Publications
Detonability of Binary H2/Ch4 - Air Mixture
Sep 2009
Publication
Abatement of greenhouse gas emissions and diversification of energy sources will probably lead to an economy based on hydrogen. In order to evaluate safety conditions during transport and distribution experimental data is needed on the detonation of Hydrogen/Natural gas blend mixtures. The aim of this study is to constitute detonation and deflagration to detonation transition (DDT) database of H2/CH4-air mixtures. More precisely the detonability of such mixtures is evaluated by the detonation cell size and the DDT run up distance measurements. Large experimental conditions are investigated (i) various equivalence ratios from 0.6 to 3 (ii) various H2 molar fraction x ( ( )2 2 4x H H CH= + ) from 0.5 to 1 (iii) different initial pressure P0 from 0.2 to 2 bar at fixed ambient temperature T0=293 K. Detonation pressures P velocities D and cell sizes ? were measured in two smooth tubes with different i.d. d (52 and 106 mm). For DDT data minimum DDT run up distances LDDT were determined in the d=52 mm tube containing a 2.8 m long Schelkin spiral with a blockage ratio BR = 0.5 and a pitch equal to the diameter. Measured detonation velocities D are very close to the Chapman Jouguet values (DCJ). Concerning the effect of detonation cell size ? follows a classical U shaped- curve with a minimum close to =1 and concerning the effect of x ? decreases when x increases. The ratio ik L?= obtained from different chemical kinetics (Li being the ZND induction length) is well approximated by the value 40 in the range 0.5 < x < 0.9 and 50 for x 0.9. Minimum DDT run up distance LDDT varies from 0.36 to 1.1m when x varies from 1 to 0.8. The results show that LDDT obeys the linear law LDDT ~ 30-40? previously validated in H2/Air mixtures. Adding Hydrogen in Natural Gas promotes the detonability of the mixtures and for x 0.65 these mixtures are considered more sensitive than common heavy Alkane-Air mixtures.
Vented Confined Explosions Involving Methane/Hydrogen Mixtures
Sep 2009
Publication
The EC funded Naturalhy project is assessing the potential for using the existing gas infrastructure for conveying hydrogen as a mixture with natural gas (methane). The hydrogen could then be removed at a point of use or the natural gas/hydrogen mixture could be burned in gas-fired appliances thereby providing reduced carbon emissions compared to natural gas. As part of the project the impact on the safety of the gas system resulting from the addition of hydrogen is being assessed. A release of a natural gas/hydrogen mixture within a vented enclosure (such as an industrial housing of plant and equipment) could result in a flammable mixture being formed and ignited. Due to the different properties of hydrogen the resulting explosion may be more severe for natural gas/hydrogen mixtures compared to natural gas. Therefore a series of large scale explosion experiments involving methane/hydrogen mixtures has been conducted in a 69.3 m3 enclosure in order to assess the effect of different hydrogen concentrations on the resulting explosion overpressures. The results showed that adding up to 20% by volume of hydrogen to the methane resulted in a small increase in explosion flame speeds and overpressures. However a significant increase was observed when 50% hydrogen was added. For the vented confined explosions studied it was also observed that the addition of obstacles within the enclosure representing congestion caused by equipment and pipework etc. increased flame speeds and overpressures above the levels measured in an empty enclosure. Predictions of the explosion overpressure and flame speed were also made using a modified version of the Shell Global Solutions model SCOPE. The modifications included changes to the burning velocity and other physical properties of methane/hydrogen mixtures. Comparisons with the experimental data showed generally good agreement.
Development of Uniform Harm Criteria for Use in Quantitative Risk Analysis of the Hydrogen Infrastructure
Sep 2009
Publication
This paper discusses the preliminary results of the Risk Management subtask efforts within the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 on Hydrogen Safety to develop uniform harm criteria for use in the Quantitative Risk Assessments (QRAs) of hydrogen facilities. The IEA HIA Task 19 efforts are focused on developing guidelines and criteria for performing QRAs of hydrogen facilities. The performance of QRAs requires that the level of harm that is represented in the risk evaluation be established using deterministic models. The level of harm is a function of the type and level of hazard. The principle hazard associated with hydrogen facilities is uncontrolled accumulation of hydrogen in (semi) confined spaces and consecutive ignition. Another significant hazard is combustion of accidentally released hydrogen gas or liquid which may or may not happen instantaneously. The primary consequences from fire hazards consist of personnel injuries or fatalities or facility and equipment damage due to high air temperatures radiant heat fluxes or direct contact with hydrogen flames. The possible consequences of explosions on humans and structures or equipment include blast wave overpressure effects impact from fragments generated by the explosion the collapse of buildings and the heat effects from subsequent fire balls. A harm criterion is used to translate the consequences of an accident evaluated from deterministic models to a probability of harm to people structures or components. Different methods can be used to establish harm criteria including the use of threshold consequence levels and continuous functions that relate the level of a hazard to a probability of damage. This paper presents a survey of harm criteria that can be utilized in QRAs and makes recommendations on the criteria that should be utilized for hydrogen-related hazards.
Ignition Energy and Ignition Probability of Methane-Hydrogen-Air Mixtures
Sep 2009
Publication
The European Commission are funding an investigation of the feasibility of using existing natural gas infrastructures to transport and distribute hydrogen as a mixture of natural gas and hydrogen from the point of hydrogen production to the point of use. Since hydrogen has different chemical and physical properties to that of natural gas and these will affect the integrity and durability of the pipeline network and the ignition and combustion behaviour of released gas it is necessary to assess the change in risk to the public that would result. The subject of this paper is an experimental study of the effect of the hydrogen content of the natural gas-hydrogen mixture on the minimum energy required for ignition and the probability of achieving ignition given a particular level of energy discharge. It was possible to normalize the results for ignition energy such that given information on the minimum ignition energy and the equivalence ratio at which the minimum ignition energy occurs the lowest ignition energy for any other equivalence ratio can be predicted. The results also showed that the ignition process has a probabilistic element and that the probability of ignition is related to the equivalence ratio and the energy level of the source. It was observed that the probability of ignition increased with increasing energy of the source and that the rate of rise in probability was steepest for the equivalence ratios close to the equivalence ratio at which the minimum ignition energy occurs.
Experimental Characterization and Modelling of Helium Dispersion in a ¼ - Scale Two-Car Residential Garage
Sep 2009
Publication
A series of experiments are described in which helium was released at a constant rate into a 1.5 m × 1.5 m × 0.75 m enclosure designed as a ¼-scale model of a two car garage. The purpose was to provide reference data sets for testing and validating computational fluid dynamics (CFD) models and to experimentally characterize the effects of a number of variables on the mixing behaviour within an enclosure and the exchange of helium with the surroundings. Helium was used as a surrogate for hydrogen and the total volume released was scaled as the amount that would be released by a typical hydrogen fuelled automobile with a full tank. Temporal profiles of helium were measured at seven vertical locations within the enclosure during and following one hour and four hour releases. Idealized vents in one wall sized to provide air exchange rates typical of actual garages were used. The effects of vent size number and location were investigated using three different vent combinations. The dependence on leak location was considered by releasing helium from three different points within the enclosure. It is shown that the National Institute of Standards and Technology (NIST) CFD code Fire Dynamics Simulator (FDS) provides time resolved predictions for helium concentrations that agree well with the experimental measurements.
Experimental Studies on Wind Influence on Hydrogen Release from Low Pressure Pipelines
Sep 2009
Publication
At the DIMNP (Department of Mechanical Nuclear and Production Engineering) laboratories of University of Pisa (Italy) a pilot plant called HPBT (Hydrogen Pipe Break Test) was built in cooperation with the Italian Fire Brigade Department. The apparatus consists of a 12 m3 tank connected with a 50 m long pipe. At the far end of the pipeline a couple of flanges have been used to house a disc with a hole of the defined diameter. The plant has been used to carry out experiments of hydrogen release. During the experimental activity data have been acquired about the gas concentration and the length of release as function of internal pressure and release hole diameter. The information obtained by the experimental activity will be the basis for the development of a new specific normative framework arranged to prevent fire and applied to hydrogen. This study is focused on hydrogen concentration as function of wind velocity and direction. Experimental data have been compared with theoretical and computer models (such as CFD simulations)
Numerical Investigation of Hydrogen Release from Varying Diameter Exit
Sep 2011
Publication
Computational fluid dynamics is used to simulate the release of high pressure Hydrogen from a reservoir with an exit of increasing diameter. Abel-Noble real gas equation of state is used to accurately simulate this high pressure release. Parallel processing based on Message Passing Interface for domain decomposition is employed to decrease the solution time. The release exit boundary is increased in time to simulate a scenario when the exit area increases during the release. All nodes and elements are moved accordingly at each time step to maintain the quality of the mesh. Different speeds of increasing diameter are investigated to see the impact on this unsteady flow.
Safety Considerations and Approval Procedures for the Integration of Fuel Cells on Board of Ships
Sep 2009
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's hare of emissions to air is regarded to be significant and public concern lead to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce additional regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or main propulsion. The presentation summarizes the legal background in international shipping related to the use for gas as ship fuel and fuel cells. The focus of the presentation will be on the safety principles for the use of gas as fuel and fuel cells on board of ships and boats. The examples given show the successful integration of such systems on board of ships. Furthermore a short outlook will be given to the ongoing and planed projects for the use of fuel cells on board of ships.
Deflagration-to-detonation Transition in Highly Reactive Combustible Mixtures
Sep 2011
Publication
High resolution numerical simulations used to study the mechanism of deflagration-to-detonation transition (DDT). The computations solved two-dimensional time-dependent reactive Navier-Stokes equations including the effects of compressibility molecular diffusion thermal conduction viscosity and detailed chemical kinetics for the reactive species with subsequent chain branching production of radicals and energy release. It is shown that from the beginning the flame accelerates exponentially producing shock waves far ahead. On the next stage the flame acceleration decreases and the shocks are formed close ahead of the flame front. The final stage is the actual transition to detonation. During the second stage a compressed unreacted mixture of increased density enters the flame producing a high pressure pulse which enhances reaction rate and the heat release in the reaction zone with a positive feedback coupling between the pressure pulse and the reaction rate. As a result the peak of the pressure pulse grows exponentially steepens into a strong shock which is coupled with the reaction zone forming the overdriven detonation. This new mechanism of DDT is different from the Zel’dovich’s gradient mechanism. The temperature gradients which appear in the form of hot spots and the like are not suitable to initiate detonation.
Synthesis and Performance of Photocatalysts for Photocatalytic Hydrogen Production: Future Perspectives
Dec 2021
Publication
Photocatalysis for “green” hydrogen production is a technology of increasing importance that has been studied using both TiO2–based and heterojunction composite-based semiconductors. Different irradiation sources and reactor units can be considered for the enhancement of photocatalysis. Current approaches also consider the use of electron/hole scavengers organic species such as ethanol that are “available” in agricultural waste in communities around the world. Alternatively organic pollutants present in wastewaters can be used as organic scavengers reducing health and environmental concerns for plants animals and humans. Thus photocatalysis may help reduce the carbon footprint of energy production by generating H2 a friendly energy carrier and by minimizing water contamination. This review discusses the most up-to-date and important information on photocatalysis for hydrogen production providing a critical evaluation of: (1) The synthesis and characterization of semiconductor materials; (2) The design of photocatalytic reactors; (3) The reaction engineering of photocatalysis; (4) Photocatalysis energy efficiencies; and (5) The future opportunities for photocatalysis using artificial intelligence. Overall this review describes the state-of-the-art of TiO2–based and heterojunction composite-based semiconductors that produce H2 from aqueous systems demonstrating the viability of photocatalysis for “green” hydrogen production.
Experimental Study on a Hydrogen Stratification Induced by PARs Installed in a Containment
Oct 2020
Publication
Hydrogen can be produced in undesired ways such as a high temperature metal oxidation during an accident. In this case the hydrogen must be carefully managed. A hydrogen mitigation system (HMS) should be installed to protect a containment of a nuclear power plant (NPP) from hazards of hydrogen produced by an oxidation of the fuel cladding during a severe accident in an NPP. Among hydrogen removal devices passive auto-catalytic recombiners (PARs) are currently applied to many NPPs because of passive characteristics such as not requiring a power supply nor an operators’ manipulations. However they offer several disadvantages resulting in issues related to hydrogen control by PARs. One of the issues is a hydrogen stratification in which hydrogen is not well-mixed in a compartment due to the high temperature exhaust gas of PARs and accumulation in the lower part. Therefore experimental simulation on hydrogen stratification phenomenon by PARs is required. When the hydrogen stratification by PARs is observed in the experiment the verification and improvement of a PAR analysis model using the experimental results can be performed and the hydrogen removal characteristics by PARs installed in an NPP can be evaluated using the improved PAR model. View Full-Text
Numerical Investigation of a Vertical Surface on the Flammable Extent of Hydrogen and Methane Vertical Jets
Sep 2011
Publication
The effect of vertical surface on the extent of high pressure unignited jets of both hydrogen and methane is studied using computer fluid dynamics simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm round leak orifice from 100 barg 250 barg 400 barg 550 barg and 700 barg compressed gas systems are presented for vertical jets. To quantify the effect of the surface on the jet the jet exit is positioned at various distances from the surface ranging from 0.029 m to 12 m. Free jets simulations are performed for comparison purposes.
Hydrogen Storage in Glass Capillary Arrays for Portable and Mobile Systems
Sep 2009
Publication
A crucial problem of new hydrogen technologies is the lightweight and also safe storage of acceptable amounts of hydrogen for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure safe infusion storage and controlled release of hydrogen gas although storage pressures up to 1200 bar are applied. This technology enables the storage of a significantly greater amount of hydrogen than other approaches. In storage tests with first capillary arrays a gravimetric storage capacity of about 33% and a volumetric capacity of 28% was determined at a comparative low pressure of only 400 bar. This is much more than the actual published storage capacities which are to find for other storage systems. This result already surpassed the US Department of Energy's 2010 target and it is expected to meet the DOE's 2015 target in the near future.<br/>Different safety aspects have been evaluated. On the one hand experiments with single capillaries or arrays of them have been carried out. The capillaries are made of quartz and other glasses. Especially quartz has a three times higher strength than steel. At the same time the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in dependence of capillary materials and dimensions wall thickness etc. in order to find out optimal parameters for the “final” capillaries. In these tests also the sudden release of hydrogen was tested in order to observe possible spontaneous ignitions. On the other hand a theoretical evaluation of explosion hazards was done. Different situations were analyzed e.g. release of hydrogen by diffusion or sudden rupture.
Model-based Determination of Hydrogen System Emissions of Motor Vehicles Using Climate-Chamber Test Facilities
Sep 2007
Publication
Because of air quality problems the problem of CO2 related greenhouse gas emissions and shortage of fossil fuels many vehicles with gaseous fuels (CNG biogas hydrogen etc.) are under research and development. Such vehicles have to prove that as well as their exhaust emissions their overall system emissions (including running loss) remain below certain safety limits before they can be used in practice. This paper presents a cost-effective way of monitoring such system emissions from hydrogen or other gaseous fuel powered vehicles within an air-conditioned chassis dynamometer test cell as commonly used for low ambient emission tests on gasoline vehicles. The only additional equipment needed is a low-concentration sensor for the gas of interest (e.g hydrogen). The method is based on concentration measurements and a dynamic mass balance model. This method is based on the fact that atoms cannot vanish. Applied to a room containing a gas mixture this means that the change of mass of a gaseous matter (called gas G subsequently) inside the chamber is the difference of all mass of G flowing into the chamber and all mass of G flowing out of the chamber. This assumes that no chemical reactions of the gas in mind with other matter take place. By measuring the flow rates and concentrations of ventilation-in flow and ventilation-out flow as well as room concentration the emissions of G of a source i.e. the vehicle to be tested can be calculated. These concentrations need to be measured as functions of time to be able to give values of emissions per time unit. It is shown by a real experiment that very low emissions can be recorded. Additionally error bounds and sensitivities on different parameters such as air exchange ratio are quantified.
The International Energy Agency Hydrogen Implementing Agreement Task on Hydrogen Safety
Sep 2009
Publication
The International Energy Agency’s Hydrogen Implementing Agreement (www.ieahia.org) initiated a collaborative task on hydrogen safety in 1994 and this has proved to an effective method of pooling expert knowledge to address the most significant problems associated with the barriers to the commercial adoption of hydrogen energy. Presently there are approximately 10 countries participating in the task and it has proven a valuable method of efficiently combining efforts and resources. The task is now in the fifth year of a six year term and will end in October 2010. This paper will describe the scope of the task the progress made and plans for future work. There are also a number of other tasks underway and this paper will give a brief summary of those activities. Because of the nature of the International Energy Agency which is an international agreement between governments it is intended that such collaboration will complement other efforts to help build the technology base around which codes and standards can be developed. This paper describes the specific scope and work plan for the collaboration that has been developed to date.
A Socio-technical Perspective on the Scope for Ports to Enable Energy Transition
Jan 2021
Publication
The paper applies the multi-level perspective (MLP) in a descriptive study of three Norwegian ports to shed new light on the sociotechnical processes that structure their efforts to develop into zero emission energy hubs. While exogenous pressures cause tensions over port governance the studied ports utilize their full spectre of functions; as landlords operators authorities and community managers to enable transition. The respective approaches vary related to their local context market situation and social networks including port's relations with their owners. Individual orientations and organizational capacity further influence their engagement with radical innovation niches (e.g. OPS hydrogen LNG). The study highlights the active role of ports in sustainability transition. It shows how the interaction between geographical factors and institutional work influences the scope for new solutions around the individual port and how this makes for different feedback loops and contributions to sustainability transition in wider transport and energy systems.
Evaluation of Heat Decarbonization Strategies and Their Impact on the Irish Gas Network
Dec 2021
Publication
Decarbonization of the heating sector is essential to meet the ambitious goals of the Paris Climate Agreement for 2050. However poorly insulated buildings and industrial processes with high and intermittent heating demand will still require traditional boilers that burn fuel to avoid excessive burden on electrical networks. Therefore it is important to assess the impact of residential commercial and industrial heat decarbonization strategies on the distribution and transmission gas networks. Using building energy models in EnergyPlus the progressive decarbonization of gas-fueled heating was investigated by increasing insulation in buildings and increasing the efficiency of gas boilers. Industrial heat decarbonization was evaluated through a progressive move to lowercarbon fuel sources using MATLAB. The results indicated a maximum decrease of 19.9% in natural gas utilization due to the buildings’ thermal retrofits. This coupled with a move toward the electrification of heat will reduce volumes of gas being transported through the distribution gas network. However the decarbonization of the industrial heat demand with hydrogen could result in up to a 380% increase in volumetric flow rate through the transmission network. A comparison between the decarbonization of domestic heating through gas and electrical heating is also carried out. The results indicated that gas networks can continue to play an essential role in the decarbonized energy systems of the future.
Numerical Simulation of Large Scale Hydrogen Detonation
Sep 2009
Publication
The present work is concerned with numerical simulations of large scale hydrogen detonations. Euler equations have been solved along with a single step reaction for the chemistry. Total variation diminishing (TVD) numerical schemes are used for shock capturing. The equations are solved in parallel in a decomposed domain. Predictions were firstly conducted with a small domain to ensure that the reaction scheme has been properly tuned to capture the correct detonation pressure and velocity. On this basis simulations were set up for the detonation tests carried out at the RUT tunnel facilities in Russia. This is one of the standard benchmark test cases selected for HYSAFE [1]. Comparison is made between the predictions and measurements. Reasonably good agreement has been obtained on pressure decay and the propagation speed of detonation. Further simulations were then conducted for a hypothetical hydrogen-air cloud in the open to assess the impulse as well as overpressure. The effects of cloud height width were investigated in the safety context.
A Comparison Exercise on the CFD Detonation Simulation in Large Scale Confined Volumes
Sep 2009
Publication
The use of hydrogen as an energy carrier is going to widen exponentially in the next years. In order to ensure the public acceptance of the new fuel not only the environmental impact has to be excellent but also the risk management of its handling and storage must be improved. As a part of modern risk assessment procedure CFD modeling of the accident scenario development must provide reliable data on the possible pressure loads resulted from explosion processes. The expected combustion regimes can be ranged from slow flames to deflagration-to-detonation transition and even to detonation. In the last case the importance of the reliability of simulation results is particularly high since detonation is usually considered as a worst case state of affairs. A set of large-scale detonation experiments performed in Kurchatov Institute at RUT facility was selected as benchmark. RUT has typical industry-relevant characteristic dimensions. The CFD codes possibilities to correctly describe detonation in mixtures with different initial and boundary conditions were surveyed. For the modeling two detonation tests HYD05 and HYD09 were chosen; both tests were carried out in uniform hydrogen/air mixtures; first one with concentration of 20.0% vol. and the second one with 25.5% vol. In the present exercise three CFD codes using a number of different models were used to simulate these experiments. A thorough inter-comparison between the CFD results including codes models and obtained pressure predictions was carried out and reported. The results of this inter comparison should provide a solid basis for the further code development and detonation models’ validation thus improving CFD predictive capabilities.
Numerical and Experimental Investigation of Buoyant Gas Release
Sep 2009
Publication
Buoyant round vertical jet had been investigated using Large Eddy Simulations at low Mach number. For the purpose of comparison with in-house experimental data in the present work helium has been used as a substitute for hydrogen. The influence of the transient concentration fields on the volume of gas with concentration within flammability limits has been investigated and their evolution and relation with average fields ad been characterized. Transient concentration fields created during initial jet development had been considered. Numerical results have been compared with in-house experiments and data published in the literature.
No more items...