Publications
The Future of Clean Hydrogen in the United States: Views from Industry, Market Innovators, and Investors
Sep 2021
Publication
This report The Future of Clean Hydrogen in the United States: Views from Industry Market Innovators and Investors sheds light on the rapidly evolving hydrogen market based on 72 exploratory interviews with organizations across the current and emerging hydrogen value chain. This report is part of a series From Kilograms to Gigatons: Pathways for Hydrogen Market Formation in the United States which will build on this study to evaluate policy opportunities for further hydrogen development in the United States. The goal of the interviews was to provide a snapshot of the clean hydrogen investment environment and better understand organizations’ market outlook investment rationale and areas of interest. This interview approach was supported by traditional research methods to contextualize and enrich the qualitative findings. This report should be understood as input to a more extensive EFI analysis of hydrogen market formation in the United States; the directions that companies are pursuing in hydrogen production transport and storage and end use at this early stage of value chain development will inform subsequent analysis in important ways.
Influence of Cs Promoter on Ethanol Steam-Reforming Selectivity of Pt/m-ZrO2 Catalysts at Low Temperature
Sep 2021
Publication
The decarboxylation pathway in ethanol steam reforming ultimately favors higher selectivity to hydrogen over the decarbonylation mechanism. The addition of an optimized amount of Cs to Pt/m-ZrO2 catalysts increases the basicity and promotes the decarboxylation route converting ethanol to mainly H2 CO2 and CH4 at low temperature with virtually no decarbonylation being detected. This offers the potential to feed the product stream into a conventional methane steam reformer for the production of hydrogen with higher selectivity. DRIFTS and the temperature-programmed reaction of ethanol steam reforming as well as fixed bed catalyst testing revealed that the addition of just 2.9% Cs was able to stave off decarbonylation almost completely by attenuating the metallic function. This occurs with a decrease in ethanol conversion of just 16% relative to the undoped catalyst. In comparison with our previous work with Na this amount is—on an equivalent atomic basis—just 28% of the amount of Na that is required to achieve the same effect. Thus Cs is a much more efficient promoter than Na in facilitating decarboxylation.
Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea
Sep 2021
Publication
South Korea developed its hydrogen strategies to achieve carbon neutrality and dominate the hydrogen economy amidst and with the impetus of the coronavirus disease 2019 (COVID-19) pandemic. The government strives toward the goal via continuous investment in green hydrogen technologies as well as strategic collaborations. To facilitate the transition into the hydrogen economy this study presents a research and development (R&D) investment and collaboration framework as a national strategy. The framework offers abundant information to elucidate the technology R&D spectrum and regional dimensions of the strategy. Furthermore the proposed framework was applied to the Korean hydrogen economy comprising 955 nationally funded projects worth USD 565.7 million. The statuses and trends of the government’s investment in nationally funded research projects are illustrated with regard to the value chains of the hydrogen economies of 16 regions as well as nine technology clusters relating to the hydrogen economy thereby determining the research organizations that played crucial roles in each cluster of the 16 regions between 2015 and 2020. The results indicate that the research organizations in Daejeon acquired the highest government R&D funding in many hydrogen-economy-related research fields and that an R&D spectrum-based research/strategic collaboration is required to accomplish specialized complexes in the regions.
Hydrogen Infrastructure Project Risks in The Netherlands
Sep 2021
Publication
This study aims to assess the potential risks of setting up a hydrogen infrastructure in the Netherlands. An integrated risk assessment framework capable of analyzing projects identifying risks and comparing projects is used to identify and analyze the main risks in the upcoming Dutch hydrogen infrastructure project. A time multiplier is added to the framework to develop parameters. The impact of the different risk categories provided by the integrated framework is calculated using the discounted cash flow (DCF) model. Despite resource risks having the highest impact scope risks are shown to be the most prominent in the hydrogen infrastructure project. To present the DCF model results a risk assessment matrix is constructed. Compared to the conventional Risk Assessment Matrix (RAM) used to present project risks this matrix presents additional information in terms of the internal rate of return and risk specifics.
Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization
Jun 2020
Publication
Ammonia is considered to be a potential medium for hydrogen storage facilitating CO2-free energy systems in the future. Its high volumetric hydrogen density low storage pressure and stability for long-term storage are among the beneficial characteristics of ammonia for hydrogen storage. Furthermore ammonia is also considered safe due to its high auto ignition temperature low condensation pressure and lower gas density than air. Ammonia can be produced from many different types of primary energy sources including renewables fossil fuels and surplus energy (especially surplus electricity from the grid). In the utilization site the energy from ammonia can be harvested directly as fuel or initially decomposed to hydrogen for many options of hydrogen utilization. This review describes several potential technologies in current conditions and in the future for ammonia production storage and utilization. Ammonia production includes the currently adopted Haber–Bosch electrochemical and thermochemical cycle processes. Furthermore in this study the utilization of ammonia is focused mainly on the possible direct utilization of ammonia due to its higher total energy efficiency covering the internal combustion engine combustion for gas turbines and the direct ammonia fuel cell. Ammonia decomposition is also described in order to give a glance at its progress and problems. Finally challenges and recommendations are also given toward the further development of the utilization of ammonia for hydrogen storage.
Optimization of Component Sizing for a Fuel Cell-Powered Truck to Minimize Ownership Cost
Mar 2019
Publication
In this study we consider fuel cell-powered electric trucks (FCETs) as an alternative to conventional medium- and heavy-duty vehicles. FCETs use a battery combined with onboard hydrogen storage for energy storage. The additional battery provides regenerative braking and better fuel economy but it will also increase the initial cost of the vehicle. Heavier reliance on stored hydrogen might be cheaper initially but operational costs will be higher because hydrogen is more expensive than electricity. Achieving the right tradeoff between these power and energy choices is necessary to reduce the ownership cost of the vehicle. This paper develops an optimum component sizing algorithm for FCETs. The truck vehicle model was developed in Autonomie a platform for modelling vehicle energy consumption and performance. The algorithm optimizes component sizes to minimize overall ownership cost while ensuring that the FCET matches or exceeds the performance and cargo capacity of a conventional vehicle. Class 4 delivery truck and class 8 linehaul trucks are shown as examples. We estimate the ownership cost for various hydrogen costs powertrain components ownership periods and annual vehicle miles travelled.
Decarbonizing China’s Energy System – Modeling the Transformation of the Electricity, Transportation, Heat, and Industrial Sectors
Nov 2019
Publication
Growing prosperity among its population and an inherent increasing demand for energy complicate China’s target of combating climate change while maintaining its economic growth. This paper therefore describes three potential decarbonization pathways to analyze different effects for the electricity transport heating and industrial sectors until 2050. Using an enhanced version of the multi-sectoral open-source Global Energy System Model enables us to assess the impact of different CO2 budgets on the upcoming energy system transformation. A detailed provincial resolution allows for the implementation of regional characteristics and disparities within China. Conclusively we complement the model-based analysis with a quantitative assessment of current barriers for the needed transformation. Results indicate that overall energy system CO2 emissions and in particular coal usage have to be reduced drastically to meet (inter-) national climate targets. Specifically coal consumption has to decrease by around 60% in 2050 compared to 2015. The current Nationally Determined Contributions proposed by the Chinese government of peaking emissions in 2030 are therefore not sufficient to comply with a global CO2 budget in line with the Paris Agreement. Renewable energies in particular photovoltaics and onshore wind profit from decreasing costs and can provide a more sustainable and cheaper energy source. Furthermore increased stakeholder interactions and incentives are needed to mitigate the resistance of local actors against a low-carbon transformation.
Material-based Hydrogen Storage Projection
Sep 2021
Publication
Massive consumption of fossil fuel leads to shortage problems as well as various global environmental issues. Due to the global climatic problem in the world techniques to supply energy demand change from conventional methods that use fossil fuel as the energy source to clean and renewable sources such as solar and wind. However these renewable energy sources are not permanent. Energy storage methods can ensure to supply the energy demand in need if the energy is stored when the renewable source is available. Hydrogen is considered a promising alternative feedstock owing to has unique properties such as clean energy high energy density absence of toxic materials and carbon-free nature. Hydrogen is used main fuel source in fuel cells and hydrogen can be produced with various methods such as wind or electrolysis of water systems that supply electricity from renewable sources. However the safe effective and economical storage of hydrogen is still a challenge that limits the spread of the usage of hydrogen energy. High pressed hydrogen gas and cryogenic hydrogen liquid are two applied storage pathways although they do not meet the above-mentioned requirement. To overcome these drawbacks materials-based hydrogen storage materials have been mostly investigated research field recently. The aim of the study is that exhibiting various material-based hydrogen storage systems and development of these techniques worldwide. Additionally past and current status of the technology are explained and future perspective is discussed.
Liquid Hydrogen as Prospective Energy Carrier: A Brief Review and Discussion of Underlying Assumptions Applied in Value Chain Analysis
Nov 2021
Publication
In the literature different energy carriers are proposed in future long-distance hydrogen value chains. Hydrogen can be stored and transported in different forms e.g. as compressed dense-phase hydrogen liquefied hydrogen and in chemically bound forms as different chemical hydrides. Recently different high-level value chain studies have made extrapolative investigations and compared such options with respect to energy efficiency and cost. Three recent journal papers overlap as the liquid hydrogen option has been considered in all three studies. The studies are not fully aligned in terms of underlying assumptions and battery limits. A comparison reveals partly vast differences in results for chain energy efficiency for long-distance liquid hydrogen transport which are attributable to distinct differences in the set of assumptions. Our comparison pinpoints the boiloff ratio i.e. evaporation losses due to heat ingress in liquid hydrogen storage tanks as the main cause of the differences and this assumption is further discussed. A review of spherical tank size and attributed boiloff ratios is presented for existing tanks of different vintage as well as for recently proposed designs. Furthermore the prospect for further extension of tanks size and reduction of boiloff ratio is discussed with a complementary discussion about the use of economic assumptions in extrapolative and predictive studies. Finally we discuss the impact of battery limits in hydrogen value chain studies and pinpoint knowledge needs and the need for a detailed bottom-up approach as a prerequisite for improving the understanding for pros and cons of the different hydrogen energy carriers.
A Novel Framework for Development and Optimisation of Future Electricity Scenarios with High Penetration of Renewables and Storage
May 2019
Publication
Although electricity supply is still dominated by fossil fuels it is expected that renewable sources will have a much larger contribution in the future due to the need to mitigate climate change. Therefore this paper presents a new framework for developing Future Electricity Scenarios (FuturES) with high penetration of renewables. A multi-period linear programming model has been created for power-system expansion planning. This has been coupled with an economic dispatch model PowerGAMA to evaluate the technical and economic feasibility of the developed scenarios while matching supply and demand. Application of FuturES is demonstrated through the case of Chile which has ambitious plans to supply electricity using only renewable sources. Four cost-optimal scenarios have been developed for the year 2050 using FuturES: two Business as usual (BAU) and two Renewable electricity (RE) scenarios. The BAU scenarios are unconstrained in terms of the technology type and can include all 11 options considered. The RE scenarios aim to have only renewables in the mix including storage. The results show that both BAU scenarios have a levelised cost of electricity (LCOE) lower than or equal to today’s costs ($72.7–77.3 vs $77.6/MWh) and include 81–90% of renewables. The RE scenarios are slightly more expensive than today’s costs ($81–87/MWh). The cumulative investment for the BAU scenarios is $123-$145 bn compared to $147-$157 bn for the RE. The annual investment across the scenarios is estimated at $4.0 ± 0.4 bn. Both RE scenarios show sufficient flexibility in matching supply and demand despite solar photovoltaics and wind power contributing around half of the total supply. Therefore the FuturES framework is a powerful tool for aiding the design of cost-efficient power systems with high penetration of renewables.
A Hydrogen Fuelled LH2 Tanker Ship Design
May 2021
Publication
This study provides a detailed philosophical view and evaluation of a viable design for a large liquid hydrogen tanker fuelled by liquid hydrogen. Established methods for determining tank sizing ship stability and ship characteristics were used to evaluate the preliminary design and performance of the liquefied hydrogen tanker named ‘JAMILA’ designed specifically to transport liquid hydrogen. JAMILA is designed around four large liquid hydrogen tanks with a total capacity of ∼280000 m3 and uses the boil-off gas for propulsion for the loaded leg of the journey. The ship is 370 m long 75 m wide and draws 10.012 m at full load. It has a fully loaded displacement tonnage of 232000 tonnes to carry 20000 tonnes of hydrogen. Its propulsion system contains a combined-cycle gas turbine of approximately 50 MW. The volume of the hydrogen cargo pressurised to 0.5 MPa primarily determines the size and displacement of the ship.
Role of Grain Boundaries in Hydrogen Embrittlement of Alloy 725: Single and Bi-crystal Microcantilever Bending Study
Jan 2022
Publication
In situ electrochemical microcantilever bending tests were conducted in this study to investigate the role of grain boundaries (GBs) in hydrogen embrittlement (HE) of Alloy 725. Specimens were prepared under three different heat treatment conditions and denoted as solution-annealed (SA) aged (AG) and over-aged (OA) samples. For single-crystal beams in an H-containing environment all three heat-treated samples exhibited crack formation and propagation; however crack propagation was more severe in the OA sample. The anodic extraction of H presented similar results as those under the H-free condition indicating the reversibility of the H effect under the tested conditions. Bi-crystal micro-cantilevers bent under H-free and H-charged conditions revealed the significant role of the GB in the HE of the beams. The results indicated that the GB in the SA sample facilitated dislocation dissipation whereas for the OA sample it caused the retardation of crack propagation. For the AG sample testing in an H-containing environment led to the formation of a sharp severe crack along the GB path.
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quantities of contained solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
Nuclear-Renewables Energy System for Hydrogen and Electricity Production
May 2011
Publication
In the future the world may have large stranded resources of low-cost wind and solar electricity. Renewable electricity production does not match demand and production is far from major cities. The coupling of nuclear energy with renewables may enable full utilization of nuclear and renewable facilities to meet local electricity demands and export pipeline hydrogen for liquid fuels fertilizer and metals production. Renewables would produce electricity at full capacity in large quantities. The base-load nuclear plants would match electricity production with demand by varying the steam used for electricity versus hydrogen production. High-temperature electrolysis (HTE) would produce hydrogen from water using (a) steam from nuclear plants and (b) electricity from nuclear plants and renewables. During times of peak electricity demand the HTE cells would operate in reverse fuel cell mode to produce power substituting for gas turbines that are used for very few hours per year and that thus have very high electricity costs. The important net hydrogen production would be shipped by pipeline to customers. Local hydrogen storage would enable full utilization of long-distance pipeline capacity with variable production. The electricity and hydrogen production were simulated with real load and wind data to understand under what conditions such systems are economic. The parametric case study uses a wind-nuclear system in North Dakota with hydrogen exported to the Chicago refinery market. North Dakota has some of the best wind conditions in the United States and thus potentially low-cost wind. The methodology allows assessments with different economic and technical assumptions - including what electrolyzer characteristics are most important for economic viability.
A 1000 MWth Boiler for Chemical-looping Combustion of Solid Fuels – Discussion of Design and Costs
May 2015
Publication
More than 2000 h of solid-fuel CLC operation in a number of smaller pilot units clearly indicate that the concept works. A scale-up of the technology to 1000 MWth is investigated in terms of mass and heat balances flows solids inventories boiler dimensions and the major differences between a full-scale Circulating Fluidized-Bed (CFB) boiler and a Chemical-Looping Combustion CFB (CLC–CFB). Furthermore the additional cost of CLC–CFB relative to CFB technology is analysed and found to be 20 €/tonne CO2. The largest cost is made up of compression of CO2 which is common to all capture technologies. Although the need for oxygen to manage incomplete conversion is estimated to be only a tenth of that of oxy-fuel combustion oxygen production is nonetheless the second largest cost. Other significant costs include oxygen-carrier material increased boiler cost and steam for fluidization of the fuel reactor.
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024 novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies such as dry reforming with CO2 (DRM) partial oxidation with O2 autothermal reforming with H2O and O2. Finally we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e. methanol formic acid and acetic acid) which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
Gas Goes Green: Tomorrow's Heat, Today's Opportunity
Sep 2021
Publication
Cutting-edge world-leading energy network innovation is vital to ensuring that our economy can continue to access the energy it needs to safeguard jobs and to maintain our international competitiveness as the world goes through decarbonisation. In this report we build on the 2020 Gas Goes Green Zero Carbon Commitment to set out the scale of investment that Britain’s gas networks wish to deliver to hydrogen innovation projects and preparing the gas networks. This work will be focused over the next ten years creating highly-skilled high-tech green jobs through investment and ensuring that the impact of that innovation is felt in communities across the UK.
A Hot Syngas Purification System Integrated with Downdraft Gasification of Municipal Solid Waste
Jan 2019
Publication
Gasification of municipal solid waste (MSW) with subsequent utilization of syngas in gas engines/turbines and solid oxide fuel cells can substantially increase the power generation of waste-to-energy facilities and optimize the utilization of wastes as a sustainable energy resources. However purification of syngas to remove multiple impurities such as particulates tar HCl alkali chlorides and sulfur species is required. This study investigates the feasibility of high temperature purification of syngas from MSW gasification with the focus on catalytic tar reforming and desulfurization. Syngas produced from a downdraft fixed-bed gasifier is purified by a multi-stage system. The system comprises of a fluidized-bed catalytic tar reformer a filter for particulates and a fixed-bed reactor for dechlorination and then desulfurization with overall downward cascading of the operating temperatures throughout the system. Novel nano-structured nickel catalyst supported on alumina and regenerable Ni-Zn desulfurization sorbent loaded on honeycomb are synthesized. Complementary sampling and analysis methods are applied to quantify the impurities and determine their distribution at different stages. Experimental and thermodynamic modeling results are compared to determine the kinetic constraints in the integrated system. The hot purification system demonstrates up to 90% of tar and sulfur removal efficiency increased total syngas yield (14%) and improved cold gas efficiency (12%). The treated syngas is potentially applicable in gas engines/turbines and solid oxide fuel cells based on the dew points and concentration limits of the remaining tar compounds. Reforming of raw syngas by nickel catalyst for over 20 h on stream shows strong resistance to deactivation. Desulfurization of syngas from MSW gasification containing significantly higher proportion of carbonyl sulfide than hydrogen sulfide traces of tar and hydrogen chloride demonstrates high performance of Ni-Zn sorbents.
Graphitic Carbon Nitride Heterojunction Photocatalysts for Solar Hydrogen Production
Sep 2021
Publication
Photocatalytic hydrogen production is considered as an ideal approach to solve global energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4) has received extensive consideration due to its facile synthesis stable physicochemical properties and easy functionalization. However the pristine g-C3N4 usually shows unsatisfactory photocatalytic activity due to the limited separation efficiency of photogenerated charge carriers. Generally introducing semiconductors or co-catalysts to construct g–C3N4–based heterojunction photocatalysts is recognized as an effective method to solve this bottleneck. In this review the advantages and characteristics of various types of g–C3N4–based heterojunction are analyzed. Subsequently the recent progress of highly efficient g–C3N4–based heterojunction photocatalysts in the field of photocatalytic water splitting is emphatically introduced. Finally a vision of future perspectives and challenges of g–C3N4–based heterojunction photocatalysts in hydrogen production are presented. Predictably this timely review will provide valuable reference for the design of efficient heterojunctions towards photocatalytic water splitting and other photoredox reactions.
Net Zero Strategy: Build Back Greener
Oct 2021
Publication
Last year the Prime Minister set out his 10 point plan for a green industrial revolution laying the foundations for a green economic recovery from the impact of COVID-19 with the UK at the forefront of the growing global green economy.
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
- our decarbonisation pathways to net zero by 2050 including illustrative scenarios
- policies and proposals to reduce emissions for each sector
- cross-cutting action to support the transition.
No more items...