Publications
Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities
Jun 2022
Publication
A general rise in environmental and anthropogenically induced greenhouse gas emissions has resulted from worldwide population growth and a growing appetite for clean energy industrial outputs and consumer utilization. Furthermore well-established advanced and emerging countries are seeking fossil fuel and petroleum resources to support their aviation electric utilities industrial sectors and consumer processing essentials. There is an increasing tendency to overcome these challenging concerns and achieve the Paris Agreement’s priorities as emerging technological advances in clean energy technologies progress. Hydrogen is expected to be implemented in various production applications as a fundamental fuel in future energy carrier materials development and manufacturing processes. This paper summarizes recent developments and hydrogen technologies in fuel refining hydrocarbon processing materials manufacturing pharmaceuticals aircraft construction electronics and other hydrogen applications. It also highlights the existing industrialization scenario and describes prospective innovations including theoretical scientific advancements green raw materials production potential exploration and renewable resource integration. Moreover this article further discusses some socioeconomic implications of hydrogen as a green resource.
An Overview of Promising Alternative Fuels for Road, Rail, Air, and Inland Waterway Transport in Germany
Feb 2022
Publication
To solve the challenge of decarbonizing the transport sector a broad variety of alternative fuels based on different concepts including Power-to-Gas and Power-to-Liquid and propulsion systems have been developed. The current research landscape is investigating either a selection of fuel options or a selection of criteria a comprehensive overview is missing so far. This study aims to close this gap by providing a holistic analysis of existing fuel and drivetrain options spanning production to utilization. For this purpose a case study for Germany is performed considering different vehicle classes in road rail inland waterway and air transport. The evaluated criteria on the production side include technical maturity costs as well as environmental impacts whereas on the utilization side possible blending with existing fossil fuels and the satisfaction of the required mission ranges are evaluated. Overall the fuels and propulsion systems Methanol-to-Gasoline Fischer–Tropsch diesel and kerosene hydrogen battery-electric propulsion HVO DME and natural gas are identified as promising future options. All of these promising fuels could reach near-zero greenhouse gas emissions bounded to some mandatory preconditions. However the current research landscape is characterized by high insecurity with regard to fuel costs depending on the predicted range and length of value chains.
Fugitive Hydrogen Emissions in a Future Hydrogen Economy
Apr 2022
Publication
There is an increasing body of evidence that leakage of hydrogen to the atmosphere will have an indirect warming effect on the climate and so should be minimised.<br/>This study investigates and quantifies the current understanding of potential hydrogen emissions in the different sectors across a future hydrogen value-chain. It shows that there are some key areas in production distribution and end-use where there could potentially be significant leaks of hydrogen to the atmosphere. In some of these areas there are clear mitigation options while with others the options are less clear due to uncertainty in either data or future technology development.<br/>The report recommends further research and development to reduce the main leak pathways and additional evidence gathering in key areas where there is currently inadequate data to make accurate predictions.<br/>The study was commissioned by BEIS and conducted by the Frazer-Nash consultancy.
Cost and Capacity Requirements of Electrification or Renewable Gas Transition Options that Decarbonize Building Heating in Metro Vancouver, British Columbia
Jun 2022
Publication
Northern countries face a unique challenge in decarbonizing heating demands. This study compares two pathways to reduce carbon emissions from building heating by (1) replacing natural gas heaters with electric heat pumps or (2) replacing natural gas with renewable gas. Optimal annual system cost and capacity requirements for Metro Vancouver Canada are assessed for each pathway under nine scenarios. Results show that either pathway can be lower cost but the range of costs is more narrow for the renewable gas pathway. System cost is sensitive to heat demand with colder temperatures favouring the renewable gas pathway and milder temperatures favouring the electrification pathway. These results highlight the need for a better understanding of heating profiles and associated energy system requirements.
Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects
Apr 2021
Publication
The aim of this study was to evaluate the motorization market of electric vehicles powered by hydrogen cells in Poland. European conditions of such technology were indicated as well as original proposals on amendments to the law to increase the development pace of electromobility based on hydrogen cells. There were also presented economic aspects of this economic phenomenon. Moreover survey research was conducted to examine the preferences of hydrogen and electric vehicle users in 5 primary Polish cities. In this way the level of social acceptance for the technological revolution based on hydrogen cells and taking place in the motorization sector was determined.
The Value of Flexible Fuel Mixing in Hydrogen-fueled Gas Turbines - A Techno-economic Study
Jul 2022
Publication
In electricity systems mainly supplied with variable renewable electricity (VRE) the variable generation must be balanced. Hydrogen as an energy carrier combined with storage has the ability to shift electricity generation in time and thereby support the electricity system. The aim of this work is to analyze the competitiveness of hydrogen-fueled gas turbines including both open and combined cycles with flexible fuel mixing of hydrogen and biomethane in zero-carbon emissions electricity systems. The work applies a techno-economic optimization model to future European electricity systems with high shares of VRE.<br/>The results show that the most competitive gas turbine option is a combined cycle configuration that is capable of handling up to 100% hydrogen fed with various mixtures of hydrogen and biomethane. The results also indicate that the endogenously calculated hydrogen cost rarely exceeds 5 €/kgH2 when used in gas turbines and that a hydrogen cost of 3–4 €/kgH2 is for most of the scenarios investigated competitive. Furthermore the results show that hydrogen gas turbines are more competitive in wind-based energy systems as compared to solar-based systems in that the fluctuations of the electricity generation in the former are fewer more irregular and of longer duration. Thus it is the characteristics of an energy system and not necessarily the cost of hydrogen that determine the competitiveness of hydrogen gas turbines.
The Evolution and Structure of Ignited High-pressure Cryogenic Hydrogen Jets
Jun 2022
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen at cryogenic conditions. Understanding the potential hazard arising from leaks in high-pressure cryogenic storage is needed to improve hydrogen safety. The manuscript reports a series of numerical simulations with detailed chemistry for the transient evolution of ignited high-pressure cryogenic hydrogen jets. The study aims to gain insight of the ignition processes flame structures and dynamics associated with the transient flame evolution. Numerical simulations were firstly conducted for an unignited jet released under the same cryogenic temperature of 80 K and pressure of 200 bar as the considered ignited jets. The predicted hydrogen concentrations were found to be in good agreement with the experimental measurements. The results informed the subsequent simulations of the ignited jets involving four different ignition locations. The predicted time series snapshots of temperature hydrogen mass fraction and the flame index are analyzed to study the transient evolution and structure of the flame. The results show that a diffusion combustion layer is developed along the outer boundary of the jet and a side diffusion flame is formed for the near-field ignition. For the far-field ignition an envelope flame is observed. The flame structure contains a diffusion flame on the outer edge and a premixed flame inside the jet. Due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions localized spontaneous ignition and transient flame extinguishment are observed. The predictions also captured the experimentally observed deflagration waves in the far-field ignited jets.
A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility
Aug 2022
Publication
Several challenges have emerged due to the increasing deterioration of urban mobility and its severe impacts on the environment and human health. Primary dependence on internal combustion engines that use petrol or diesel has led to poor air quality time losses noise traffic jams and further environmental pollution. Hence the transitions to using rail and or seaway-based public transportation cleaner fuels and electric vehicles are some of the ultimate goals of urban and national decision-makers. However battery natural gas hybrid and fuel cell vehicles require charging stations to be readily available with a sustainable energy supply within urban regions in different residential and business neighborhoods. This study aims to provide an updated and critical review of the concept and recent examples of urban mobility and transportation modes. It also highlights the adverse impacts of several air pollutants emitted from internal combustion engine vehicles. It also aims to shed light on several possible systems that integrate the electric vehicle stations with renewable energy sources. It was found that using certain components within the integrated system and connecting the charging stations with a grid can possibly provide an uninterrupted power supply to electric vehicles leading to less pollution which would encourage users to use more clean vehicles. In addition the environmental impact assessments as well as several implementation challenges are discussed. To this end the main implementation issues related to consumer incentives infrastructure and recommendations are also reported.
A Global Review of the Hydrogen Energy Eco-System
Feb 2023
Publication
Climate change primarily caused by the greenhouse gases emitted as a result of the consumption of carbon-based fossil fuels is considered one of the biggest challenges that humanity has ever faced. Moreover the Ukrainian crisis in 2022 has complicated the global energy and food status quo more than ever. The permanency of this multifaceted fragility implies the need for increased efforts to have energy independence and requires long-term solutions without fossil fuels through the use of clean zero-carbon renewables energies. Hydrogen technologies have a strong potential to emerge as an energy eco-system in its production-storage-distribution-utilization stages with its synergistic integration with solar-wind-hydraulic-nuclear and other zero-carbon clean renewable energy resources and with the existing energy infrastructure. In this paper we provide a global review of hydrogen energy need related policies practices and state of the art for hydrogen production transportation storage and utilization.
A Review of Factors Affecting SCC Initiation and Propagation in Pipeline Carbon Steels
Aug 2022
Publication
Pipelines have been installed and operated around the globe to transport oil and gas for decades. They are considered to be an effective economic and safe means of transportation. The major concern in their operation is corrosion. Among the different forms of corrosion stress corrosion cracking (SCC) which is caused by stresses induced by internal fluid flow or other external forces during the pipeline’s operation in combined action with the presence of a corrosive medium can lead to pipeline failure. In this paper an extensive review of different factors affecting SCC of pipeline steels in various environmental conditions is carried out to understand their impact. Several factors such as temperature presence of oxidizers (O2 CO2 H2S etc.) composition and concentration of medium pH applied stress and microstructure of the metal/alloy have been established to affect the SCC of pipeline steels. SCC susceptibility of a steel at a particular temperature strongly depends on the type and composition of the corrosive medium and microstructure. It was observed that pipeline steels with water quenched and quenched and tempered heat treatments such as those that consist of acicular ferrite or bainitic ferrite grains are more susceptible to SCC irrespective of solution type and composition. Applied stress stress concentration and fluctuating stress facilitates SCC initiation and propagation. In general the mechanisms for crack initiation and propagation in near-neutral solutions are anodic dissolution and hydrogen embrittlement.
The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production
Feb 2023
Publication
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen produced with water electrolysis powered exclusively by renewable energy sources. However several other technologies and sources are available or under development to satisfy the current and future hydrogen demand. In fact hydrogen production involves different resources and energy loads depending on the production method used. Therefore the industry has tried to set a classification code for this energy carrier. This is done by using colors that reflect the hydrogen production method the resources consumed to produce the required energy and the number of emissions generated during the process. Depending on the reviewed literature some colors have slightly different definitions thus making the classifications imprecise. Therefore this techno-economic analysis clarifies the meaning of each hydrogen color by systematically reviewing their production methods consumed energy sources and generated emissions. Then an economic assessment compares the costs of the various hydrogen colors and examines the most feasible ones and their potential evolution. The scientific community and industry’s clear understanding of the advantages and drawbacks of each element of the hydrogen color spectrum is an essential step toward reaching a sustainable hydrogen economy
On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen
Sep 2022
Publication
Latin America is starting its energy transition. In Colombia with its abundant natural resources and fossil fuel reserves hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential besides allowing a more sustainable use of non-renewable resources would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios respectively which could supply up to 1.5% of the global H2 demand by 2050. However while feedstock availability is promising for blue H2 production carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050 and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture utilization and storage capacity implementation of a clear public policy and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.
Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model
Feb 2019
Publication
The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles which so far has not been reported in the literature. Thanks to a thorough experimental study the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.
Studies Concerning Electrical Repowering of a Training Airplane Using Hydrogen Fuel Cells
Mar 2024
Publication
The increase in greenhouse gas emissions as well as the risk of fossil fuel depletion has prompted a transition to electric transportation. The European Union aims to substantially reduce pollutant emissions by 2035 through the use of renewable energies. In aviation this transition is particularly challenging mainly due to the weight of onboard equipment. Traditional electric motors with radial magnetic flux have been replaced by axial magnetic flux motors with reduced weight and volume high efficiency power and torque. These motors were initially developed for electric vehicles with in-wheel motors but have been adapted for aviation without modifications. Worldwide there are already companies developing propulsion systems for various aircraft categories using such electric motors. One category of aircraft that could benefit from this electric motor development is traditionally constructed training aircraft with significant remaining flight resource. Electric repowering would allow their continued use for pilot training preparing them for future electrically powered aircraft. This article presents a study on the feasibility of repowering a classic training aircraft with an electric propulsion system. The possibilities of using either a battery or a hybrid source composed of a battery and a fuel cell as an energy source are explored. The goal is to utilize components already in production to eliminate the research phase for specific aircraft components.
A Geospatial Method for Estimating the Levelised Cost of Hydrogen Production from Offshore Wind
Jan 2023
Publication
This paper describes the development of a general-purpose geospatial model for assessing the economic viability of hydrogen production from offshore wind power. A key feature of the model is that it uses the offshore project's location characteristics (distance to port water depth distance to gas grid injection point). Learning rates are used to predict the cost of the wind farm's components and electrolyser stack replacement. The notional wind farm used in the paper has a capacity of 510 MW. The model is implemented in a geographic information system which is used to create maps of levelised cost of hydrogen from offshore wind in Irish waters. LCOH values in 2030 spatially vary by over 50% depending on location. The geographically distributed LCOH results are summarised in a multivariate production function which is a simple and rapid tool for generating preliminary LCOH estimates based on simple site input variables.
Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming
Jun 2013
Publication
In this paper we show for the first time the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 e ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios NH3 concentration in feed gas and gas e hourly e space e velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175 2.5e3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon e free reformate i.e. represented by 5% of primary diesel replacement reduced quite effectively the engine carbon emissions including CO2 CO and total hydrocarbons.
Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia
Aug 2022
Publication
A significant contribution to the reduction of carbon emissions will be enabled through the transition from a centralised fossil fuel system to a decentralised renewable electricity system. However due to the intermittent nature of renewable energy storage is required to provide a suitable response to dynamic loads and manage the excess generated electricity with utilisation during periods of low generation. This paper investigates the use of stationary hydrogen-based energy storage systems for microgrids and distributed energy resource systems. An exploratory study was conducted in Australia based on a mixed methodology. Ten Australian industry experts were interviewed to determine use cases for hydrogen-based energy storage systems’ requirements barriers methods and recommendations. This study suggests that the current cost of the electrolyser fuel cell and storage medium and the current low round-trip efficiency are the main elements inhibiting hydrogen-based energy storage systems. Limited industry and practical experience are barriers to the implementation of hydrogen storage systems. Government support could help scale hydrogen-based energy storage systems among early adopters and enablers. Furthermore collaboration and knowledge sharing could reduce risks allowing the involvement of more stakeholders. Competition and innovation could ultimately reduce the costs increasing the uptake of hydrogen storage systems.
Moving Toward the Low-carbon Hydrogen Economy: Experiences and Key Learnings from National Case Studies
Sep 2022
Publication
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050 as first presented by the IPCC special report on 1.5°C Global Warming has spurred renewed interest in hydrogen to complement electrification for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand optimization of infrastructure for hydrogen production transport and storage development of viable business cases and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany the UK the Netherlands Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning governance and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets.
Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis
Sep 2022
Publication
To provide an effective energy transition hydrogen is required to decarbonize the hard-toabate industries. As a case study this paper provides a holistic view of the hydrogen energy transition in the United Arab Emirates (UAE). By utilizing the directional distance function undesirable data envelopment analysis model the energy economic and environmental efficiency of UAE sectors are estimated from 2001 to 2020 to prioritize hydrogen sector coupling. Green hydrogen production efficiency is analyzed from 2020 to 2050. The UAE should prioritize the industry and transportation sectors with average efficiency scores of 0.7 and 0.74. The decomposition of efficiency into pure technical efficiency and scale efficiency suggests policies and strategies should target upscaling the UAE’s low-carbon hydrogen production capacity to expedite short-term and overall production efficiency. The findings of this study can guide strategies and policies for the UAE’s low-carbon hydrogen transition. A framework is developed based on the findings of the study.
Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review
Aug 2022
Publication
Hydrogen (H2 ) is the most abundant element in the universe and it is also a neutral energy carrier meaning the environmental effects of using it are strictly related to the effects of creating the means of producing of that amount of Hydrogen. So far the H2 generation by water electrolysis research field did not manage to break the efficiency barrier in order to consider H2 production as a technology that sustains financially its self-development. However given the complexity of this technology and the overall environmental impacts an up-to-date research and development status review is critical. Thus this study aims to identify the main trends achievements and research directions of the H2 generation using pure and alkaline water electrolysis providing a review of the state of the art in the specific literature. Methods: In order to deliver this a Systematic Literature Review was carried out using PRISMA methodology highlighting the research trends and results in peer review publish articles over more than two years (2020–2022). Findings: This review identifies niches and actual status of the H2 generation by water and alkaline water electrolysis and points out in numbers the boundaries of the 2020–2022 timeline research.
No more items...