Publications
Prospects for the Implementation of Underground Hydrogen Storage in the EU
Dec 2022
Publication
The hydrogen economy is one of the possible directions of development for the European Union economy which in the perspective of 2050 can ensure climate neutrality for the member states. The use of hydrogen in the economy on a larger scale requires the creation of a storage system. Due to the necessary volumes the best sites for storage are geological structures (salt caverns oil and gas deposits or aquifers). This article presents an analysis of prospects for large-scale underground hydrogen storage in geological structures. The political conditions for the implementation of the hydrogen economy in the EU Member States were analysed. The European Commission in its documents (e.g. Green Deal) indicates hydrogen as one of the important elements enabling the implementation of a climate-neutral economy. From the perspective of 2050 the analysis of changes and the forecast of energy consumption in the EU indicate an increase in electricity consumption. The expected increase in the production of energy from renewable sources may contribute to an increase in the production of hydrogen and its role in the economy. From the perspective of 2050 discussed gas should replace natural gas in the chemical metallurgical and transport industries. In the longer term the same process will also be observed in the aviation and maritime sectors. Growing charges for CO2 emissions will also contribute to the development of underground hydrogen storage technology. Geological conditions especially wide-spread aquifers and salt deposits allow the development of underground hydrogen storage in Europe.
A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq
Mar 2023
Publication
The study proposes a comprehensive framework to support the development of green hydrogen production including the establishment of legal and regulatory frameworks investment incentives and public-private partnerships. Using official and public data from government agencies the potential of renewable energy sources is studied and some reasonable assumptions are made so that a full study and evaluation of hydrogen production in the country can be done. The information here proves beyond a doubt that renewable energy makes a big difference in making green hydrogen. This makes the country a leader in the field of making green hydrogen. Based on what it found this research suggests a way for the country to have a green hydrogen economy by 2050. It is done in three steps: using green hydrogen as a fuel for industry using green hydrogen in fuel cells and selling hydrogen. On the other hand the research found that making green hydrogen that can be used in Iraq and other developing countries is hard. There are technological economic and social problems as well as policy consequences that need to be solved.
Color-Coded Hydrogen: Production and Storage in Maritime Sector
Dec 2022
Publication
To reduce pollution from ships in coastal and international navigation shipping companies are turning to various technological solutions mostly based on electrification and the use of alternative fuels with a lower carbon footprint. One of the alternatives to traditional diesel fuel is the use of hydrogen as a fuel or hydrogen fuel cells as a power source. Their application on ships is still in the experimental phase and is limited to smaller ships which serve as a kind of platform for evaluating the applicability of different technological solutions. However the use of hydrogen on a large scale as a primary energy source on coastal and ocean-going vessels also requires an infrastructure for the production and safe storage of hydrogen. This paper provides an overview of color-based hydrogen classification as one of the main methods for describing hydrogen types based on currently available production technologies as well as the principles and safety aspects of hydrogen storage. The advantages and disadvantages of the production technologies with respect to their application in the maritime sector are discussed. Problems and obstacles that must be overcome for the successful use of hydrogen as a fuel on ships are also identified. The issues presented can be used to determine long-term indicators of the global warming potential of using hydrogen as a fuel in the shipping industry and to select an appropriate cost-effective and environmentally sustainable production and storage method in light of the technological capabilities and resources of a particular area.
Impacts of Wind Conditions on Hydrogen Leakage During Refilling Hydrogen-powered Vehicles
Mar 2023
Publication
Although hydrogen leakage at hydrogen refueling stations has been a concern less effort has been devoted to hydrogen leakage during the refueling of hydrogen-powered vehicles. In this study hydrogen leakage and dilution from the hydrogen dispenser during the refueling of hydrogen-powered vehicles were numerically investigated under different wind configurations. The shape size and distribution of flammable gas clouds (FGC) during the leakage and dilution processes were analyzed. The results showed that the presence of hydrogen-powered vehicles resulted in irregular FGC shapes. Greater wind speeds (vwv) were associated with longer FGC propagation distances. At vwv =2 m/s and 10 m/s the FGC lengths at the end of the leakage were 7.9 m and 20.4 m respectively. Under downwind conditions higher wind speeds corresponded to lower FGC heights. The FGC height was larger under upwind conditions and was slightly affected by the magnitude of the wind speed. In the dilution process the existence of a region with a high hydrogen concentration led to the FGC volume first increasing and then gradually decreasing. Wind promoted the mixing of hydrogen and air accelerated FGC dilution inhibited hydrogen uplifting and augmented the horizontal movement of the FGC. At higher wind speeds the low-altitude FGC movements could induce potential safety hazards.
Aboveground Hydrogen Storage - Assessment of the Potential Market Releveance in a Carbon-Neutral European Energy System
Mar 2024
Publication
Hydrogen storage is expected to play a crucial role in the comprehensive defossilization of energy systems. In this context the focus is typically on underground hydrogen storage (e.g. in salt caverns). However aboveground storage which is independent of geological conditions and might offer other technical advantages could provide systemic benefits and thereby gain shares in the hydrogen storage market. Against this background this paper examines the market relevance of aboveground compared to underground hydrogen storage. Using the opensource energy system model and optimization framework of Europe PyPSA-Eur the influence of geological independence storage cost relations and technical storage characteristics (i.e. efficiencies) on mentioned market relevance of aboveground hydrogen storage are investigated. Further the expectable market relevance based on current cost projections for the future is assessed. The studies show that in terms of hydrogen capacities aboveground hydrogen storage plays a considerably smaller role compared to underground hydrogen storage. Even when assuming comparatively low aboveground storage cost it will not exceed 1.7% (1.9 TWhH2LHV) of total hydrogen storage capacities in a cost-optimal European energy system. Regarding the amounts of annually stored hydrogen aboveground storage could play a larger role reaching a maximum share of 32.5% (168 TWhH2 LHV a-1) of total stored hydrogen throughout Europe. However these shares are only achievable for low cost storage in particularly suited energy system supply configurations. For higher aboveground storage costs or lower efficiencies shares drop below 10% sharply. The analysis identifies some especially influential factors for achieving higher market relevance. Besides storage costs the demand-orientation of a particular aboveground storage system (e.g. hydrogen storage at demand pressure levels) plays an essential role in market relevance. Further overall efficiency can be a beneficial factor. Still current projections of future techno-economic characteristics show that aboveground hydrogen storage is too expensive or too inefficient compared to underground storage. Therefore to achieve notable market relevance rather drastic cost reductions beyond current expectations would be needed for all assessed aboveground hydrogen storage technologies.
Techno-economic Feasibility of Hybrid PV/wind/battery/thermal Storage Trigeneration System: Toward 100% Energy Independency and Green Hydrogen Production
Dec 2022
Publication
With the clear adverse impacts of fossil fuel-based energy systems on the climate and environment ever-growing interest and rapid developments are taking place toward full or nearly full dependence on renewable energies in the next few decades. Estonia is a European country with large demands for electricity and thermal energy for district heating. Considering it as the case study this work explores the feasibility and full potential of optimally sized photovoltaic (PV) wind and PV/wind systems equipped with electric and thermal storage to fulfill those demands. Given the large excess energy from 100% renewable energy systems for an entire country this excess is utilized to first meet the district heating demand and then to produce hydrogen fuel. Using simplified models for PV and wind systems and considering polymer electrolyte membrane (PEM) electrolysis a genetic optimizer is employed for scanning Estonia for optimal installation sites of the three systems that maximize the fulfillment of the demand and the supply–demand matching while minimizing the cost of energy. The results demonstrate the feasibility of all systems fully covering the two demands while making a profit compared to selling the excess produced electricity directly. However the PV-driven system showed enormous required system capacity and amounts of excess energy with the limited solar resources in Estonia. The wind system showed relatively closer characteristics to the hybrid system but required a higher storage capacity by 75.77%. The hybrid PV/wind-driven system required a total capacity of 194 GW most of which belong to the wind system. It was also superior concerning the amount (15.05 × 109 tons) and cost (1.42 USD/kg) of the produced green hydrogen. With such full mapping of the installation capacities and techno-economic parameters of the three systems across the country this study can assist policymakers when planning different country-scale cogeneration systems.
Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
Mar 2023
Publication
Environmental emissions global warming and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand there has been significant progress in artificial intelligence machine learning and designing data-driven intelligent controllers. These techniques have found much attention within the community and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction control energy management and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve classify and compare and future trends and directions for sustainability are discussed.
A Theoretical Study Using the Multiphase Numerical Simulation Technique for Effective Use of H2 as Blast Furnaces Fuel
Jun 2017
Publication
We present a numerical simulation procedure for analyzing hydrogen oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blastfurnace considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF considered as a multiphase reactor treats the lump solids (sinter small coke pellets granular coke and iron ores) gas liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum mass chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1). Thus combined injections of varying concentrations of gaseous fuels with H2 O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.
A Detailed Parametric Analysis of a Solar-Powered Cogeneration System for Electricity and Hydrogen Production
Dec 2022
Publication
Hydrogen has received increased attention in the last decades as a green energy carrier and a promising future fuel. The integration of hydrogen as well as the development of cogeneration plants makes the energy sector more eco-friendly and sustainable. The aim of this paper is the investigation of a solar-fed cogeneration system that can produce power and compressed green hydrogen. The examined unit contains a parabolic trough collector solar field a thermal energy storage tank an organic Rankine cycle and a proton exchange membrane water electrolyzer. The installation also includes a hydrogen storage tank and a hydrogen compressor. The unit is analyzed parametrically in terms of thermodynamic performance and economic viability in steady-state conditions with a developed and accurate model. Taking into account the final results the overall energy efficiency is calculated at 14.03% the exergy efficiency at 14.94% and the hydrogen production rate at 0.205 kg/h. Finally the payback period and the net present value are determined at 9 years and 122 k€ respectively.
Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft
Jul 2025
Publication
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial aircraft: we consider the design of three compressed hydrogen storage vessels made of 304 stainless steel 6061-T6 aluminium and Grade 5 (Ti-6Al-4V) titanium and capable of delivering 440 kW—enough for a PEM fuel cell for a Boeing 777. Complete structural analyses for pressures from 35 MPa to 70 MPa and wall thicknesses of 25 50 100 and 150 mm are used to determine the optimal material for aviation applications. Key factors such as deformation safety factors and Von Mises equivalent stress are evaluated to ensure structural integrity under a range of operating conditions. In addition CO2 emissions from a conventional 440 kW gas turbine APU and an equivalent PEM fuel cell are compared. This study provides insights into optimal material selection for compressed hydrogen storage vessels emphasising safety reliability cost and weight reduction. Ultimately this research aims to facilitate the adoption of fuel cell technology in aviation contributing to greenhouse emissions reduction and hence sustainable air transport.
An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production
Dec 2022
Publication
At present the energy shortage and environmental pollution are the burning global issues. For centuries fossil fuels have been used to meet worldwide energy demand. However thousands of tons of greenhouse gases are released into the atmosphere when fossil fuels are burned contributing to global warming. Therefore green energy must replace fossil fuels and hydrogen is a prime choice. Photocatalytic water splitting (PWS) under solar irradiation could address energy and environmental problems. In the past decade solar photocatalysts have been used to manufacture sustainable fuels. Scientists are working to synthesize a reliable affordable and light-efficient photocatalyst. Developing efficient photocatalysts for water redox reactions in suspension is a key to solar energy conversion. Semiconductor nanoparticles can be used as photocatalysts to accelerate redox reactions to generate chemical fuel or electricity. Carbon materials are substantial photocatalysts for total WS under solar irradiation due to their high activity high stability low cost easy production and structural diversity. Carbon-based materials such as graphene graphene oxide graphitic carbon nitride fullerenes carbon nanotubes and carbon quantum dots can be used as semiconductors photosensitizers cocatalysts and support materials. This review comprehensively explains how carbon-based composite materials function as photocatalytic semiconductors for hydrogen production the water-splitting mechanism and the chemistry of redox reactions. Also how heteroatom doping defects and surface functionalities etc. can influence the efficiency of carbon photocatalysts in H2 production. The challenges faced in the PWS process and future prospects are briefly discussed.
Carbon Footprint Assessment of Hydrogen and Steel
Dec 2022
Publication
Hydrogen has the potential to decarbonize a variety of energy-intensive sectors including steel production. Using the life cycle assessment (LCA) methodology the state of the art is given for current hydrogen production with a focus on the hydrogen carbon footprint. Beside the state of the art the outlook on different European scenarios up to the year 2040 is presented. A case study of the transformation of steel production from coal-based towards hydrogen- and electricity-based metallurgy is presented. Direct reduction plants with integrated electric arc furnaces enable steel production which is almost exclusively based on hydrogen and electricity or rather on electricity alone if hydrogen stems from electrolysis. Thus an integrated steel site has a demand of 4.9 kWh of electric energy per kilogram of steel. The carbon footprint of steel considering a European sustainable development scenario concerning the electricity mix is 0.75 kg CO2eq/kg steel in 2040. From a novel perspective a break-even analysis is given comparing the use of natural gas and hydrogen using different electricity mixes. The results concerning hydrogen production presented in this paper can also be transferred to application fields other than steel.
Hydrogen Technology for Supply Chain Sustainability: The Mexican Transportation Impacts on Society
Mar 2022
Publication
This study sheds light on the Hydrogen technology in transportation for reaching the sustainability goals of societies illustrated by the case of Mexico. In terms of the affected supply chains the study explores how the packaging and distribution of a fuel-saving tool that allows the adoption of hydrogen as complementary energy for maritime transportation to improve economic and environmental performance in Mexico. This exploratory study performs interviews observations simulations and tests involving producers suppliers and users at 26 ports in Mexico. The study shows that environmental and economic performance are related to key processes in Supply Chain Management (SCM) in which packaging and distribution are critical for achieving logistics and transportation sustainability goals. Reusable packaging and the distribution of a fuel-saving tool can help decrease costs - of transport and downstream/upstream processes in SCM while at the same time increasing the environmental performance.
Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing
Oct 2021
Publication
Water electrolysis to obtain hydrogen in combination with intermittent renewable energy resources is an emerging sustainable alternative to fossil fuels. Among the available electrolyzer technologies anion exchange membrane water electrolysis (AEMWE) has been paid much attention because of its advantageous behavior compared to other more traditional approaches such as solid oxide electrolyzer cells and alkaline or proton exchange membrane water electrolyzers. Recently very promising results have been obtained in the AEMWE technology. This review paper is focused on recent advances in membrane electrode assembly components paying particular attention to the preparation methods for catalyst coated on gas diffusion layers which has not been previously reported in the literature for this type of electrolyzers. The most successful methodologies utilized for the preparation of catalysts including co-precipitation electrodeposition sol–gel hydrothermal chemical vapor deposition atomic layer deposition ion beam sputtering and magnetron sputtering deposition techniques have been detailed. Besides a description of these procedures in this review we also present a critical appraisal of the efficiency of the water electrolysis carried out with cells fitted with electrodes prepared with these procedures. Based on this analysis a critical comparison of cell performance is carried out and future prospects and expected developments of the AEMWE are discussed.
Safe Design of a Hydrogen-Powered Ship: CFD Simulation on Hydrogen Leakage in the Fuel Cell Room
Mar 2023
Publication
Adopting proton exchange membrane fuel cells fuelled by hydrogen presents a promising solution for the shipping industry’s deep decarbonisation. However the potential safety risks associated with hydrogen leakage pose a significant challenge to the development of hydrogen-powered ships. This study examines the safe design principles and leakage risks of the hydrogen gas supply system of China’s first newbuilt hydrogen-powered ship. This study utilises the computational fluid dynamics tool FLACS to analyse the hydrogen dispersion behaviour and concentration distributions in the hydrogen fuel cell room based on the ship’s parameters. This study predicts the flammable gas cloud and time points when gas monitoring points first reach the hydrogen volume concentrations of 0.8% and 1.6% in various leakage scenarios including four different diameters (1 3 5 and 10 mm) and five different directions. This study’s findings indicate that smaller hydrogen pipeline diameters contribute to increased hydrogen safety. Specifically in the hydrogen fuel cell room a single-point leakage in a hydrogen pipeline with an inner diameter not exceeding 3 mm eliminates the possibility of flammable gas cloud explosions. Following a 10 mm leakage diameter the hydrogen concentration in nearly all room positions reaches 4.0% within 6 s of leakage. While the leakage diameter does not impact the location of the monitoring point that first activates the hydrogen leak alarm and triggers an emergency hydrogen supply shutdown the presence of obstructions near hydrogen detectors and the leakage direction can affect it. These insights provide guidance on the optimal locations for hydrogen detectors in the fuel cell room and the pipeline diameters on hydrogen gas supply systems which can facilitate the safe design of hydrogen-powered ships.
Portable Prototype of Hydrogen Fuel Cells for Educational Training
Jan 2023
Publication
This paper presents an experimental prototype of hydrogen fuel cells suitable for training engineering students. The presented system is designed to teach students the V-I characteristics of the fuel cells and how to record the V-I characteristics curve in the case of a single or multiple fuel cells. The prototype contains a compact electrolyzer to produce hydrogen and oxygen to the fuel cell. The fuel cell generates electricity to supply power to various types of loads. The paper also illustrates how to calculate the efficiency of fuel cells in series and parallel modes of operation. In the series mode of operation it is mathematically proven that the efficiency is higher at lower currents. Still the fuel cell operating area is required where the power is the highest. According to experimental results the efficiency in the case of series connection is approximately 25% while in parallel operation mode the efficiency is about 50%. Thus a parallel connection is recommended in the high current applications because the efficiency is higher than the one resulted from series connection. As explained later in the study plan several other experiments can be performed using this educational kit.
Society, Materials, and the Environment: The Case of Steel
Mar 2020
Publication
This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability scarcity) energy resources and generation of by-products i.e. the circular economy the anthropogenic iron mine and the energy transition. The paper also deals with emissions to air (dust Particulate Matter heavy metals Persistant Organics Pollutants) water and soil i.e. with toxicity ecotoxicity epidemiology and health issues but also greenhouse gas emissions i.e. climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed stressing areas where knowledge is still lacking. In the face of all these issues technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel energy conservation air/water/soil emissions) and in line with present environmental regulations; on the other hand there are important hanging issues such as the generation of mine tailings (and tailings dam failures) the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050 at least in the EU) and the emission of fine PM which WHO correlates with premature deaths. Moreover present regulatory levels of emissions will necessarily become much stricter.
Life Cycle Greenhouse Gas Emissions of Alternative Fuels and Powertrains for Medium-duty Trucks: A Singapore Case Study
Mar 2022
Publication
Alternatives to conventional diesel engines in medium/heavy-duty commercial trucks offer promising solutions to decarbonize road freight. We compare the life cycle greenhouse gas (GHG) emissions from diesel battery electric (BEV) and hydrogen fuel cell (FCV) medium-duty urban delivery trucks (gross vehicle weight 3.5 – 7 metric tonnes) in Singapore including the vehicle and fuel production use phase and end-of-life stages. Use phase energy demand was estimated by simulating energy consumption on local real-world driving cycles. BEVs powered by the 2019 electricity mix had up to 11% lower GHG emissions than conventional diesel but doubling battery capacity to meet travel range requirements resulted in up to 12% higher emissions. FCVs using gaseous hydrogen via steam methane reforming achieved 23 – 30% GHG reductions while satisfying range requirements. Efforts in obtaining updated and reliable data on vehicle production remain critical for assessments of emerging technologies and enacting evidence-based policies to decarbonize road freight.
Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study
Jan 2023
Publication
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from the FLOW-3D software simulation and the experimental data from the special test in the ocean the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
Modular Modeling Method and Power Supply Capability Evaluation for Integrated Hydrogen Production Stations of DC Systems
Mar 2022
Publication
Low-voltage DC distribution system has many advantages such as facilitating the access of DC loads and distributed energies and improving the network’s stability. It has become a new idea for integrated hydrogen production stations. Power supply capacity and small-signal stability are important indexes to evaluate a low-voltage DC integrated system. Based on the master–slave control mode this paper selects the typical star structure as the research object constructs the system transfer function through the scalable modular modeling method and further evaluates the impact of the high-order DC hydrogen production station integrated system on the hydrogen production capacity under the changes of the line length and master station position. The results show that the hydrogen production capacity of the system decreases gradually with the main station moving from side to inside. Finally a practical example is analyzed by MATLAB/Simulink simulation to verify the accuracy of the theory. This study can provide an effective theoretical method for the structure optimization and integrated parameter design of low-voltage DC system
No more items...