydrogen strategy intergovernmental coordination to establish regional CCS corridors funding research and development to improve carbon capture efficiency on a plant level and resolving sustainability issues of hydropower and bioenergy in ASEAN.
A Brief History of Process Safety Management
Sep 2021
Publication
Common root causes are often to be found in many if not most process safety incidents. Whilst largescale events are relatively rare such events can have devastating consequences. The subsequent investigations often uncover that the risks are rarely visible the direct causes are often hidden and that a ‘normalization of deviation’ is a common human characteristic. Process Safety Management (PSM) builds on the valuable lessons learned from past incidents to help prevent future recurrences. An understanding of how PSM originated and has evolved as a discipline over the past 200 years can be instructive when considering the safety implications of emerging technologies. An example is hydrogen production where risks must be effectively identified mitigated and addressed to provide safe production transportation storage and use .
Hydrogen Production and Carbon Sequestration by Steam Methane Reforming and Fracking with Carbon Dioxide
Feb 2020
Publication
An opportunity to sequester large amounts of carbon dioxide (CO2) is made possible because hydraulic fracturing is used to produce most of America's natural gas. CO2 could be extracted from natural gas and water using steam methane reforming pressurized to its supercritical phase and used instead of water to fracture additional hydrocarbon-bearing rock. The useful energy carrier that remains is hydrogen with carbon returned to the ground. Research on the use of supercritical CO2 is reviewed with proppant entrainment identified as the major area where technical advances may be needed. The large potential for greenhouse-gas reduction through sequestration of CO2 and avoidance of methane leakage from the natural gas system is quantified.
From Renewable Energy to Sustainable Protein Sources: Advancement, Challenges, and Future Roadmaps
Jan 2022
Publication
The concerns over food security and protein scarcity driven by population increase and higher standards of living have pushed scientists toward finding new protein sources. A considerable proportion of resources and agricultural lands are currently dedicated to proteinaceous feed production to raise livestock and poultry for human consumption. The 1st generation of microbial protein (MP) came into the market as land-independent proteinaceous feed for livestock and aquaculture. However MP may be a less sustainable alternative to conventional feeds such as soybean meal and fishmeal because this technology currently requires natural gas and synthetic chemicals. These challenges have directed researchers toward the production of 2nd generation MP by integrating renewable energies anaerobic digestion nutrient recovery biogas cleaning and upgrading carbon-capture technologies and fermentation. The fermentation of methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB) i.e. two protein rich microorganisms has shown a great potential on the one hand to upcycle effluents from anaerobic digestion into protein rich biomass and on the other hand to be coupled to renewable energy systems under the concept of Power-to-X. This work compares various production routes for 2nd generation MP by reviewing the latest studies conducted in this context and introducing the state-of-the-art technologies hoping that the findings can accelerate and facilitate upscaling of MP production. The results show that 2nd generation MP depends on the expansion of renewable energies. In countries with high penetration of renewable electricity such as Nordic countries off-peak surplus electricity can be used within MP-industry by supplying electrolytic H2 which is the driving factor for both MOB and HOB-based MP production. However nutrient recovery technologies are the heart of the 2nd generation MP industry as they determine the process costs and quality of the final product. Although huge attempts have been made to date in this context some bottlenecks such as immature nutrient recovery technologies less efficient fermenters with insufficient gas-to-liquid transfer and costly electrolytic hydrogen production and storage have hindered the scale up of MP production. Furthermore further research into techno-economic feasibility and life cycle assessment (LCA) of coupled technologies is still needed to identify key points for improvement and thereby secure a sustainable production system.
Carbon Capture from Biogas by Deep Eutectic Solvents A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity
Jun 2021
Publication
Deep eutectic solvents (DES) are compounds of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) that contain a depressed melting point compared to their individual constituents. DES have been studied for their use as carbon capture media and biogas upgrading. However contaminants’ presence in biogas might affect the carbon capture by DES. In this study conductor-like screening model for real solvents (COSMO-RS) was used to determine the effect of temperature pressure and selective contaminants on five DES’ namely choline chloride-urea choline chloride-ethylene glycol tetra butyl ammonium chloride-ethylene glycol tetra butyl ammonium bromide-decanoic acid and tetra octyl ammonium chloride-decanoic acid. Impurities studied in this paper are hydrogen sulfide ammonia water nitrogen octamethyltrisiloxane and decamethylcyclopentasiloxane. At infinite dilution CO2 solubility dependence upon temperature in each DES was examined by means of Henry’s Law constants. Next the systems were modeled from infinite dilution to equilibrium using the modified Raoults’ Law where CO2 solubility dependence upon pressure was examined. Finally solubility of CO2 and CH4 in the various DES were explored with the presence of varying mole percent of selective contaminants. Among the parameters studied it was found that the HBD of the solvent is the most determinant factor for the effectiveness of CO2 solubility. Other factors affecting the solubility are alkyl chain length of the HBA the associated halogen and the resulting polarity of the DES. It was also found that choline chloride-urea is the most selective to CO2 but has the lowest CO2 solubility and is the most polar among other solvents. On the other hand tetraoctylammonium chloride-decanoic acid is the least selective has the highest maximum CO2 solubility is the least polar and is the least affected by its environment.
Hydrogen Technologies Safety Guide
Jan 2015
Publication
The purpose of this guide is to provide basic background information on hydrogen technologies. It is not intended to be a comprehensive collection of hydrogen technologies safety information. It is intended to provide project developers code officials and other interested parties the background information to be able to put hydrogen safety in context. For example code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen basic safety concerns and safety requirements.
Technology Assessment of Hydrogen Firing of Process Heaters
Apr 2011
Publication
In conjunction with John Zink Co. LLC the Chevron Energy Technology Company conducted a three part study evaluating potential issues with switching refinery process heaters from fuel gas to hydrogen fuel for the purpose of greenhouse gas emissions reduction via CO2 capture and storage.
The focus was on the following areas:
The focus was on the following areas:
- Heater performance
- Burner performance and robustness
- Fuel gas system retrofit requirements
Validation of Two-Layer Model for Underexpanded Hydrogen Jets
Sep 2019
Publication
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity the present work indicates that the two-layer model is a promising tool for fast accurate predictions of the flow fields of underexpanded hydrogen jets.
Risk Assessment and Ventilation Modeling for Hydrogen Vehicle Repair Garages
Sep 2019
Publication
The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability (HAZOP) study was performed to identify key risk-significant scenarios related to hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location behaviour and severity of hydrogen release based on key HAZOP scenarios. This work compares current fire code requirements to an alternate ventilation strategy to further reduce potential hazardous conditions. It is shown that position direction and velocity of ventilation have a significant impact on the amount of flammable mass in the domain.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
Cross-regional Drivers for CCUS Deployment
Jul 2020
Publication
CO2 capture utilization and storage (CCUS) is recognized as a uniquely important option in global efforts to control anthropogenic greenhouse-gas (GHG) emissions. Despite significant progress globally in advancing the maturity of the various component technologies and their assembly into full-chain demonstrations a gap remains on the path to widespread deployment in many countries. In this paper we focus on the importance of business models adapted to the unique technical features and sociopolitical drivers in different regions as a necessary component of commercial scale-up and how lessons might be shared across borders. We identify three archetypes for CCUS development—resource recovery green growth and low-carbon grids—each with different near-term issues that if addressed will enhance the prospect of successful commercial deployment. These archetypes provide a framing mechanism that can help to translate experience in one region or context to other locations by clarifying the most important technical issues and policy requirements. Going forward the archetype framework also provides guidance on how different regions can converge on the most effective use of CCUS as part of global deep-decarbonization efforts over the long term.
Fuel Cell Codes and Standards Resource
Jan 2021
Publication
Although hydrogen has been used in industry for decades its use as a fuel for vehicles or stationary power generation in consumer environments is relatively new. As such hydrogen and fuel cell codes and standards are in various stages of development. Industry manufacturers the government and other safety experts are working with codes and standards development organizations to prepare review and promulgate technically-sound codes and standards for hydrogen and fuel cell technologies and systems.
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Safety Code Equivalencies in Hydrogen Infrastructure Deployment
Sep 2019
Publication
Various studies and market trends show that the number of hydrogen fuelling stations will increase to the thousands in the US by 2050. NFPA 2 Hydrogen Technologies Code (NFPA2) the nationally adopted primary code governing hydrogen safety is relatively new and hydrogen vehicle technology is a relatively new and rapidly developing technology. In order to effectively aid and accelerate the deployment of standardized retail hydrogen fuelling facilities the permitting of hydrogen fuelling stations employing outdoor bulk liquid storage in the state of California.
In an effort to better understand how the applicants consultants and more importantly the Authorities Having Jurisdiction (AHJ)s are interpreting and applying the NFPA 2 especially for complex applications the newest hydrogen stations with the largest amount of bulk hydrogen storage in urban environment settings were identified and the permit applications and permit approval outcomes of the said stations were analysed. Utilizing the pubic record request process LH2 station permit applications were reviewed along with the approval outcomes directly from the municipalities that issued the permits. AHJs with H2 station permitting experience were interviewed. Case studies of permit hydrogen fuelling station permit applications were then complied to document both the perspectives of the applicant and the AHJ and the often iterative and collaborative nature of permitting.
The current permitting time for Liquid Hydrogen (LH2) stations can range from 9 to 18 months in the California. Five out of the six LH2 stations applications required Alternative Means & Methods (AM&Ms) proposals and deviations from the prescriptive requirements of the Code were granted. Furthermore AHJs often requested additional documents and studies specific to application parameters in addition to NFPA 2 requirements.
In an effort to better understand how the applicants consultants and more importantly the Authorities Having Jurisdiction (AHJ)s are interpreting and applying the NFPA 2 especially for complex applications the newest hydrogen stations with the largest amount of bulk hydrogen storage in urban environment settings were identified and the permit applications and permit approval outcomes of the said stations were analysed. Utilizing the pubic record request process LH2 station permit applications were reviewed along with the approval outcomes directly from the municipalities that issued the permits. AHJs with H2 station permitting experience were interviewed. Case studies of permit hydrogen fuelling station permit applications were then complied to document both the perspectives of the applicant and the AHJ and the often iterative and collaborative nature of permitting.
The current permitting time for Liquid Hydrogen (LH2) stations can range from 9 to 18 months in the California. Five out of the six LH2 stations applications required Alternative Means & Methods (AM&Ms) proposals and deviations from the prescriptive requirements of the Code were granted. Furthermore AHJs often requested additional documents and studies specific to application parameters in addition to NFPA 2 requirements.
Compliance Measurements of Fuel Cell Electric Vehicle Exhaust
Sep 2019
Publication
The NREL Sensor Laboratory has been developing an analyzer that can verify compliance to the international United Nations Global Technical Regulation number 13 (GTR 13--Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) prescriptive requirements pertaining to allowable hydrogen levels in the exhaust of fuel cell electric vehicles (FCEV) [1]. GTR 13 prescribes that the FCEV exhaust shall remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 as verified with an analyzer with a response time (t90) of 300 ms or faster. GTR 13 has been implemented and is to serve as the basis for national regulations pertaining to hydrogen powered vehicle safety in the United States Canada Japan and the European Union. In the U.S. vehicle safety is overseen by the Department of Transportation (DOT) through the Federal Motor Vehicle Safety Standards (FMVSS) and in Canada by Transport Canada through the Canadian Motor Vehicle Safety Standard (CMVSS). The NREL FCEV exhaust analyzer is based upon a low-cost commercial hydrogen sensor with a response time (t90) of less than 250 ms. A prototype analyzer and gas probe assembly have been constructed and tested that can interface to the gas sampling system used by Environment and Climate Change Canada’s (ECCC) Emission Research and Measurement Section (ERMS) for the exhaust gas analysis. Through a partnership with Transport Canada ECCC will analyze the hydrogen level in the exhaust of a commercial FCEV. ECCC will use the NREL FCEV Exhaust Gas analyzer to perform these measurements. The analyzer was demonstrated on a FCEV operating under simulated road conditions using a chassis dynamometer at a private facility.
Numerical Prediction of Cryogenic Hydrogen Vertical Jets
Sep 2019
Publication
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refuelling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However for test with 3 and 4 bar release the concentration was overpredicted. Furthermore a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.
An Investigation of Mobile Hydrogen and Fuel Cell Technology Applications
Sep 2019
Publication
Safe practices in the production storage distribution and use of hydrogen are essential for the widespread acceptance of hydrogen and fuel cell technologies. A significant safety incident in any project could damage public perception of hydrogen and fuel cells. A recent incident involving a hydrogen mobile storage trailer in the United States has brought attention to the potential impacts of mobile hydrogen storage and transport. Road transport of bulk hydrogen presents unique hazards that can be very different from those for stationary equipment and new equipment developers may have less experience and expertise than seasoned gas providers. In response to the aforementioned incident and in support of hydrogen and fuel cell activities in California the Hydrogen Safety Panel (HSP) has investigated the safety of mobile hydrogen and fuel cell applications (mobile auxiliary/emergency fuel cell power units mobile fuellers multi-cylinder trailer transport unmanned aircraft power supplies and mobile hydrogen generators). The HSP examined the applications requirements and performance of mobile applications that are being used extensively outside of California to understand how safety considerations are applied. This paper discusses the results of the HSP’s evaluation of hydrogen and fuel cell mobile applications along with recommendations to address relevant safety issues.
Stress–Corrosion Cracking of AISI 316L Stainless Steel in Seawater Environments: Effect of Surface Machining
Oct 2020
Publication
To understand the effect of surface machining on the resistance of AISI 316L to SCC (stress–corrosion cracking) in marine environments we tested nuts surface-machined by different methods in a seawater-spraying chamber. Two forms of cracks were observed: on the machined surface and underneath it. On the surface cracks connected with the pitting sites were observed to propagate perpendicular to the hoop-stress direction identifying them as stress–corrosion cracks. Under the surface catastrophic transgranular cracks developed likely driven by hydrogen embrittlement caused by the chloride-concentrating level of humidity in the testing environment. Under constant testing conditions significantly different SCC resistance was observed depending on how the nuts had been machined. Statistical evaluation of the nut surface-crack density indicates that machining by a “form” tool yields a crack density one order of magnitude lower than machining by a “single-point” tool. Microstructural analysis of form-tool-machined nuts revealed a homogeneous deformed subsurface zone with nanosized grains leading to enhanced surface hardness. Apparently the reduced grain size and/or the associated mechanical hardening improve resistance to SCC. The nanograin subsurface zone was not observed on nuts machined by a single-point tool. Surface roughness measurements indicate that single-point-tool-machined nuts have a rougher surface than form-tool machined nuts. Apparently surface roughness reduces SCC resistance by increasing the susceptibility to etch attack in Cl--rich solutions. The results of X-ray diffractometry and transmission electron microscopy diffractometry indicate that machining with either tool generates a small volume fraction (< 0.01) of strain-induced martensite. However considering the small volume fraction and absence of martensite in regions of cracking martensite is not primarily responsible for SCC in marine environments.
Acid Acceleration of Hydrogen Generation Using Seawater as a Reactant
Jul 2016
Publication
The present study describes hydrogen generation from NaBH4 in the presence of acid accelerator boric oxide or B2O3 using seawater as a reactant. Reaction times and temperatures are adjusted using various delivery methods: bulk addition funnel and metering pump. It is found that the transition metal catalysts typically used to generate hydrogen gas are poisoned by seawater. B2O3 is not poisoned by seawater; in fact reaction times are considerably faster in seawater using B2O3. Reaction times and temperatures are compared for pure water and seawater for each delivery method. It is found that using B2O3 with pure water bulk addition is 97% complete in 3 min; pump metering provides a convenient method to extend the time to 27 min a factor of 9 increase above bulk addition. Using B2O3 with seawater as a reactant bulk addition is 97% complete in 1.35 min; pump metering extends the time to 23 min a factor of 17 increase above bulk. A second acid accelerator sodium bisulfate or NaHSO4 is investigated here for use with NaBH4 in seawater. Because it is non-reactive in seawater i.e. no spontaneous H2 generation NaHSO4 can be stored as a solution in seawater; because of its large solubility it is ready to be metered into NaBH4. With NaHSO4 in seawater pump metering increases the time to 97% completion from 3.4 min to 21 min. Metering allows the instantaneous flow rate of H2 and reaction times and temperatures to be tailored to a particular application. In one application the seawater hydrogen generator characterized here is ideal for supplying H2 gas directly to Proton Exchange Membrane fuel cells in sea surface or subsea environments where a reliable source of power is needed.
Hydrogen and Fuel Cell Vehicles UN Global Technical Regulation No. 13: Latest Updates Reflecting Heavy Duty Vehicles
Sep 2019
Publication
This paper provides a detailed technical description of the United Nations Global Technical Regulation No. 13 (UN GTR #13) 1998 Agreement and contracting party obligations phase 2 activity and safety provisions being discussed and developed for heavy duty hydrogen fuel cell vehicles.
How a Grid Company Could Enter the Hydrogen Industry through a New Business Model: A Case Study in China
Mar 2023
Publication
The increasing penetration of renewable and distributed resources signals a global boom in energy transition but traditional grid utilities have yet to share in much of the triumph at the current stage. Higher grid management costs lower electricity prices fewer customers and other challenges have emerged along the path toward renewable energy but many more opportunities await to be seized. Most importantly there are insufficient studies on how grid utilities can thrive within the hydrogen economy. Through a case study on the State Grid Corporation of China we identify the strengths weaknesses opportunities and threats (SWOT) of grid utilities within the hydrogen economy. Based on these factors we recommend that grids integrate hydrogen into the energy-as-a-service model and deliver it to industrial customers who are under decarbonization pressure. We also recommend that grid utilities fund a joint venture with pipeline companies to optimize electricity and hydrogen transmissions simultaneously.
“Bigger than Government”: Exploring the Social Construction and Contestation of Net-zero Industrial Megaprojects in England
Jan 2023
Publication
Industry is frequently framed as hard-to-decarbonize given its diversity of requirements technologies and supply chains many of which are unique to particular sectors. Net zero commitments since 2019 have begun to challenge the carbon intensity of these various industries but progress has been slow globally. Against this backdrop the United Kingdom has emerged as a leader in industrial decarbonization efforts. Their approach is based on industrial clusters which cut across engineering spatial and socio-political dimensions. Two of the largest of these clusters in England in terms of industrial emissions are the Humber and Merseyside. In this paper drawn from a rich mixed methods original dataset involving expert interviews (N = 46 respondents) site visits (N = 20) a review of project documents and the academic literature we explore ongoing efforts to decarbonize both the Humber and Merseyside through the lens of spatially expansive and technically complex megaprojects. Both have aggressive implementation plans in place for the deployment of net-zero infrastructure with Zero Carbon Humber seeking billions in investment to build the country’s first large-scale bioenergy with carbon capture and storage (BECCS) plant alongside a carbon transport network and hydrogen production infrastructure and HyNet seeking billions in investment to build green and blue hydrogen facilities along with a carbon storage network near Manchester and Liverpool. We draw from the social construction of technology (SCOT) literature to examine the relevant social groups interpretive flexibility and patterns of closure associated with Zero Carbon Humber and HyNet. We connect our findings to eight interpretive frames surrounding the collective projects and make connections to problems contestation and closure.
The Viability of Implementing Hydrogen in the Commonwealth of Massachusetts
Sep 2022
Publication
In recent years there has been an increased interest in hydrogen energy due to a desire to reduce greenhouse gas emissions by utilizing hydrogen for numerous applications. Some countries (e.g. Japan Iceland and parts of Europe) have made great strides in the advancement of hydrogen generation and utilization. However in the United States there remains significant reservation and public uncertainty on the use and integration of hydrogen into the energy ecosystem. Massachusetts similar to many other states and small countries faces technical infrastructure policy safety and acceptance challenges with regards to hydrogen production and utilization. A hydrogen economy has the potential to provide economic benefits a reduction in greenhouse gas emissions and sector coupling to provide a resilient energy grid. In this paper the issues associated with integrating hydrogen into Massachusetts and other similar states or regions are studied to determine which hydrogen applications have the most potential understand the technical and integration challenges and identify how a hydrogen energy economy may be beneficial. Additionally hydrogen’s safety concerns and possible contribution to greenhouse gas emissions are also reviewed. Ultimately a set of eight recommendations is made to guide the Commonwealth’s consideration of hydrogen as a key component of its policies on carbon emissions and energy.
The NREL Sensor Laboratory: Status and Future Directions for Hydrogen Detection
Sep 2021
Publication
The NREL Hydrogen Sensor Laboratory was commissioned in 2010 as a resource for the national and international hydrogen community to ensure the availability and proper use of hydrogen sensors. Since then the Sensor Laboratory has provided unbiased verification of hydrogen sensor performance for sensor developers end-users and regulatory agencies and has also provided active support for numerous code and standards development organizations. Although sensor performance assessment remains a core capability the mission of the NREL Sensor Laboratory has expanded toward a more holistic approach regarding the role of hydrogen detection and its implementation strategy for both assurance of facility safety and for process control applications. Active monitoring for detection of unintended releases has been identified as a viable approach for improving facility safety and lowering setbacks. The current research program for the Sensor Laboratory addresses both conventional and advanced developing detection strategies in response to the emerging large-scale hydrogen markets such as those envisioned by H2@Scale. These emerging hydrogen applications may require alternative detection strategies that supplement and may ultimately supplant the use of traditional sensors for monitoring hydrogen releases. Research focus areas for the NREL Sensor Laboratory now encompass the characterization of released hydrogen behavior to optimize detection strategies for both indoor and outdoor applications assess advanced methods of hydrogen leak detection such as hydrogen wide area monitoring for large scale applications implement active monitoring as a risk reduction strategy to improve safety at hydrogen facilities and to provide continuing support of hydrogen safety codes and standards. In addition to assurance of safety detection will be critical for process control applications such as hydrogen fuel quality verification for fuel cell vehicle applications and for monitoring and controlling of hydrogen-natural gas blend composition.
US-UK Scientific Forum on Sustainable Energy: Electrical Storage in Support of the Grid, Forum Report
Sep 2022
Publication
The effort to meet the ambitious targets of the Paris agreement is challenging many governments. The US and UK governments might have different approaches to achieving the targets but both will rely heavily on renewable energy sources such as wind and solar to power their economies. However these sources of power are unpredictable and ways will have to be developed to store renewable energy for hours days weeks seasons and maybe even years before it is used. As the disruptive and increasingly deadly impacts of climate change are being felt across the world the need to move to more sustainable sources of energy and to identify viable ways to store that energy has never been more important.<br/>This was the subject of the US–UK Science Forum on electrical storage in support of the grid which was held online from 17 – 18 March 2021. Co-organised by the Royal Society and the National Academy of Sciences it brought together a diverse group of 60 scientists policy makers industry leaders regulators and other key stakeholders for a wide-ranging discussion on all aspects of energy storage from the latest research in the field to the current status of deployment. It also considered the current national and international economic and policy contexts in which these developments are taking place. A number of key points emerged from the discussion. First it is clear that renewable energy will play an increasingly important role in the US and UK energy systems of the future and energy storage at a multi-terawatt hour scale has a vital role to play. Of course this will evolve differently to some extent in both countries and elsewhere according to the various geographical technological economic political social and regulatory environments. Second international collaboration is critical – no single nation will solve this problem alone. As two of the world’s leading scientific nations largest economies and per capita CO2 emitters with a long track record of collaboration the US and UK are well placed to play a vital role in addressing this critical challenge. As the discussion highlighted a wide range of energy storage technologies are now emerging and becoming increasingly available many of which have the potential to be critical components of a future net-zero energy system. A crucial next phase is in ensuring that these are technically developed as well as economically and political viable. This will require the support of a wide range of these potential solutions to ensure that their benefits remain widely available and to avoid costly ‘lock-in’. Scientists and science academies have a critical role to play in analysing technology options their combinations and their potential roles in future sustainable energy systems and in working with policymakers to incentivise investment and deployment.
Development of Risk Mitigation Guidance for Hydrogen Sensor Placement Indoors and Outdoors
Sep 2021
Publication
Guidance on Sensor Placement remains one of the top priorities for the safe deployment of hydrogen and fuel cell equipment in the commercial marketplace. Building on the success of Phase l work reported at TCHS20l9 and published in TJHE this paper discusses the consecutive steps to further develop and validate such guidance for mechanically ventilated enclosures. The key step included a more in-depth analysis of sensitivity to variation of physical parameters in a small enclosure. and finally expansion of the developed approach to confined spaces in an outdoor environment.
Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations
May 2022
Publication
To reduce greenhouse gases and air pollutants new technologies are emerging to reduce fossil fuel usage and to adopt more renewable energy sources. As the major aspects of fuel consumption power generation transportation and industrial applications have been given significant attention. The past few decades witnessed astonishing technological advancement in these energy sectors. In contrast the residential sector has had relatively little attention despite its significant utilization of fuels for a much longer period. However almost every energy transition in human history was initiated by the residential sector. For example the transition from fuelwood to cheap coal in the 1700s first took place in residential houses due to urbanization and industrialization. The present review demonstrates the energy transitions in the residential sector during the past two centuries while portending an upcoming energy transition and future energy structure for the residential sector. The feasibility of the 100% electrification of residential buildings is discussed based on current residential appliance adoption and the analysis indicates a hybrid residential energy structure is preferred over depending on a single energy source. Technical considerations and suggestions are given to help incorporate more renewable energy into the residential fuel supply system. Finally it is observed that compared to the numerous regulations on large energy-consumption aspects standards for residential appliances are scarce. Therefore it is concluded that establishing appropriate testing methods is a critical enabling step to facilitate the adoption of renewable fuels in future appliances.
Electric Aircraft Fueled by Liquid Hydrogen and Liquefied Natural Gas
Jul 2021
Publication
The paper is a review of the opportunities and challenges of cryogenic power devices of electric aircraft and the ongoing research and development efforts of the government agencies and the industry. Liquid Hydrogen (LH2) and Liquefied Natural Gas (LNG) are compared to support high temperature superconducting (HTS) and normal metal devices respectively. The power devices were assumed to operate at the normal boiling point of the fuel used. The efficiencies of the electrical devices are estimated based on state-of-the-art technology. The mass flow rates and total fuel requirements for both the cryogenic fuels required to maintain the operating temperatures of the devices were simulated using thermal network models. A twin-aisle 300 passenger aircraft with a 5.5 h flight duration was used for the models. The results show that the required masses of LH2 and LNG are 744 kg and 13638 kg respectively for the cooling requirement. The corresponding volumes of LH2 and LNG required are 9760 and 30300 L respectively. In both cases the estimated mass of the fuel needed for the aircraft is more than what is needed to maintain the cryogenic environment of the power devices. It was concluded that an electric aircraft with LNG cooled normal metal devices is feasible. However an aircraft with HTS devices and cooled with LH2 is more attractive if the ongoing R&D efforts on HTS devices and LH2 infrastructure are successful. The emission reductions would be substantially higher with LH2 particularly when H2 is produced using renewable energy sources.
Green-hydrogen Research: What Have We Achieved, and Where Are We Going? Bibliometrics Analysis
Jul 2022
Publication
In response to the global challenge of climate change 136 countries accounting for 90% of global GDP and 85% of the population have now set net-zero targets. A transition to net-zero will require the decarbonization of all sectors of the economy. Green-hydrogen produced from renewable energy sources poses little to no threat to the environment and increasing its production will support net-zero targets Our study examined the evolution of green-hydrogen research themes since the UN Sustainable Development Goals were adopted in 2015 by utilizing bibliographic couplings keyword co-occurrence and keyphrase analysis of 642 articles from 2016 to 2021 in the Scopus database. We studied bibliometrics indicators and temporal evolution of publications and citations patterns of open access the effect of author collaboration influential publications and top contributing countries. We also consider new indicators like publication views keyphrases topics with prominence and field weighted citation impact and Altmetrics to understand the research direction further. We find four major thematic distributions of green-hydrogen research based on keyword co-occurrence networks: hydrogen storage hydrogen production electrolysis and the hydrogen economy. We also find networks of four research clusters that provide new information on the journal’s contributions to green-hydrogen research. These are materials chemistry hydrogen energy and cleaner production applied energy and fuel cells. Most green-hydrogen research aligns with Affordable and Clean Energy (SDG 7) and Climate Action (SDG 13). The outcomes of policy decisions in the United States Europe India and China will profoundly impact green-hydrogen production and storage over the next five years. If these policies are implemented these countries will account for two-thirds of this growth. Asia will account for the most significant part and become the second-largest producer globally.
Fundamentals, Materials, and Machine Learning of Polymer Electrolyte Membrane Fuel Cell Technology
Jun 2020
Publication
Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years significant progress has been made in PEM fuel cell commercialization. By 2019 there were over 19000 fuel cell electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8000 and 44 respectively) Japan (~3600 and 112 respectively) South Korea (~5000 and 34 respectively) Europe (~2500 and 140 respectively) and China (~110 and 12 respectively). Japan South Korea and China plan to build approximately 3000 HRF stations by 2030. In 2019 Hyundai Nexo and Toyota Mirai accounted for approximately 63% and 32% of the total sales with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67 respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design operational control and material development such as durability electrocatalyst materials water and thermal management dynamic operation and cold start are briefly explained in this work. Machine learning and artificial intelligence (AI) have received increasing attention in material/energy development. This review also discusses their applications and potential in the development of fundamental knowledge and correlations material selection and improvement cell design and optimization system control power management and monitoring of operation health for PEM fuel cells along with main physics in PEM fuel cells for physics-informed machine learning. The objective of this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable stationary and transportation sectors; (2) to describe the important fundamentals for the further advancement of fuel cell technology in terms of design and control optimization cost reduction and durability improvement; and (3) to explain machine learning physics-informed deep learning and AI methods and describe their significant potentials in PEM fuel cell research and development (R&D).
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Everything About Hydrogen Podcast: Using the Law and Regulation to Facilitate Hydrogen Development
Jun 2022
Publication
Burges Salmon’s energy lawyers are known for ground-breaking work in the energy power and utilities sector. They understand the opportunities the technologies and the challenges which the sector presents. Their reputation has been built upon first-of-a-kind projects and deals and an intimate knowledge of energy regulation. Burges Salmon specialists provide expert advice throughout the project/plant life cycle. Over the years this has in turn led to investors and funders requesting their services in the knowledge that they understand the key issues technologies face. They have a team of over 80 lawyers who focus on helping developers investors and funders achieve their aims in the sector. The team has won or been shortlisted for all the key industry awards in energy over the last decade.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Taking Hydrogen off the Grid
Jun 2022
Publication
On this episode of Everything About Hydrogen we chat with Andrew Cunningham Founder and Director at GeoPura. GeoPura is enabling the production transport and use of zero-emissions fuels with innovative and commercially viable technology to decarbonise the global economy. As the world transitions away from fossils fuels there is an increasing need for reliable clean electricity. If global power demand continues to grow as expected the electricity grid system will need support from renewable energy sources such as hydrogen and fuel cell power generator. GeoPura seeks to address exactly that kind of need.
The podcast can be found on their website
The podcast can be found on their website
Navigating the Implementation of Tax Credits for Natural-Gas-Based Low-Carbon-Intensity Hydrogen Projects
Mar 2024
Publication
This paper delves into the critical role of tax credits specifically Sections 45Q and 45V in the financing and economic feasibility of low-carbon-intensity hydrogen projects with a focus on natural-gas-based hydrogen production plants integrated with carbon capture and storage (CCS). This study covers the current clean energy landscape underscoring the importance of low-carbon hydrogen as a key component in the transition to a sustainable energy future and then explicates the mechanics of the 45Q and 45V tax credits illustrating their direct impact on enhancing the economic attractiveness of such projects through a detailed net present value (NPV) model analysis. Our analysis reveals that the application of 45Q and 45V tax credits significantly reduces the levelized cost of hydrogen production with scenarios indicating a reduction in cost ranging from USD 0.41/kg to USD 0.81/kg of hydrogen. Specifically the 45Q tax credit demonstrates a slightly more advantageous impact on reducing costs compared to the 45V tax credit underpinning the critical role of these fiscal measures in enhancing project returns and feasibility. Furthermore this paper addresses the inherent limitations of utilizing tax credits primarily the challenge posed by the mismatch between the scale of tax credits and the tax liability of the project developers. The concept and role of tax equity investments are discussed in response to this challenge. These findings contribute to the broader dialogue on the financing of sustainable energy projects providing valuable insights for policymakers investors and developers in the hydrogen energy sector. By quantifying the economic benefits of tax credits and elucidating the role of tax equity investments our research supports informed decision-making and strategic planning in the pursuit of a sustainable energy future.
Everything About Hydrogen Podcast: Hydrogen on a Global Scale
Aug 2022
Publication
On today’s episode of Everything About Hydrogen we are speaking with Dan Sadler Vice President for UK Low Carbon Solutions at Equinor. Equinor is of course a giant in the global energy sector and is taking a prominent role in the development of the international hydrogen economy with high-profile investments in a number of large-scale production projects in major markets such as the UK. Dan has spent the better part of a decade focused on how to leverage hydrogen’s potential as a fuel for the energy transition and we are excited to have him with us to discuss how Equinor is deploying hydrogen technologies and how he and Equinor expect hydrogen to play a role in a decarbonized energy future.
The podcast can be found on their website.
The podcast can be found on their website.
Breaking the Hard-to-abate Bottleneck in China’s Path to Carbon Neutrality with Clean Hydrogen
Sep 2022
Publication
Countries such as China are facing a bottleneck in their paths to carbon neutrality: abating emissions in heavy industries and heavy-duty transport. There are few in-depth studies of the prospective role for clean hydrogen in these ‘hard-to-abate’ (HTA) sectors. Here we carry out an integrated dynamic least-cost modelling analysis. Results show that first clean hydrogen can be both a major energy carrier and feedstock that can significantly reduce carbon emissions of heavy industry. It can also fuel up to 50% of China’s heavy-duty truck and bus fleets by 2060 and significant shares of shipping. Second a realistic clean hydrogen scenario that reaches 65.7 Mt of production in 2060 could avoid US$1.72 trillion of new investment compared with a no-hydrogen scenario. This study provides evidence of the value of clean hydrogen in HTA sectors for China and countries facing similar challenges in reducing emissions to achieve net-zero goals.
Production of Hydrogen from Offshore Wind in China and Cost-competitive Supply to Japan
Nov 2021
Publication
The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid or bound to a chemical carrier such as toluene or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen including expenses for production storage conversion transport and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Analysis of a Large Balloon Explosion Incident
Sep 2021
Publication
On December 19 2017 a large balloon containing about 22 thousand cubic meters of hydrogen was deliberately torn open to initiate deflation at the completion of a filling test. An inadvertent ignition occurred after about two seconds and caused an explosion that produced extensive light damage to a large building near the balloon test pad. The analysis described here includes an estimate of the buoyancy induced mixing into the torn balloon and the blast wave produced by assumed constant flame speed combustion of the 55% to 65% hydrogen-in-air mixture. Comparisons of calculated blast wave pressures are consistent with estimates of the pressure needed to cause the observed building damage for flame speeds in the range 85 m/s to about 100 m/s.
Deep Decarbonization of the Indian Economy: 2050 Prospects for Wind, Solar, and Green Hydrogen
May 2022
Publication
The paper explores options for a 2050 carbon free energy future for India. Onshore wind and solar sources are projected as the dominant primary contributions to this objective. The analysis envisages an important role for so-called green hydrogen produced by electrolysis fueled by these carbon free energy sources. This hydrogen source can be used to accommodate for the intrinsic variability of wind and solar complementing opportunities for storage of power by batteries and pumped hydro. The green source of hydrogen can be used also to supplant current industrial uses of grey hydrogen produced in the Indian context largely from natural gas with important related emissions of CO2. The paper explores further options for use of green hydrogen to lower emissions from otherwise difficult to abate sectors of both industry and transport. The analysis is applied to identify the least cost options to meet India’s zero carbon future.
Everything About Hydrogen Podcast: Producing Hydrogen with Wind Energy
Sep 2022
Publication
On this episode of Everything About Hydrogen we are speaking with David Wellard Regulatory Affairs Manager at Orsted. Orsted is a global leader in renewable energy generation projects particularly when it comes to the rapidly expanding wind energy sector. Headquartered in Denmark the company has a global reach across multiple continents and technologies. David helps lead Orsted’s policy and regulatory engagement in the United Kingdom and beyond. We are excited to have him with us to discuss how Orsted is looking at and deploying hydrogen technologies and how they expect to utilized hydrogen in a decarbonized energy future.
The podcast can be found on their website.
The podcast can be found on their website.
Charting a Course for Decarbonizing Maritime Transport
Apr 2021
Publication
As the backbone of global trade international maritime transport connects the world and facilitates economic growth and development especially in developing countries. However producing around three percent of global greenhouse gas (GHG) emissions and emitting around 15 percent of some of the world’s major air pollutants shipping is a major contributor to climate change and air pollution. To mitigate its negative environmental impact shipping needs to abandon fossil-based bunker fuels and turn to zero-carbon alternatives. This report the “Summary for Policymakers and Industry” summarizes recent World Bank research on decarbonizing the maritime sector. The analysis identifies green ammonia and hydrogen as the most promising zero-carbon bunker fuels within the maritime industry at present. These fuels strike the most advantageous balance of favorable features relating to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. The analysis also identifies that LNG will likely only play a limited role in shipping’s energy transition due to concerns over methane slip and stranded assets. Crucially the research reveals that decarbonizing maritime transport offers unique business and development opportunities for developing countries. Developing countries with large renewable energy resources could take advantage of the new and emerging future zero-carbon bunker fuel market estimated at over $1 trillion to establish new export markets while also modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to hasten the sector’s energy transition.
Recent Developments in State-of-the-art Hydrogen Energy Technologies – Review of Hydrogen Storage Materials
Jan 2023
Publication
Hydrogen energy has been assessed as a clean and renewable energy source for future energy demand. For harnessing hydrogen energy to its fullest potential storage is a key parameter. It is well known that important hydrogen storage characteristics are operating pressure-temperature of hydrogen hydrogen storage capacity hydrogen absorption-desorption kinetics and heat transfer in the hydride bed. Each application needs specific properties. Every class of hydrogen storage materials has a different set of hydrogenation characteristics. Hence it is required to understand the properties of all hydrogen storage materials. The present review is focused on the state-of– the–art hydrogen storage materials including metal hydrides magnesium-based materials complex hydride systems carbonaceous materials metal organic frameworks perovskites and materials and processes based on artificial intelligence. In each category of materials‘ discovery hydrogen storage mechanism and reaction crystal structure and recent progress have been discussed in detail. Together with the fundamental synthesis process latest techniques of material tailoring like nanostructuring nanoconfinement catalyzing alloying and functionalization have also been discussed. Hydrogen energy research has a promising potential to replace fossil fuels from energy uses especially from automobile sector. In this context efforts initiated worldwide for clean hydrogen production and its use via fuel cell in vehicles is much awaiting steps towards sustainable energy demand.
No more items...