Publications
Improved VSG Control Strategy Based on the Combined Power Generation System with Hydrogen Fuel Cells and Super Capacitors
Oct 2021
Publication
Due to their environmental protection and high power generation efficiency the control technology of hydrogen fuel cells (HFCs) connected to the microgrid has become a research hotspot. However when they encounter peak demand or transient events the lack of power cannot be compensated immediately by HFCs which results in sudden changes of the voltage and frequency. The improved virtual synchronous generator (VSG) control strategy based on HFCs and supercapacitors (SCs) combined power generation system is proposed to overcome this shortcoming in this paper. The small-signal model for designing the combined system parameters is provided which are in accordance with the system loop gain phase angle margin and adjustment time requirements. Besides the voltage and current double closed-loop based on sequence control is introduced in the VSG controller. The second-order generalized integrator (SOGI) is utilized to separate the positive and negative sequence components of the output voltage. At the same time a positive and negative sequence voltage outer loop is designed to suppress the negative sequence voltage under unbalanced conditions thereby reducing the unbalance of the output voltage. Finally simulation results in MATLAB/Simulink environment verify that the proposed method has better dynamic characteristics and higher steady-state accuracy compared with the traditional VSG control
The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels
May 2022
Publication
The present study seeks to select the most important articles and reviews from the Web of Science database that approached alternative fuels towards the decarbonization of the maritime sector. Through a systematic review methodology a combination of keywords and manual refining found a contribution of 103 works worldwide the European continent accounting for 57% of all publications. Twenty-two types of fuels were cited by the authors liquefied natural gas (LNG) hydrogen and biodiesel contributing to 49% of the mentions. Greenhouse gases sulfur oxide nitrogen oxide and particulate matter reductions are some of the main advantages of cleaner sources if used by the vessels. Nevertheless there is a lack of practical research on new standards engine performance cost and regulations from the academy to direct more stakeholders towards low carbon intensity in the shipping sector.
Thermodynamics and Kinetics of Hydriding and Dehydriding Reactions in Mg-based Hydrogen Storage Materials
Oct 2021
Publication
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity environmental benignity and high Clarke number characteristics. However the limited thermodynamics and kinetic properties pose major challenges for their engineering applications. Herein we review the recent progress in improving their thermodynamics and kinetics with an emphasis on the models and the influence of various parameters in the calculated models. Subsequently the impact of alloying composite and nano-crystallization on both thermodynamics and dynamics are discussed in detail. In particular the correlation between various modification strategies and the hydrogen capacity dehydrogenation enthalpy and temperature hydriding/dehydriding rates are summarized. In addition the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior. This review concludes with an outlook on the remaining challenge issues and prospects.
Modeling the Effects of Implementation of Alternative Ways of Vehicle Powering
Nov 2021
Publication
The trend to replace traditional fossil fuel vehicles is becoming increasingly apparent. The replacement concerns the use of pure biofuels or in blends with traditional fuels the use of hydrogen as an alternative fuel and above all the introduction of electric propulsion. The introduction of new types of vehicle propulsion affects the demand for specific fuels the needs for new infrastructure or the nature of the emissions to the environment generated by fuel production and vehicle operation. The article presents a mathematical model using the difference of two logistic functions the first of which describes the development of the production of a specific type of vehicle and the second the withdrawal of this type of vehicle from traffic after its use. The model makes it possible to forecast both the number of vehicles of each generation as a function of time as well as changes in energy demand from various sources and changes in exhaust emissions. The results of the numerical simulation show replacing classic vehicles with alternative vehicles increases the total energy demand if the generation of the next generation occurs earlier than the decay of the previous generation of vehicles and may decrease in the case of overlapping or delays in the creation of new vehicles compared to the course of the decay function of the previous generation. For electric vehicles carbon dioxide emissions are largely dependent on the emissions from electricity generation. The proposed model can be used to forecast technology development variants as well as analyze the current situation based on the approximation of real data from Vehicle Registration Offices.
Numerical Study of the Action of Convection on the Volume and Length of the Flammable Zone Formed by Hydrogen Emissions from the Vent Masts Installed on an International Ship
Nov 2021
Publication
International ships carrying liquefied fuel are strongly recommended to install vent masts to control the pressure of cargo tanks in the event of an emergency. However the gas emitted from a vent mast may be hazardous for the crew of the ship. In the present study the volume and length of the flammable zone (FZ) created by the emitted gas above the ship was examined. Various scenarios comprising four parameters namely relative wind speed arrangement of vent masts combination of emissions among four vent masts and direction of emission from the vent-mast outlet were considered. The results showed that the convection acts on the volume and length of an FZ. The volume of an FZ increases when there is a reduction in convection reaching the FZ and when strong convection brings hydrogen from a nearby FZ. The length of the FZ is also related to convection. An FZ is elongated if the center of a vortex is located inside the FZ because this vortex traps hydrogen inside the FZ. The length of an FZ decreases if the center of the vortex is located outside the FZ as such a vortex brings more fresh air into the FZ.
1921–2021: A Century of Renewable Ammonia Synthesis
Apr 2022
Publication
Synthetic ammonia manufactured by the Haber–Bosch process and its variants is the key to securing global food security. Hydrogen is the most important feedstock for all synthetic ammonia processes. Renewable ammonia production relies on hydrogen generated by water electrolysis using electricity generated from hydropower. This was used commercially as early as 1921. In the present work we discuss how renewable ammonia production subsequently emerged in those countries endowed with abundant hydropower and in particular in regions with limited or no oil gas and coal deposits. Thus renewable ammonia played an important role in national food security for countries without fossil fuel resources until after the mid-20th century. For economic reasons renewable ammonia production declined from the 1960s onward in favor of fossil-based ammonia production. However renewable ammonia has recently gained traction again as an energy vector. It is an important component of the rapidly emerging hydrogen economy. Renewable ammonia will probably play a significant role in maintaining national and global energy and food security during the 21st century.
Experimental Study of Hydrogen Production Using Electrolyte Nanofluids with a Simulated Light Source
Dec 2021
Publication
In this research we conducted water electrolysis experiments of a carbon black (CB) based sodium sulfate electrolyte using a Hoffman voltameter. The main objective was to investigate hydrogen production in such systems as well as analyse the electrical properties and thermal properties of nanofluids. A halogen lamp mimicking solar energy was used as a radiation source and a group of comparative tests were also conducted with different irradiation areas. The results showed that by using CB and light it was possible to increase the hydrogen production rate. The optimal CB concentration was 0.1 wt %. At this concentration the hydrogen production rate increased by 30.37% after 20 min of electrolysis. Hence we show that using CB in electrolytes irradiated by solar energy could save the electrical energy necessary for electrolysis processes.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
A Comprehensive Evaluation of a Novel Integrated System Consisting of Hydrogen Boil-off Gas Reliquifying Process and Polymer Exchange Membrane Fuel Cell Using Exergoeconomic and Markov Analyses
Dec 2021
Publication
The price of constructing hydrogen generation units is very high and sometimes it is not possible to build them in the desired location so the transfer of hydrogen from the hydrogen generation system to the units that need it is justified. Since the storage of hydrogen gas needs a large volume and its transportation is very complex so if hydrogen is stored in liquid form this problem can be resolved. In transporting liquid hydrogen (LH2) over long distances owing to heat transfer to the environment the LH2 vaporizes forming boil-off gas (BOG). Herein in lieu of only reliquifying the BOG this study proposes and assesses a system employing the BOG partially as feed for a novel liquefaction process and also the remaining utilized in a proton exchange membrane fuel cell (PEMFC) to generate power. Using the cold energy of the onsite liquid oxygen utility of the LH2 cargo vessel the mixed refrigerant liquefaction cycle is further cooled down. In this regard by using 130 kg/h BOG as input 60.37 kg/h of liquid hydrogen is produced and the rest enters PEMFC with 552.7 kg/h oxygen to produce 1592 kW of power. The total thermal efficiency of the integrated system and electrical efficiency of the PEMFC is 83.18% and 68.76% respectively. Regarding the liquefaction cycle its specific power consumption (SPC) and coefficient of performance (COP) were achieved at 3.203 kWh/kgLH2 and 0.1876 respectively. The results of exergy analysis show that the exergy destruction of the whole system is 937.4 kW and also its exergy efficiency is calculated to be 58.38%. Exergoeconomic and Markov analyses have also been applied to the integrated system. Also by changing the important parameters of PEMFC its optimal performance has been extracted.
The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Feb 2022
Publication
High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in aluminum profoundly affect the hydrogen embrittlement of aluminum. Here we took a coincidence-site lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at different temperatures and to obtain results and rules consistent with the experiment. At 700 K three groups of MD simulations with concentrations of 0.5 2.5 and 5 atomic % hydrogen (at. % H) were carried out for STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen atoms we found that in the low hydrogen concentration of STGB models the grain boundaries captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.
Crack Management of Hydrogen Pipelines
Sep 2021
Publication
The climate emergency is one of the biggest challenges humanity must face in the 21st century. The global energy transition faces many challenges when it comes to ensuring a sustainable reliable and affordable energy supply. A likely outcome is decarbonizing the existing gas infrastructure. This will inevitably lead to greater penetration of hydrogen. While the introduction of hydrogen into natural gas transmission and distribution networks creates challenges there is nothing new or inherently impossible about the concept. Indeed more than 4000 kilometers of hydrogen pipelines are currently in operation. These pipelines however were (almost) all built and operated exclusively in accordance with specific hydrogen codes which tend to be much more restrictive than their natural gas equivalents. This means that the conversion of natural gas pipelines which have often been in service for decades and have accumulated damage and been subject to cracking threats (e.g. fatigue or stress corrosion cracking (SCC)) throughout their lifetime can be challenging. This paper will investigate the impact of transporting hydrogen on the crack management of existing natural gas pipelines from an overall integrity perspective. Different cracking threats will be described including recent industry experience of those which are generic to all steel pipelines but exacerbated by hydrogen and those which are hydrogen specific. The application of a Hydrogen Framework to identify characterise and manage credible cracking threats to pipelines in order to help enable the safe economic and successful introduction of hydrogen into the natural gas network will be discussed.
Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming
Sep 2021
Publication
Green hydrogen technology has recently gained in popularity due to the current economic and ecological trends that aim to remove the fossil fuels share in the energy mix. Among various alternatives biogas reforming is an attractive choice for hydrogen production. To meet the authorities’ requirements reforming biogas-enriched natural gas and sole biogas is tempting. Highly effective process conditions of biogas reforming are yet to be designed. The current state of the art lacks proper optimization of the process conditions. The optimization should aim to allow for maximization of the process effectiveness and limitation of the phenomena having an adverse influence on the process itself. One of the issues that should be addressed in optimization is the uniformity of temperature inside a reactor. Here we show an optimization design study that aims to unify temperature distribution by novel arrangements of catalysts segments in the model biogas reforming reactor. The acquired numerical results confirm the possibility of the enhancement of reaction effectiveness coming from improving the thermal conditions. The used amount of catalytic material is remarkably reduced as a side effect of the presented optimization. To ensure an unhindered perception of the reaction improvement the authors proposed a ratio of the hydrogen output and the amount of used catalyst as a measure.
Review of the Hydrogen Permeability of the Liner Material of Type IV On-Board Hydrogen Storage Tank
Aug 2021
Publication
The hydrogen storage tank is a key parameter of the hydrogen storage system in hydrogen fuel cell vehicles (HFCVs) as its safety determines the commercialization of HFCVs. Compared with other types the type IV hydrogen storage tank which consists of a polymer liner has the advantages of low cost lightweight and low storage energy consumption but meanwhile higher hydrogen permeability. A detailed review of the existing research on hydrogen permeability of the liner material of type IV hydrogen storage tanks can improve the understanding of the hydrogen permeation mechanism and provide references for following-up researchers and research on the safety of HFCVs. The process of hydrogen permeation and test methods are firstly discussed in detail. This paper then analyzes the factors that affect the process of hydrogen permeation and the barrier mechanism of the liner material and summarizes the prediction models of gas permeation. In addition to the above analysis and comments future research on the permeability of the liner material of the type IV hydrogen storage tank is prospected.
Hydrogen-powered Aviation and its Reliance on Green Hydrogen Infrastructure - Review and Research Gaps
Oct 2021
Publication
Aircraft powered by green hydrogen (H2) are a lever for the aviation sector to reduce the climate impact. Previous research already focused on evaluations of H2 aircraft technology but analyses on infrastructure related cost factors are rarely undertaken. Therefore this paper aims to provide a holistic overview of previous efforts and introduces an approach to assess the importance of a H2 infrastructure for aviation. A short and a medium-range aircraft are modelled and modified for H2 propulsion. Based on these a detailed cost analysis is used to compare both aircraft and infrastructure related direct operating costs (DOC). Overall it is shown that the economy of H2 aviation highly depends on the availability of low-cost green liquid hydrogen (LH2) supply infrastructure. While total DOC might even slightly decrease in a best LH2 cost case total DOC could also increase between 10 and 70% (short-range) and 15e102% (medium-range) due to LH2 costs alone.
Techno-Economic Assessment of Natural Gas Pyrolysis in Molten Salts
Jan 2022
Publication
Steam methane reforming with CO2 capture (blue hydrogen) and water electrolysis based on renewable electricity (green hydrogen) are commonly assumed to be the main supply options in a future hydrogen economy. However another promising method is emerging in the form of natural gas pyrolysis (turquoise hydrogen) with pure carbon as a valuable by-product. To better understand the potential of turquoise hydrogen this study presents a techno-economic assessment of a molten salt pyrolysis process. Results show that moderate reactor pressures around 12 bar are optimal and that reactor size must be limited by accepting reactor performance well below the thermodynamic equilibrium. Despite this challenge stemming from slow reaction rates the simplicity of the molten salt pyrolysis process delivers high efficiencies and promising economics. In the long-term carbon could be produced for 200–300 €/ton granting access to high-volume markets in the metallurgical and chemical process industries. Such a scenario makes turquoise hydrogen a promising alternative to blue hydrogen in regions with public resistance to CO2 transport and storage. In the medium-term expensive first-of-a-kind plants could produce carbon around 400 €/ton if hydrogen prices are set by conventional blue hydrogen production. Pure carbon at this cost level can access smaller high-value markets such as carbon anodes and graphite ensuring profitable operation even for first movers. In conclusion the economic potential of molten salt pyrolysis is high and further demonstration and scale-up efforts are strongly recommended.
A Review of Water Electrolysis-based Systems for Hydrogen Production using Hybrid/Solar/Wind Energy Systems
Oct 2022
Publication
Hydrogen energy as clean and efcient energy is considered signifcant support for the construction of a sustainable society in the face of global climate change and the looming energy revolution. Hydrogen is one of the most important chemical substances on earth and can be obtained through various techniques using renewable and nonrenewable energy sources. However the necessity for a gradual transition to renewable energy sources signifcantly hampers eforts to identify and implement green hydrogen production paths. Therefore this paper’s objective is to provide a technological review of the systems of hydrogen production from solar and wind energy utilizing several types of water electrolyzers. The current paper starts with a short brief about the diferent production techniques. A detailed comparison between water electrolyzer types and a complete illustration of hydrogen production techniques using solar and wind are presented with examples after which an economic assessment of green hydrogen production by comparing the costs of the discussed renewable sources with other production methods. Finally the challenges that face the mentioned production methods are illuminated in the current review.
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
Hydrogen Production Possibility using Mongolian Renewable Energy
Jan 2019
Publication
There is widespread popular support for using renewable energy particularly solar and wind energy which provide electricity without giving rise to any carbon dioxide emissions. Harnessing these for electricity depends on the cost and efficiency of the technology which is constantly improving thus reducing costs per peak kilowatt and per kWh. Utilizing solar and wind-generated electricity in a stand-alone system requires corresponding battery or other storage capacity. The possibility of large-scale use of hydrogen in the future as a transport fuel increases the potential for both renewables and base-load electricity supply.
Development and Operation Modes of Hydrogen Fuel Cell Generation System for Remote Consumers’ Power Supply
Aug 2021
Publication
At the present stage of electric power industry development special attention is being paid to the development and research of new efficient energy sources. The use of hydrogen fuel cells is promising for remote autonomous power supply systems. The authors of the paper have developed the structure and determined the optimal composition of a hybrid generation system based on hydrogen fuel cells and battery storage and have conducted studies of its operating modes and for remote consumers’ power supply efficiency. A simulation of the electromagnetic processes was carried out to check the operability of the proposed hybrid generation system structure. The simulation results confirmed the operability of the structure under consideration the calculation of its parameters reliability and the high quality of the output voltage. The electricity cost of a hybrid generation system was estimated according to the LCOE (levelized cost of energy) indicator its value being 1.17 USD/kWh. The factors influencing the electricity cost of a hydrogen generation system have been determined and ways for reducing its cost identified.
An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles
Dec 2018
Publication
Mass-produced off-the-shelf automotive air compressors cannot be directly used for boosting a fuel cell vehicle (FCV) application in the same way that they are used in internal combustion engines since the requirements are different. These include a high pressure ratio a low mass flow rate a high efficiency requirement and a compact size. From the established fuel cell types the most promising for application in passenger cars or light commercial vehicle applications is the proton exchange membrane fuel cell (PEMFC) operating at around 80 ◦C. In this case an electric-assisted turbocharger (E-turbocharger) and electric supercharger (single or two-stage) are more suitable than screw and scroll compressors. In order to determine which type of these boosting options is the most suitable for FCV application and assess their individual merits a co-simulation of FCV powertrains between GT-SUITE and MATLAB/SIMULINK is realised to compare vehicle performance on the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle. The results showed that the vehicle equipped with an E-turbocharger had higher performance than the vehicle equipped with a two-stage compressor in the aspects of electric system efficiency (+1.6%) and driving range (+3.7%); however for the same maximal output power the vehicle’s stack was 12.5% heavier and larger. Then due to the existence of the turbine the E-turbocharger led to higher performance than the single-stage compressor for the same stack size. The solid oxide fuel cell is also promising for transportation application especially for a use as range extender. The results show that a 24-kWh electric vehicle can increase its driving range by 252% due to a 5 kW solid oxide fuel cell (SOFC) stack and a gas turbine recovery system. The WLTP driving range depends on the charge cycle but with a pure hydrogen tank of 6.2 kg the vehicle can reach more than 600 km.
No more items...