Publications
Development of Hydrogen Behavior Simulation Code System
Oct 2015
Publication
In the Fukushima Daiichi Nuclear Power Station (NPS) accident hydrogen generated by oxidation reaction of the cladding and water etc. was leaked into the NPS building and finally led to occurrence of hydrogen explosion in the building. This resulted in serious damage to the environment. To improve the safety performance of the NPS especially on the hydrogen safety under severe accident conditions a simulation code system has been developed to analyze hydrogen behaviour including diffusion combustion explosion and structural integrity evaluation. This developing system consists of CFD and FEM tools in order to support various hydrogen user groups consisting of students researchers and engineers. Preliminary analytical results obtained with above mentioned tools especially with open source codes including buoyancy turbulent model and condensation model agreed well with the existing test data.
Numerical Study on Spontaneous Ignition of Pressurized Hydrogen Release Through a Length of Tube
Sep 2009
Publication
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.<br/>The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.<br/>Parametric studies were also conducted to investigate the effect of rupture time release pressure tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value even though ignition could take place inside the tube the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched.
Numerical Study on Combustion and Emission Characteristics of a PFI Gasoline Engine with Hydrogen Direct-Injection
Mar 2019
Publication
In this paper the effects of hydrogen blending radio and EGR rate on combustion and emission characteristics of a PFI gasoline engine with hydrogen direct-injection have been investigated by numerical modelling methods using a new generation of CFD simulation software CONVERGE. Results showed that compared with original engine hydrogen direct-injection PFI gasoline engine had a better performance on combustion characteristics but it also had a disadvantage of increasing NOx emissions. With the increase of hydrogen blending radio combustion duration shortened and CA50 advanced and was closer to TDC. And CO and THC emissions decreased however NOx emission increased. The variations of the combustion and emission characteristics followed by the increase of the EGR rate were exactly the opposite to the change of hydrogen blending radio. Considering both the combustion and emission characteristics using moderate EGR rate (15%~20%) under high hydrogen blending radio (15%~20%) condition can realize the simultaneous improvement of combustion and emission performance.
Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers
Oct 2021
Publication
Hydrogen mixed natural gas for combustion can improve combustion characteristics and reduce carbon emission which has important engineering application value. A casing swirl burner model is adopted to numerically simulate and research the natural gas hydrogen mixing technology for combustion in gas boilers in this paper. Under the condition of conventional air atmosphere and constant air excess coefficient the six working conditions for hydrogen mixing proportion into natural gas are designed to explore the combustion characteristics and the laws of pollution emissions. The temperature distributions composition and emission of combustion flue gas under various working conditions are analyzed and compared. Further investigation is also conducted for the variation laws of NOx and soot generation. The results show that when the boiler heating power is constant hydrogen mixing will increase the combustion temperature accelerate the combustion rate reduce flue gas and CO2 emission increase the generation of water vapor and inhibit the generation of NOx and soot. Under the premise of meeting the fuel interchangeability it is concluded that the optimal hydrogen mixing volume fraction of gas boilers is 24.7%.
Status of the Pre-normative Research Project PRESLHY for the Safe Use of LH2
Sep 2019
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large scale transport and storage of hydrogen with higher densities and potentially better safety performance. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducts pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The work program consists of a preparatory phase where the state of the art before the project has been summarized and where the experimental planning was adjusted to the outcome of a research priorities workshop. The central part of the project consists of 3 phenomena oriented work packages addressing Release Ignition and Combustion with analytical approaches experiments and simulations. The results shall improve the general understanding of the behavior of LH2 in accidents and thereby enhance the state-of-the-art what will be reflected in appropriate recommendations for development or revision of specific international standards. The paper presents the status of the project at the middle of its terms.
Safety Aspects in the Production and Separation of Hydrogen from Biomass
Sep 2011
Publication
Tecnalia is working in the development of gasification technology for the production of hydrogen from biomass. Biomass is an abundant and disperse renewable energy source that can be important for the production of hydrogen. The development of hydrogen system from biomass requires multifaceted studies on hydrogen production systems hydrogen separation methods and hydrogen safety aspects. Steam gasification of biomass produces a syngas with high hydrogen content but this syngas requires a post-treatment to clean and to separate the hydrogen. As a result of this analysis Tecnalia has defined a global process for the production cleaning enrichment and separation of hydrogen from the syngas produced from biomass gasification. But besides the technical aspects safety considerations affecting all the described processes have been identified. For that reason it is being developed a procedure to establish the technical requirements and the recommended practices to ensure the highest level of safety in the production and handing of hydrogen.
Integrated Ni-P-S Nanosheets Array as Superior Electrocatalysts for Hydrogen Generation
Jan 2017
Publication
Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems. Here we present the synthesis of integrated Ni-P-S nanosheets array including Ni2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction (HER) in a wide pH range. In alkaline media it can generate current densities of 10 20 and 100 mA cm−2 at low overpotentials of only −101.9 −142.0 and −207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation.
Characteristic of Cryogenic Hydrogen Flames from High-aspect Ratio Nozzles
Sep 2019
Publication
Unintentional leaks at hydrogen fuelling stations have the potential to form hydrogen jet flames which pose a risk to people and infrastructure. The heat flux from these jet flames are often used to develop separation distances between hydrogen components and buildings lot-lines etc. The heat flux and visible flame length is well understood for releases from round nozzles but real unintended releases would be expected to be be higher aspect-ratio cracks. In this work we measured the visible flame length and heat-flux characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. We compare this data to flames of both cryogenic and compressed hydrogen from round nozzles. The aspect ratio of the release does not affect the flame length or heat flux significantly for a given mass flow under the range of conditions studied. The engineering correlations presented in this work that enable the prediction of flame length and heat flux can be used to assess risk at hydrogen fuelling stations with liquid hydrogen and develop science-based separation distances for these stations.
Comparison of Two Simplified Models Predictions with Experimental Measurements for Gas Release Within an Enclosure
Sep 2009
Publication
In this work the validity of simplified mathematical models for predicting dispersion of turbulent buoyant jet or plume within a confined volume is evaluated. In the framework of the HYSAFE Network of Excellence CEA performed experimental tests in a full-scale Garage facility in order to reproduce accidental gas leakages into an unventilated residential garage. The effects of release velocities diameters durations mass flow rates and flow regimes on the vertical distribution of the gas concentration are investigated. Experimental data confirm the formation for the release conditions of an almost well-mixed upper layer and a stratified lower layer. The comparison of the measurements and the model predictions shows that a good agreement is obtained for a relatively long-time gas discharge for jet like or plume like flow behaviour.
A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids
Apr 2022
Publication
Hydrogen technologies have been rapidly developing in the past few decades pushed by governments’ road maps for sustainability and supported by a widespread need to decarbonize the global energy sector. Recent scientific progress has led to better performances and higher efficiencies of hydrogen-related technologies so much so that their future economic viability is now rarely called into question. This article intends to study the integration of hydrogen systems in both gas and electric distribution networks. A preliminary analysis of hydrogen’s physical storage methods is given considering both the advantages and disadvantages of each one. After examining the preeminent ways of physically storing hydrogen this paper then contemplates two primary means of using it: integrating it in Power-to-Gas networks and utilizing it in Power-to-Power smart grids. In the former the primary objective is the total replacement of natural gas with hydrogen through progressive blending procedures from the transmission pipeline to the domestic burner; in the latter the set goal is the expansion of the implementation of hydrogen systems—namely storage—in multi-microgrid networks thus helping to decarbonize the electricity sector and reducing the impact of renewable energy’s intermittence through Demand Side Management strategies. The study concludes that hydrogen is assumed to be an energy vector that is inextricable from the necessary transition to a cleaner more efficient and sustainable future.
Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues
Mar 2013
Publication
The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest four deliver natural gas from Canada and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.
Experimental Study on High Pressure Hydrogen Jets Coming Out of Tubes of 0.1–4.2 m in Length
Sep 2011
Publication
Wide use of hydrogen faces significant studies to resolve hydrogen safety issues in industries worldwide. However widely acceptable safety level standards are not achieved in the present situation yet. The present paper deals with hydrogen leaks from a tube to ignite and explode in atmosphere. The experiments using a shock tube are performed to clarify the auto-ignition property of high pressure hydrogen jet spouting from a tube. In order to improve experimental repeatability and reliability the shock tube with a plunger system is applied where the PET diaphragm is ruptured by a needle in order to control a diaphragm burst pressure (hydrogen pressure). As a result it becomes possible to control the diaphragm burst pressure to obtain a local minimum value. The most important result obtained in the preset study is that the minimum diaphragm burst pressure for auto-ignition is found between 1.0 and 1.2 m of tube length using a longer tube than the one used in the previous study. This minimum tube size is not found elsewhere to suggest that the tube length has a limit size for auto-ignition. Furthermore auto-ignition and Mach disk at the tube exit are observed using a high speed camera which is set at the frame speed of 1x105 fps when the ignited hydrogen jet is spouted out the tube.
Fundamental Study on Accidental Explosion Behavior of Hydrogen/Air Mixtures in Open Space
Sep 2011
Publication
In this study the flame propagation behavior and the intensity of blast wave by an accidental explosion of a hydrogen/air mixture in an open space have been measured simultaneously by using soap bubble method. The results show that the flame in lean hydrogen/air mixtures propagated with a wrinkled flame by spontaneous instability. The flame in rich hydrogen/air mixtures propagated smoothly in the early stage and was intensively wrinkled and accelerated in the later stage by different type of instability. The intensity of the blast wave of hydrogen/air mixtures is strongly affected by the acceleration of the flame propagation by these spontaneous flame disturbances.
CFD Simulations on Small Hydrogen Releases Inside a Ventilated Facility and Assessment of Ventilation Efficiency
Sep 2009
Publication
The use of stationary H2 and fuel cell systems is expected to increase rapidly in the future. In order to facilitate the safe introduction of this new technology the HyPer project funded by the EC developed a public harmonized Installation Permitting Guidance (IPG) document for the installation of small stationary H2 and fuel cell systems for use in various environments. The present contribution focuses on the safety assessment of a facility inside which a small H2 fuel cell system (4.8 kWe) is installed and operated. Dispersion experiments were designed and performed by partner UNIPI. The scenarios considered cover releases occurring inside the fuel cell at the valve of the inlet gas pipeline just before the pressure regulator which controls the H2 flow to the fuel cell system. H2 was expected to leak out of the fuel cell into the facility and then outdoors through the ventilation system. The initial leakage diameter was chosen based on the Italian technical guidelines for the enforcement of the ATEX European directive. Several natural ventilation configurations were examined. The performed tests were simulated by NCSRD using the ADREA-HF code. The numerical analysis took into account the full interior of the fuel cell in order to investigate for any potential accumulation effects. Comparisons between predicted and experimental H2 concentrations at 4 sensor locations inside the facility are reported. Finally an overall assessment of the ventilation efficiency was made based on the simulations and experiments.
Experimental Study of the Spontaneous Ignition of Partly Confined Hydrogen Jets
Sep 2011
Publication
The current study addresses the spontaneous ignition of hydrogen jets released into a confined oxidizer environment experimentally. The experiments are conducted in a shock tube where hydrogen gas is shock-accelerated into oxygen across a perforated plate. The operating conditions and hole dimension of the plate were varied in order to identify different flow field and ignition scenarios. Time resolved Schlieren visualization permitted to reconstruct the gasdynamic evolution of the release and different shock interactions. Time resolved self-luminosity records permitted us to record whether ignition was achieved and also to record the dimension of the turbulent mixing layer. The ignition limits determined experimentally in good agreement with the 1D diffusion ignition model proposed by Maxwell and Radulescu. Nevertheless the experiments demonstrated that the mixing layer is two to three orders of magnitude thicker than predicted by molecular diffusion which can be attributed to the observed mixing layer instabilities and shock-mixing layer interactions which provide a much more intense mixing rate than anticipated from previous and current numerical predictions. These observations further clarify why releases through partly confined geometries are more conducive to jet ignition of the jets.
Hydrogen Tank Filling Experiments at the JRC-IE Gastef Facility
Sep 2011
Publication
Storage of gases under pressure including hydrogen is a well-known technique. However the use in vehicles of hydrogen at pressures much higher than those applicable in natural gas cars still requires safety and performance studies with respect to the verification of the existing standards and regulations. The JRC-IE has developed a facility GasTeF for carrying out tests on full-scale high pressure vehicle’s tanks for hydrogen or natural gas. Typical tests performed in GasTeF are static permeation measurements of the storage system and hydrogen cycling in which tanks are fast filled and slowly emptied using hydrogen pressurised up to 70 MPa for at least 1000 times according to the requirements of the EU regulation on type-approval of hydrogen-powered motor vehicles. Moreover the temperature evolution of the gas inside and outside the tank is monitored using an ad-hoc designed thermocouples array system. This paper reports the first experimental results on the temperature distribution during hydrogen cycling tests.
Enhancing Safety of Hydrogen Containment Components Through Materials Testing Under In-service Conditions
Oct 2015
Publication
The capabilities in the Hydrogen Effects on Materials Laboratory (HEML) at Sandia National Laboratories and the related materials testing activities that support standards development and technology deployment are reviewed. The specialized systems in the HEML allow testing of structural materials under in-service conditions such as hydrogen gas pressures up to 138 MPa temperatures from ambient to 203 K and cyclic mechanical loading. Examples of materials testing under hydrogen gas exposure featured in the HEML include stainless steels for fuel cell vehicle balance of plant components and Cr-Mo steels for stationary seamless pressure vessels.
Ignition and Heat Radiation of Cryogenic Hydrogen Jets
Sep 2011
Publication
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature velocity turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.
Pressure Limit of Hydrogen Spontaneous Ignition in a T-shaped Channel
Sep 2011
Publication
This paper describes a large eddy simulation model of hydrogen spontaneous ignition in a T-shaped channel filled with air following an inertial flat burst disk rupture. This is the first time when 3D simulations of the phenomenon are performed and reproduced experimental results by Golub et al. (2010). The eddy dissipation concept with a full hydrogen oxidation in air scheme is applied as a sub-grid scale combustion model to enable use of a comparatively coarse grid to undertake 3D simulations. The renormalization group theory is used for sub-grid scale turbulence modelling. Simulation results are compared against test data on hydrogen release into a T-shaped channel at pressure 1.2–2.9 MPa and helped to explain experimental observations. Transitional phenomena of hydrogen ignition and self-extinction at the lower pressure limit are simulated for a range of storage pressure. It is shown that there is no ignition at storage pressure of 1.35 MPa. Sudden release at pressure 1.65 MPa and 2.43 MPa has a localised spot ignition of a hydrogen-air mixture that quickly self-extinguishes. There is an ignition and development of combustion in a flammable mixture cocoon outside the T-shaped channel only at the highest simulated pressure of 2.9 MPa. Both simulated phenomena i.e. the initiation of chemical reactions followed by the extinction and the progressive development of combustion in the T-shape channel and outside have provided an insight into interpretation of the experimental data. The model can be used as a tool for hydrogen safety engineering in particular for development of innovative pressure relief devices with controlled ignition.
Hydrogen as an Energy Carrier: An Evaluation of Emerging Hydrogen Value Chains
Nov 2018
Publication
Some 3% of global energy consumption today is used to produce hydrogen. Only 0.002% of this hydrogen about 1000 tonnes per annum(i) is used as an energy carrier. Yet as this timely position paper from DNV GL indicates hydrogen can become a major clean energy carrier in a world struggling to limit global warming.<br/>The company’s recently published 2018 Energy Transition Outlook(1) projects moderate uptake of hydrogen in this role towards 2050 then significant growth towards 2100. Building on that this position paper provides a more granular analysis of hydrogen as an energy carrier.
Catalysts for Hydrogen Removal: Kinetic Paradox and Functioning at High Concentration of Hydrogen
Sep 2009
Publication
Platinum metals dispersed on a porous carrier e.g. -Al2O3 are used as catalysts for removal of small amounts of hydrogen from the air where the excess of oxygen is significant.<br/>The recombination reaction of H2 and O2 on smooth platinum proceeds at a high rate only in gas mixes with an excess of hydrogen. When the concentration of oxygen exceeds that of hydrogen in terms of stoichiometric ratio the process slows down sharply and eventually stops completely. In research undertaken at the Karpov Institute of Physical Chemistry (Moscow) forty years ago the electrochemical mechanism of red-ox reactions was proposed as an explanation for this inhibition by excess oxygen. The results of ellipsometric analysis pointed to the formation of a protective monolayer of PtO molecules on the Pt surface in an oxygen-rich atmosphere. It was observed that the recombination reaction proceeds at a high rate with the use of a porous catalyst at any concentrations of reactant gases. The reason for that lies in the mechanism of the catalysis: the reaction proceeds at a certain depth in the porous body of the catalyst. Hydrogen which has higher mobility penetrates in larger quantity than oxygen thus creating there the stoichiometric excess. To test the proposed mechanism of recombination the catalytic reaction was studied ) with porous carriers of various thicknesses and b) with metal grids of various porosities covering the catalyst. The data obtained have confirmed unequivocally the earlier hypothesis of hydrogenation of a porous catalyst.<br/>Such insight has allowed the authors to develop more effective prototypes of catalyst for removal of hydrogen. In particular by using a porous grid cover to remove excess heat in the reaction zone of the catalyst plate we achieved a considerable expansion of the region of hydrogen concentrations where the catalyst is both effective and reliable.
Numerical Simulation of Hydrogen Release From High-Pressure Storage Vessel
Sep 2009
Publication
In this paper the deflagration region and characteristics of the hydrogen flow which was generated by high-pressure hydrogen discharge from storage vessels were studied. A 3-D analytic model is established based on the species transfer model and the SST k −ω turbulence model. The established model is applied to the research of the flow characteristics of the hydrogen under-expanded jet under different filling pressures of 30 MPa 35 MPa and 40 MPa respectively. The evolution process of hydrogen combustible cloud is analyzed under the filling pressure of 30 MPa. It is revealed that a supersonic jet is formed after the high-pressure hydrogen discharge outlet In the vicinity of the Mach disk the hydrogen jet velocity and temperature reach the maximum values and the variation of filling pressure has little effect on the peak values of the hydrogen jet flow velocity and temperature during the considered pressure range. In the rear of the Mach disk the variation rates of the hydrogen flow velocity and temperature are in inversely proportional to the hydrogen filling pressure. At the preliminary stage the discharged hydrogen is apple-shaped which expands along the radial and then the axial growth rate of the hydrogen cloud increases with the passage of time.
Performance-Based Requirements for Hydrogen Detection Allocation and Actuation
Sep 2009
Publication
The hydrogen detection system is a key component of the hydrogen safety systems (HSS). Any HSS forms a second layer of protection for the assets under accidental conditions when a first layer of protection - passive protection systems (separation at “safe” distance natural ventilation) are inoperable or failed. In this report a performance-based risk-informed methodology for establishing of the explicit quantitative requirements for hydrogen detectors allocation and actuation is proposed. The main steps of the proposed methodology are described. It is suggested (as a first approximation) to use in a process of quantification of a hydrogen detection system performance (from safety viewpoint) a five-tiered hierarchy namely 1) safety goals 2) risk-informed safety objectives 3) performance goal and metrics 4) rational safety criteria 5) safety factors. Unresolved issues of the proposed methodology of Safety Performance Analysis for development of the risk-informed and performance based standards on the hydrogen detection systems are synopsized.<br/><br/>
Improvements in Two-Step Model of Hydrogen Detonative Combustion: Model Description and Sensitivity to its Parameters
Sep 2009
Publication
In the present paper the two-stage model of detonative combustion of hydrogen is presented. The following improvements are described: accurate description of the heat release stage of combustion; the clear physics-based procedure for calculation of the parameters of the proposed model; sample calculations of the detonation wave in hydrogen/air mixtures in wide range of conditions showing that the proposed model performs well in a wide range of conditions (pressures temperatures mixture compositions). The results of the 2D simulations of the detonation cell are presented for the hydrogen/oxygen/argon mixture as example to show the performance and accuracy of the model presented in this paper.
Numerical Simulation and Experiments of Hydrogen Diffusion Behaviour for Fuel Cell Electric Vehicle
Sep 2011
Publication
Research was conducted on hydrogen diffusion behaviour to construct a simulation method for hydrogen leaks into complexly shaped spaces such as around the hydrogen tank of a fuel cell electric vehicle (FCEV). To accurately calculate the hydrogen concentration distribution in the vehicle underfloor space it is necessary to take into account the effects of hydrogen mixing and diffusion due to turbulence. The turbulence phenomena that occur in the event that hydrogen leaks into the vehicle underfloor space were classified into the three elements of jet flow wake flow and wall turbulence. Experiments were conducted for each turbulence element to visualize the flows and the hydrogen concentration distributions were measured. These experimental values were then compared with calculated values to determine the calculation method for each turbulence phenomenon. Accurate calculations could be performed by using the k-ω Shear Stress Transport (SST) model for the turbulence model in the jet flow calculations and the Reynolds Stress Model (RSM) in the wall turbulence calculations. In addition it was found that the large fluctuations produced by wake flow can be expressed by unsteady state calculations with the steady state calculation solutions as the initial values. Based on the above information simulations of hydrogen spouting were conducted for the space around the hydrogen tank of an FCEV. The hydrogen concentration calculation results matched closely with the experimental values which verified that accurate calculations can be performed even for the complex shapes of an FCEV.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Hydrogen Fuel-Cell Forklift Vehicle Releases In Enclosed Spaces
Sep 2011
Publication
Sandia National Laboratories has worked with stakeholders and original equipment manufacturers (OEMs) to develop scientific data that can be used to create risk-informed hydrogen codes and standards for the safe operation of indoor hydrogen fuel-cell forklifts. An important issue is the possibility of an accident inside a warehouse or other enclosed space where a release of hydrogen from the high-pressure gaseous storage tank could occur. For such scenarios computational fluid dynamics (CFD) simulations have been used to model the release and dispersion of gaseous hydrogen from the vehicle and to study the behavior of the ignitable hydrogen cloud inside the warehouse or enclosure. The overpressure arising as a result of ignition and subsequent deflagration of the hydrogen cloud within the warehouse has been studied for different ignition delay times and ignition locations. Both ventilated and unventilated warehouses have been considered in the analysis. Experiments have been performed in a scaled warehouse test facility and compared with simulations to validate the results of the computational analysis.
Evaluation of an Improved Vented Deflagration CFD Model Against Nine Experimental Cases
Sep 2019
Publication
In the present work a newly developed CFD deflagration model incorporated into the ADREA-HF code is evaluated against hydrogen vented deflagrations experiments carried out by KIT and FM-Global in a medium (1 m3) and a real (63.7 m3) scale enclosure respectively. A square vent of 0.5 m2 and 5.4 m2 respectively is located in the center of one of side walls. In the case of the medium scale enclosure the 18% v/v homogeneous hydrogen-air mixture and back-wall ignition case is examined. In the case of the real scale enclosure the examined cases cover different homogeneous mixture concentrations (15% and 18% v/v) different ignition locations (back-wall and center) and different levels of initial turbulence. The CFD model accounts for flame instabilities that develop as the flame propagates inside the chamber and turbulence that mainly develops outside the vent. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model for the back-wall ignition cases. For the center ignition cases the model overestimates the maximum overpressure. The opening of the vent cover is identified as a possible reason for the overprediction. The analysis indicates that turbulence is the main factor which enhances external explosion strength causing the sudden pressure increase confirming previous findings.
Uncertainties in Explosion Risk Assessment for a Hydrogen Refuelling Station
Sep 2011
Publication
The project “Towards a Hydrogen Refuelling Infrastructure for Vehicles” (THRIVE) aimed at the determination of conditions to stimulate the building of a sustainable infrastructure for hydrogen as a car fuel in The Netherlands. Economic scenarios were constructed for the development of such an infrastructure for the next one to four decades. The eventual horizon will require the erection of a few hundred to more than a thousand hydrogen refuelling stations (HRS) in The Netherlands. The risk acceptability policy in The Netherlands implemented in the External Safety Establishments decree requires the assessment and management of safety risks imposed on the public by car fuelling stations. In the past a risk-informed policy has been developed for the large scale introduction of liquefied petroleum gas (LPG) as a car fuel and a similar policy will also be required if hydrogen is introduced in the public domain. A risk assessment methodology dedicated to cope with accident scenarios relevant for hydrogen applications is to be developed. Within the THRIVE project a demo risk assessment was conducted for the possible implementation of an HRS within an existing station for conventional fuels. The studied station is located in an urban area occupied with housing and commercial activities. The HRS is based on delivery and on-site storage of liquid hydrogen and dispensing of high pressure gaseous hydrogen into vehicles. The main challenges in the risk assessment were in the modelling of release and dispersion of liquid hydrogen. Definition of initial conditions for computational fluid dynamics (CFD) modelling to evaluate dispersion of a cold hydrogen air mixture appears rather complex and is not always fully understood. The modelling assumptions in the initial conditions determine to a large extent the likelihood and severity of potential explosion effects. The paper shows the results of the investigation and the sensitivity to the basic assumptions in the model input.
Fuel Cell in Maritime Applications Challenges, Chances and Experiences
Sep 2011
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's share of air pollution is becoming significant and public concern has led to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce further regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or even main propulsion. The paper summarizes the legal background in international shipping related to the use of fuel cells and gas as fuel in ships. The focus of the paper will be on the first experiences on the use of fuel cell systems on board of ships. In this respect an incident on a fuel cell ship in Hamburg will be discussed. Moreover the paper will point out the potential for the use of fuel cell systems on board. Finally an outlook is given on ongoing and planed projects for the use of fuel cells on board of ships.
Helium Release in A Closed Enclosure- Comparisons Between Simple Models, CFD Calculations And Experimental Results
Sep 2011
Publication
In the prospect of a safe use of hydrogen in our society one important task is to evaluate under which conditions the storage of hydrogen systems can reach a sufficient level of safety. One of the most important issues is the use of such system in closed area for example a private garage or an industrial facility. In the scope of this paper we are mainly interested in the following scenario: a relatively slow release of hydrogen (around 5Nl/min) in a closed and almost cubic box representing either a fuel cell at normal scale or a private garage at a smaller scale. For practical reasons helium was used instead of hydrogen in the experiments on which are based our comparisons. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of either a stably stratified distribution of concentration or the formation of a homogeneous layer due to high enough convective flows at the top of the enclosure. Nevertheless most of them consider the cases of accidental situation in which the flow rate is relatively important (higher than 10Nl/min). Numerical simulations carried out with the CEA code Cast3M and a LES turbulence model confirm the differences of results already observed in experimental helium concentration measurements for a same injection flow rate and two different injection nozzle diameters contradicting simple physical models used in safety calculations.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
Dynamic Energy and Mass Balance Model for an Industrial Alkaline Water Electrolyzer Plant Process
Nov 2021
Publication
This paper proposes a parameter adjustable dynamic mass and energy balance simulation model for an industrial alkaline water electrolyzer plant that enables cost and energy efficiency optimization by means of system dimensioning and control. Thus the simulation model is based on mathematical models and white box coding and it uses a practicable number of fixed parameters. Zero-dimensional energy and mass balances of each unit operation of a 3 MW and 16 bar plant process were solved in MATLAB functions connected via a Simulink environment. Verification of the model was accomplished using an analogous industrial plant of the same power and pressure range having the same operational systems design. The electrochemical mass flow and thermal behavior of the simulation and the industrial plant were compared to ascertain the accuracy of the model and to enable modification and detailed representation of real case scenarios so that the model is suitable for use in future plant optimization studies. The thermal model dynamically predicted the real case with 98.7 % accuracy. Shunt currents were the main contributor to relative low Faraday efficiency of 86 % at nominal load and steady-state operation and heat loss to ambient from stack was only 2.6 % of the total power loss.
Experimental Investigation of Hydrogen Release and Ignition from Fuel Cell Powered Forklifts in Enclosed Spaces
Sep 2011
Publication
Due to rapid growth in the use of hydrogen powered fuel cell forklifts within warehouse enclosures Sandia National Laboratories has worked to develop scientific methods that support the creation of new hydrogen safety codes and standards for indoor refuelling operations. Based on industry stakeholder input conducted experiments were devised to assess the utility of modelling approaches used to analyze potential consequences from ignited hydrogen leaks in facilities certified according to existing code language. Release dispersion and combustion characteristics were measured within a scaled test facility located at SRI International's Corral Hollow Test Site. Moreover the impact of mitigation measures such as active/passive ventilation and pressure relief panels was investigated. Since it is impractical to experimentally evaluate all possible facility configurations and accident scenarios careful characterization of the experimental boundary conditions has been performed so that collected datasets can be used to validate computational modelling approaches.
Experimental Results and Comparison with Simulated Data of a Low Pressure Hydrogen Jet
Sep 2011
Publication
Experiments with a hydrogen jet were performed at two different pressures 96 psig (6.6 bars) and 237 psig (16.3 bars). The hydrogen leak was generated at two different hole sizes 1/16 inch (1.6 mm) and 1/32 inch (0.79 mm). The flammable shape of the plume was characterised by numerous measurements of the hydrogen concentration inside of the jet. The effect of the nearby horizontal surface on the shape of the plume was measured and compared with results of CFD numerical simulations. The paper will present results and an interpretation on the nature of the plume shape.
Safety of Hydrogen and Natural Gas Mixtures by Pipelines- ANR French Project Hydromel
Sep 2011
Publication
In order to gain a better understanding of hazards linked with Hydrogen/Natural gas mixtures transport by pipeline the National Institute of Industrial Environment and Risks (INERIS) alongside with the Atomic Energy Commission (CEA) the industrial companies Air Liquide and GDF SUEZ and the French Research Institutes ICARE and PPRIME (CNRS) have been involved in a project called HYDROMEL. This project was partially funded by the French National Research Agency (ANR) in the framework of its PAN-H program aimed at promoting the R&D activities related to the hydrogen deployment. Firstly the project partners investigated how a NG/H2 mixture may influence the modelling of a hazard scenario i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential of danger. Therefore it was necessary to build an experimental database of physics properties for mixtures. Secondly effect distances in accidental scenarios that could happen on pipelines have been calculated with existing models adapted to the mixtures. This part was preceded by a benchmark exercise between all partners models and experimental results found in the literature. Finally the consortium wrote a good practice guideline for modelling the effects related to the release of natural gas /hydrogen mixture?. The selected models and their comparison with data collected in the literature as well as the experimental results of this project and the main conclusions of the guidelines are presented in this paper.
Explosion Venting of Rich Hydrogen-air Mixtures in a Cylindrical Vessel with Two Symmetrical Vents
Oct 2015
Publication
The safety issues related to explosion venting of hydrogen-air mixtures are significant and deserve more detailed investigation. Vented hydrogen-air explosion has been studied extensively in vessels with a single vent. However little attention has been paid to the cases with more than one vent. In this paper experiments about explosion venting of rich hydrogen-air mixtures were conducted in a cylindrical vessel with two symmetrical vents to investigate the effect of vent area and distribution on pressure build up and flame behaviours. Venting accelerates the flame front towards the vent but has nearly no effect on the opposite side. The maximum internal overpressure decreases and the maximum external flame length increases with the increase of vent area. Two pressure peaks can be identified outside of vessel which correspond to the external explosion and the burnt gas jet respectively. Compared with single vent two vents with same total vent area leads to nearly unchanged maximum internal and external overpressure but much smaller external flame length.
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However stoichiometric methanation will lead to a significant presence of carbon dioxide limited in gas networks and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.
Single Step Compact Steam Methane Reforming Process for Hydrogen-Cng (H-Cng) Production from Natural Gas
Sep 2011
Publication
Compressed natural gas (CNG) is being increasingly used as a clean transportation fuel. However for further reduction in emissions particularly NOx H-CNG mixture with ~ 20 % hydrogen is recommended. Presently most of the H-CNG mixture is produced by blending hydrogen with CNG. For hydrogen production Steam Methane Reforming (SMR) is a major process accounting for more than 90% of hydrogen production by various industries. In this process natural gas is first reformed to syn gas under severe operating conditions (Pressure 20-30 bar temperature 850-950 deg C) followed by conversion of CO to hydrogen in the shift reactor. Other method of hydrogen production such as electrolysis of water is more expensive. Further there are issues of safety with handling of hydrogen its storage and transportation for blending. In order to overcome these problems a single step compact process for the production of H-CNG gaseous mixture through low severity steam methane reforming of natural gas has been developed. It employs a catalyst containing nickel nickel oxide magnesium oxide and silica and has the capability of producing H-CNG mixture in the desired proportion containing 15-20 vol % hydrogen with nil CO production. The process is flexible and rugged allowing H-CNG production as per the demand. The gaseous H-CNG product mixture can directly be used as automobile fuel after compression. The process can help as important step in safe transition towards hydrogen economy. A demonstration unit is being set up at IOC R&D Centre.
On The Kinetics of Alh3 Decomposition and the Subsequent Al Oxidation
Sep 2011
Publication
Metal hydrides are used for hydrogen storage. AlH3 shows a capacity to store about 10 wt% hydrogen. Its hydrogen is split-off in the temperature interval of 400–500 K. On dehydrogenation a nano-structured Al material emerges with specific surfaces up to 15–20 m2/g. The surface areas depend on the heating rate because of a temperature dependent crystallite growth. The resulting Al oxidizes up to 20–25% weight on air access forming an alumina passivation layer of 3–4 nm thickness on all exposed surfaces. The heat released from this Al oxidation induces a high risk to this type of hydrogen storage if the containment might be destroyed accidentally. The kinetics of the dehydrogenation and the subsequent oxidation is investigated by methods of thermal analysis. A reaction scheme is confirmed which consists of a starting Avrami-Erofeev mechanism followed by formal 1st order oxidation on unlimited air access. The kinetic parameters activation energies and pre-exponentials are evaluated and can be used to calculate the reaction progress. Together with the heat of the Al oxidation the overall heat release and the related rate can be estimated.
Measurements of Effective Diffusion Coefficient of Helium and Hydrogen Through Gypsum
Sep 2011
Publication
An experimental apparatus which was based on the ¼-scale garage previously used for studying helium release and dispersion in our laboratory was used to obtain effective diffusion coefficients of helium and hydrogen (released as forming gas for safety reasons) through gypsum panel. Two types of gypsum panel were used in the experiments. Helium or forming gas was released into the enclosure from a Fischer burner1 located near the enclosure floor for a fixed duration and then terminated. Eight thermal-conductivity sensors mounted at different vertical locations above the enclosure floor were used to monitor the temporal and spatial gas concentrations. An electric fan was used inside the enclosure to mix the released gas to ensure a spatially uniform gas concentration to minimize stratification. The temporal variations of the pressure difference between the enclosure interior and the ambience were also measured. An analytical model was developed to extract the effective diffusion coefficients from the experimental data.
Introduction to Hydrogen Safety Engineering
Sep 2011
Publication
The viability and public acceptance of the hydrogen and fuel cell (HFC) systems and infrastructure depends on their robust safety engineering design education and training of the workforce regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the hydrogen safety engineering (HSE) profession. HSE is defined as an application of scientific and engineering principles to the protection of life property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of technical sub-systems for carrying out HSE. The approach is similar to British standard BS7974 for application of fire safety engineering to the design of buildings and expanded to reflect on specific for hydrogen safety related phenomena including but not limited to high pressure under-expanded leaks and dispersion spontaneous ignition of sudden hydrogen releases to air deflagrations and detonations etc. The HSE process includes three main steps. Firstly a qualitative design review is undertaken by a team that can incorporate owner hydrogen safety engineer architect representatives of authorities having jurisdiction e.g. fire services and other stakeholders. The team defines accident scenarios suggests trial safety designs and formulates acceptance criteria. Secondly a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering and validated models and tools. Finally the performance of a HFC system and/or infrastructure under the trial safety designs is assessed against predefined by the team acceptance criteria. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic comparative or combined probabilistic/deterministic.
Catalysis of Oxides in Hydrogen Generation by the Reaction of Al with Water
Sep 2013
Publication
Hydrogen generation by the reaction of pure Al powder in water with the addition of Al(OH)3 γ- Al2O3 α-Al2O3 or TiO2 at mild temperatures was investigated. It was found that the reaction of Al with water is promoted and the reaction induction time decreases greatly by the above hydroxide and oxides. X-ray diffraction analyses revealed that the hydroxide and oxide phases have no any change during the Al-water reaction indicating that they are just as catalysts to assist the reaction of Al with water. A possible mechanism was proposed which shows that hydroxide and oxides could dissociate water molecules and promote the hydration of the passive oxide film on Al particle surfaces.
A Comparative Study of Detonability and Propensity to Sustain High-speed Turbulent Deflagrations in Hydrogen and Methane Mixtures
Sep 2013
Publication
We’ve studied the conditions enabling a detonation to be quenched when interacting with an obstruction and the propensity for establishing subsequent fast-flame. Oxy-hydrogen detonations were found quench more easily than oxy-methane detonations when comparing the ratio of gap size and the detonation cell size. High-speed turbulent deflagrations that re-accelerate back to a detonation were only observed in methane-oxygen mixtures. Separate hot-spot ignition calculations revealed that the higher detonability of methane correlates with its stronger propensity to develop localized hot-spots. The results suggest that fast-flames are more difficult to form in hydrogen than in methane mixtures.
Understanding the Interaction between a Steel Microstructure and Hydrogen
Apr 2018
Publication
The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels i.e. high-strength low-alloy (HSLA) transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase i.e. ferrite bainite pearlite or martensite and with carbon contents of approximately 0 0.2 and 0.4 wt % are further considered to simplify the microstructure. Finally the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction a comparison of the available H trapping sites the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis.
Hydrogen Economy Roadmap of Korea
Jan 2019
Publication
Hydrogen economy" refers to an economy where hydrogen is an important environmentally-friendly energy source brings out radical changes to the national economy and society as a whole and is a driving force behind economic growth.<br/>As hydrogen is not only a driver of innovative growth but also a means of using energy in a more eco-friendly way a hydrogen economy refers to the pursuit of a society that realizes the unlimited potential of hydrogen.<br/>This document summarises Korea's roadmap towards a hydrogen economy the expected benefits for both economic and environmental factors and the potential limitations. It also emphasises Korea's vision going forward on fuel cells hydrogen production hydrogen storage and transport and the hydrogen ecosystem as a whole.
H2FC SUPERGEN- Delivering Negative Emissions from Biomass derived Hydrogen
Apr 2020
Publication
Bioenergy with carbon capture and storage (BECCS) removes carbon dioxide (CO2) from the atmosphere i.e. negative CO2 emissions. It will likely have an important role in the transition to a net-zero economy by offsetting hard-to-abate greenhouse gas emissions. However there are concerns about the sustainability of large scale BECCS deployment using bioenergy from predominantly primary biomass sources (i.e. dedicated energy crops). Secondary sources of biomass (e.g. waste biomass municipal solid wastes forest/agricultural residues) are potentially an economical and sustainable alternative resource. Furthermore supplementing primary biomass demand with secondary sources could enable the supply of biomass from solely indigenous sources (i.e. from the UK) which could provide economic advantages in a growing global bio-economy.<br/><br/>There is also a growing interest in biomass-derived hydrogen production with CCS (BHCCS) which generates hydrogen and removes CO2 from the atmosphere. Hydrogen could help decarbonise fuel-dependent sectors such as heat industry or transportation. The aim of this study was to determine whether BHCCS could possibly deliver net negative CO2 emissions making comparisons against the other BECCS technologies.
High-Order Perturbation Solutions to a Lh2 Spreading Model With Continuous Spill
Sep 2011
Publication
High-order perturbation solutions have been obtained for the simple physical model describing the LH2 spreading with a continuous spill and are shown to improve over the first-order perturbation solutions. The non-dimensional governing equations for the model are derived to obtain more general solutions. Non-dimensional parameters are sought as the governing parameters for the non-dimensional equations and the non-dimensional evaporation rate is used as the perturbation parameter. The results show that the second-order solutions exhibit an improvement over the first-order solutions with respect to the pool volume; however there is still a difference between numerical solutions and second-order solutions in the late stage of spread. Finally it is revealed that the third-order solutions almost agree with numerical solutions.
The Spread of Fire from Adjoining Vehicles to a Hydrogen Fuel Cell Vehicle
Sep 2011
Publication
Two vehicle fire tests were conducted to investigate the spread of fire to adjacent vehicles from a hydrogen fuel cell vehicle (HFCV) equipped with a thermal pressure relief device (TPRD) : – 1) an HFCV fire test involving an adjacent gasoline vehicle 2) a fire test involving three adjoining HFCV assuming their transportation in a carrier ship. The test results indicated that the adjacent vehicles were ignited by flames from the interior and exterior materials of the fire origin HFCV but not by the hydrogen flames generated through the activation of TPRD.
Hydrogen Explosions in 20’ ISO Container
Oct 2015
Publication
This paper describes a series of explosion experiments in inhomogeneous hydrogen air clouds in a standard 20′ ISO container. Test parameter variations included nozzle configuration jet direction reservoir back pressure time of ignition after release and degree of obstacles. The paper presents the experimental setup resulting pressure records and high speed videos. The explosion pressures from the experiments without obstacles were in the range of 0.4–7 kPa. In the experiments with obstacles the gas exploded more violently producing pressures in order of 100 kPa.
No more items...