Publications
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Polymer Electrolyte Membrane Electrolyzer and Fuel Cell System Characterization for Power System Frequency Control
Mar 2022
Publication
This work focuses on tests for control reserve of a novel Power-to-Gas-to-Power platform based on proton exchange membrane technologies and on pure oxygen instead of air in the re-electrification process. The technologies are intended as a further option to stabilize the power system therefore helping integrating renewable energy into the power system. The tests are based on the pre-qualification tests used by Swissgrid but are not identical in order to capture the maximum dynamics by the plants. The main characteristics identified are the ramping capabilities of ±8% per unit per second for the electrolyzer system and ±33% per unit per second for the fuel cell system. The ramping capabilities are mainly limited by the underlying processes of polymer electrolyte membrane technologies. Additionally the current and projected round-trip efficiencies for Power-to-Gas-to-Power of 39% in 2025 and 48% in 2040 are derived. Furthermore during the successful tests the usage of oxygen in the present Power-to-Gas and Gas-to-Power processes and its influence on the dynamics and the round-trip efficiency was assessed. In consequence fundamental data on the efficiency and the dynamics of the Power-to-Gas-to-Power technologies is presented. This data can serve as basis for prospective assessments on the suitability of the technologies investigated for frequency control in power systems.
Comparative Sustainability Study of Energy Storage Technologies Using Data Envelopment Analysis
Mar 2022
Publication
The transition to energy systems with a high share of renewable energy depends on the availability of technologies that can connect the physical distances or bridge the time differences between the energy supply and demand points. This study focuses on energy storage technologies due to their expected role in liberating the energy sector from fossil fuels and facilitating the penetration of intermittent renewable sources. The performance of 27 energy storage alternatives is compared considering sustainability aspects by means of data envelopment analysis. To this end storage alternatives are first classified into two clusters: fast-response and long-term. The levelized cost of energy energy and water consumption global warming potential and employment are common indicators considered for both clusters while energy density is used only for fast-response technologies where it plays a key role in technology selection. Flywheel reveals the highest efficiency between all the fast-response technologies while green ammonia powered with solar energy ranks first for long-term energy storage. An uncertainty analysis is incorporated to discuss the reliability of the results. Overall results obtained and guidelines provided can be helpful for both decision-making and research and development purposes. For the former we identify the most appealing energy storage options to be promoted while for the latter we report quantitative improvement targets that would make inefficient technologies competitive if attained. This contribution paves the way for more comprehensive studies in the context of energy storage by presenting a powerful framework for comparing options according to multiple sustainability indicators.
Modeling of Unintended Hydrogen Releases from a Fuel Cell Tram
Sep 2021
Publication
Hydrogen is a promising alternative energy carrier that has been increasingly used in industry especially the transportation sector to fuel vehicles through fuel cells. Hydrogen fuel cell vehicles usually have high pressure on-board storage tanks which take up large spaces to provide comparable ranges as current fossil fuel vehicles because of the low volumetric energy density of hydrogen. Therefore hydrogen is also appropriate for large heavy-duty vehicles that have more space than passenger vehicles.
Hydrogen Production from Water Electrolysis: Role of Catalysts
Feb 2021
Publication
As a promising substitute for fossil fuels hydrogen has emerged as a clean and renewable energy. A key challenge is the efcient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efcient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active stable and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity stability and efciency. This will be followed by outlining current knowledge on the two half-cell reactions hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be dis‑ cussed. New strategies and insights in exploring the synergistic structure morphology composition and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efcient production of hydrogen from water splitting electrolysis will also be outlined.
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel
Dec 2022
Publication
The gasification of Polish coal to produce hydrogen could help to make the country independent of oil and gas imports and assist in the rational energy transition from gray to green hydrogen. When taking strategic economic or legislative decisions one should be guided not only by the level of CO2 emissions from the production process but also by other environmental impact factors obtained from comprehensive environmental analyses. This paper presents an analysis of the life cycle of hydrogen by coal gasification and its application in a vehicle powered by FCEV cells. All the main stages of hydrogen fuel production by Shell technology as well as hydrogen compression and transport to the distribution point are included in the analyses. In total two fuel production scenarios were considered: with and without sequestration of the carbon dioxide captured in the process. Life cycle analysis was performed according to the procedures and assumptions proposed in the FC-Hy Guide Guidance Document for performing LCAs on Fuel Cells and H2 Technologies by the CML baseline method. By applying the CO2 sequestration operation the GHG emissions rate for the assumed functional unit can be reduced by approximately 44% from 34.8 kg CO2-eq to 19.5 kg CO2-eq but this involves a concomitant increase in the acidification rate from 3.64·10−2 kg SO2-eq to 3.78·10−2 kg SO2-eq in the eutrophication index from 5.18·10−2 kg PO3− 4-eq to 5.57·10−2 kg PO3− 4-eq and in the abiotic depletion index from 405 MJ to 414 MJ and from 1.54·10−5 kg Sbeq to 1.61·10−5 kg Sbeq.
An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan
Dec 2022
Publication
Hydrogen energy is considered one of the main measures of zero carbonization in energy systems but high equipment and hydrogen costs hinder the development of hydrogen energy technology. The objectives of this study are to quantify the environmental advantages of hydrogen energy through a carbon tax and study the application potential of hydrogen energy technology in a regional distributed energy system (RDES). In this study various building types in the smart community covered by Japan’s first hydrogen energy pipeline are used as an example. First ten buildings of five types are selected as the research objectives. Subsequently two comparative system models of a regional distributed hydrogen energy system (RDHES) and an RDES were established. Then by studying the optimal RDHES and RDES configuration and combining the prediction of future downward trends of fuel cell (FC) costs and energy carbon emissions the application effect of FC and hydrogen storage (HS) technologies on the demand side was analyzed. Finally the adaptability of the demand-side hydrogen energy system was studied by analyzing the load characteristics of different types of buildings. The results show that when the FC price is reduced to 1.5 times that of the internal combustion engine (ICE) the existing carbon tax system can sufficiently support the RDHES in gaining economic advantages in some regions. Notably when the carbon emissions of the urban energy system are reduced the RDHES demonstrates stronger anti-risk ability and has greater suitability for promotion in museums and shopping malls. The conclusions obtained in this study provide quantitative support for hydrogen energy promotion policies on the regional demand side and serve as a theoretical reference for the design and adaptability research of RDHESs.
A Study into Proton Exchange Membrane Fuel Cell Power and Voltage Prediction using Artificial Neural Network
Sep 2022
Publication
Polymer Electrolyte Membrane fuel cell (PEMFC) uses hydrogen as fuel to generate electricity and by-product water at relatively low operating temperatures which is environmentally friendly. Since PEMFC performance characteristics are inherently nonlinear and related predicting the best performance for the different operating conditions is essential to improve the system’s efficiency. Thus modeling using artificial neural networks (ANN) to predict its performance can significantly improve the capabilities of handling multi-variable nonlinear performance of the PEMFC. This paper predicts the electrical performance of a PEMFC stack under various operating conditions. The four input terms for the 5 W PEMFC include anode and cathode pressures and flow rates. The model performances are based on ANN using two different learning algorithms to estimate the stack voltage and power. The models have shown consistently to be comparable to the experimental data. All models with at least five hidden neurons have coefficients of determination of 0.95 or higher. Meanwhile the PEMFC voltage and power models have mean squared errors of less than 1 × 10−3 V and 1 × 10−3 W respectively. Therefore the model results demonstrate the potential use of ANN into the implementation of such models to predict the steady state behavior of the PEMFC system (not limited to polarization curves) for different operating conditions and help in the optimization process for achieving the best performance of the system.
Alternative and Innovative Solid Oxide Electrolysis Cell Materials: A Short Review
Jun 2021
Publication
Solid oxide electrolysis cell is the leading technology for production of green hydrogen by high temperature electrolysis. However optimization of existing reference materials constituting the cell and development of innovative materials remain critical for solid oxide electrolysis cell. In particular they are key to reach performance and durability targets compatible with a commercialization for the three main markets identified as follows: large-scale H2 production Power-to-X and Power-to-Power. This short review summarizes the latest progress in research and development of alternative and innovative materials for solid oxide electrolysis cells with a main focus on cathode-supported cell materials. A brief description of the layers constituting the solid oxide electrolysis cell is provided with the associated current state-of-the-art materials. A further emphasis on the most promising alternative and innovative materials for each layer follows based on the major aspects from an industrial perspective to reach a competitive hydrogen production cost for the main targeted markets: performance durability scaling up/manufacturing ability and operational flexibility.
Dynamic Process Modeling of Topside Systems for Evaluating Power Consumption and Possibilities of Using Wind Power
Dec 2022
Publication
Norwegian offshore wind farms may be able to supply power to offshore oil and gas platforms in the near future thanks to the expeditious development of offshore wind technology. This would result in a reduction in CO2 emissions from oil and gas offshore installations which are currently powered predominantly by gas turbines. The challenge with using wind power is that offshore oil and gas installations require a fairly constant and stable source of power whereas wind power typically exhibits significant fluctuations over time. The purpose of this study is to perform a technical feasibility evaluation of using wind power to supply an offshore oil and gas installation on the basis of dynamic process simulations. Throughout the study only the topside processing system is considered since it is the most energy-intensive part of an oil and gas facility. An offshore field on the Norwegian Continental Shelf is used as a case study. The results indicate that when the processing system operates in steady-state conditions it cannot be powered solely by wind energy and another power source is required to compensate for low wind power generation intervals. An alternative would be to store wind energy during periods of high generation (e.g. by producing hydrogen or ammonia) and use it during periods of low generation. Utilizing energy storage methods wind energy can be continuously used for longer periods of time and provide a suitable constant power source for the studied case. Higher constant power can also be provided by increasing the efficiency of energy recovery and storage processes. Alternatively these two technologies may be integrated with gas turbines if the required storage cannot be provided or higher power is required. It was estimated that the integration of wind energy could result in noticeable reductions in CO2 emissions for the case study. Additionally according to the results the production storage and reuse of hydrogen and ammonia on-site may be viable options for supplying power.
Green Hydrogen-Based Direct Reduction for Low-Carbon Steelmaking
May 2020
Publication
The European steel industry aims at a CO2 reduction of 80–95% by 2050 ensuring that Europe will meet the requirements of the Paris Agreement. As the reduction potentials of the current steelmaking routes are low the transfer toward breakthrough-technologies is essential to reach these goals. Hydrogen-based steelmaking is one approach to realize CO2-lean steelmaking. Therefore the natural gas (NG)-based direct reduction (DR) acts as a basis for the first step of this transition. The high flexibility of this route allows the gradual addition of hydrogen and in a long-term view runs the process with pure hydrogen. Model-based calculations are performed to assess the possibilities for injecting hydrogen. Therefore NG- and hydrogen-based DR models are developed to create new process know-how and enable an evaluation of these processes in terms of energy demand CO2-reduction potentials and so on. The examinations show that the hydrogen-based route offers a huge potential for green steelmaking which is strongly depending on the carbon footprint of the electricity used for the production of hydrogen. Only if the carbon intensity is less than about 120 g CO2 kWh1 the hydrogen-based process emits less CO2 than the NG-based DR process.
CFD Simulation of a Hybrid Solar/Electric Reactor for Hydrogen and Carbon Production from Methane Cracking
Jan 2023
Publication
Methane pyrolysis is a transitional technology for environmentally benign hydrogen production with zero greenhouse gas emissions especially when concentrated solar energy is the heating source for supplying high-temperature process heat. This study is focused on solar methane pyrolysis as an attractive decarbonization process to produce both hydrogen gas and solid carbon with zero CO2 emissions. Direct normal irradiance (DNI) variations arising from inherent solar resource variability (clouds fog day-night cycle etc.) generally hinder continuity and stability of the solar process. Therefore a novel hybrid solar/electric reactor was designed at PROMES-CNRS laboratory to cope with DNI variations. Such a design features electric heating when the DNI is low and can potentially boost the thermochemical performance of the process when coupled solar/electric heating is applied thanks to an enlarged heated zone. Computational fluid dynamics (CFD) simulations through ANSYS Fluent were performed to investigate the performance of this reactor under different operating conditions. More particularly the influence of various process parameters including temperature gas residence time methane dilution and hybridization on the methane conversion was assessed. The model combined fluid flow hydrodynamics and heat and mass transfer coupled with gas-phase pyrolysis reactions. Increasing the heating temperature was found to boost methane conversion (91% at 1473 K against ~100% at 1573 K for a coupled solar-electric heating). The increase of inlet gas flow rate Q0 lowered methane conversion since it affected the gas space-time (91% at Q0 = 0.42 NL/min vs. 67% at Q0 = 0.84 NL/min). A coupled heating also resulted in significantly better performance than with only electric heating because it broadened the hot zone (91% vs. 75% methane conversion for coupled heating and only electric heating respectively). The model was further validated with experimental results of methane pyrolysis. This study demonstrates the potential of the hybrid reactor for solar-driven methane pyrolysis as a promising route toward clean hydrogen and carbon production and further highlights the role of key parameters to improve the process performance.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
Brief Review on High-Temperature Electrochemical Hydrogen Sensors
Dec 2022
Publication
Hydrogen sensors especially those operating at high temperatures are essential tools for the emerging hydrogen economy. Monitoring hydrogen under process conditions to control the reactions for detecting confined species is crucial to the safe widespread use and public acceptance of hydrogen as fuel. Hydrogen sensors must have a sensitivity ranging from traces of hydrogen (parts per million (ppm)) up to levels near the lower explosive limit (LEL = 4% H2 in the air) for safety reasons. Furthermore they need to operate in cryogenic ambient and high-temperature environments. Herein emphasis is given to hydrogen sensors based on solid oxide electrolytes (operating at high temperatures) in particular oxygen ion and proton conductors. The review is devoted to potentiometric amperometric and combined amperometric-potentiometric hydrogen sensors. Experimental results already reported in the international literature are presented and analyzed to reveal the configuration principle of operation and the applied solid electrolytes and electrodes of the high-temperature hydrogen sensors. Additionally an amperometric sensor able to detect hydrogen and steam in atmospheric air through a two-stage procedure is presented and thoroughly discussed. The discussion reveals that high-temperature hydrogen sensors face different challenges in terms of the electrodes and solid electrolytes to be used depending on the operating principle of each sensor type.
Carbon-free Green Hydrogen Production Process with Induction Heating-based Ammonia Decomposition Reactor
Dec 2022
Publication
This study presents an induction heating-based reactor for ammonia decomposition and to achieve a 150 Nm3 /h carbon-free green hydrogen production process. The developed metallic monolith reactor acts by increasing the reactor temperature through an electromagnetic induction method using renewable-based electricity. As a result hydrogen is produced without the generation of air pollutants such as CO2 which are formed via the conventional production pathway. Furthermore techno-economic analysis was conducted based on exergy and economic analysis to evaluate the feasibility of the developed process. Experimentally the proposed reactor showed an ammonia conversion of 90.0 % at 600 ℃ and 7 barg. Exergy analysis indicated that the total unused exergy accounted for 45.79 % of the total exergy input giving an exergy efficiency of 54.21 % for the overall process. Furthermore the CAPEX and OPEX values are calculated as 1599567 USD and 644719 USD/y respectively; therefore the levelized cost of hydrogen (LCOH) was calculated to be 6.98 USD/kgH2. This study also demonstrated that the LCOH varies with the ammonia feed price and the process capacity and so it would be expected to decrease from 6.98 to 5.33 USD/kgH2 as the hydrogen production capacity is increased from 150 to 500 Nm3 / h. Overall our results confirm the feasibility of carbon-free green hydrogen production on on-site hydrogen refueling stations and they will be expected to advance the development of an environmental hydrogen economy.
Numerical Simulation of Hydrogen Deflagration Using CFD
Sep 2021
Publication
Hydrogen is seen as an important future energy carrier as part of the move away from traditional hydrocarbon sources. Delayed ignition of a hydrogen-air mixture formed from an accidental release of hydrogen in either a confined or congested environment can lead to the generation of overpressure impacting both people and assets. An understanding of the possible overpressures generated is critical in designing facilities and effective mitigation systems against hydrogen explosion hazards. This paper describes the numerical modelling of hydrogen deflagrations using a new application PDRFOAM-R that is part of the wider OpenFOAM open-source CFD package of routines for the solution of systems of partial differential equations. The PDRFOAM-R code solves momentum and continuity equations the combustion model is based on flame area transport and the turbulent burning velocity correlation is based on Markstein and Karlovitz numbers. PDRFOAM-R is derived from publicly available PDRFOAM tool and it resolves small and large obstacles unlike PDRFOAM which is based on the Porosity Distributed Resistance approach. The PDRFOAM-R code is validated against various unconfined-uncongested and semi-confined congested explosion experiments. The flame dynamics and pressure history predicted from the simulation show a reasonable comparison with the experiments.
Numerical Study of the Effects of Tunnel Inclination and Ventilation on the Dispersion of Hydrogen Released from a Car
Sep 2021
Publication
Hydrogen cars are expected to play an important role in a decarbonised clean-transport future. Safety issues arise though in tunnels due to the possibility of accidental release and accumulation of hydrogen. This Computational Fluid Dynamics (CFD) study focuses on the effect of tunnel inclination and ventilation on hydrogen dispersion. A horseshoe shaped tunnel of 200 m length is considered in all seventeen cases examined. In most cases hydrogen is released from the bottom of a car placed at the center of the tunnel. Various inclinations in-tunnel wind speeds and fuel tank Pressure Relief Device (PRD) diameters were considered in order to assess their influence on safety. It was found that even if the long-term influence of the inclination is positive there is no systematic effect at initial stages nor at the most dangerous ‘nearly-stoichiometric’ cloud volumes (25% - 35% v/v). Adverse effects may also exist like the occasionally higher flammable cloud (4% - 75% v/v). Regarding ventilation it was found that even low wind speeds (e.g. 1 m/s) can reduce the flammable cloud by several times. However no significant effect on the total nearly-stoichiometric volumes was found for most of the cases examined. Ventilation can also cause adverse effects as for example at mid-term of the release duration in some cases. Concerning the PRD diameter a reduction from 4 mm to 2 mm resulted in about five times smaller maximum of the nearly-stoichiometric cloud volume. In addition the effect of release orientation on hydrogen cloud was examined and it was found that the downwards direction presents drawbacks compared to the backwards and upwards release directions.
The Potential Role of Flying Vehicles in Progressing the Energy Transition
Oct 2022
Publication
An energy transition is in progress around the globe notably led by an increase in the deployment of renewable energy and a shift toward less emissions-intense options notably in the transportation sector. This research investigates the potential role that new transportation options namely flying vehicles may play toward progressing the energy transition. As flying vehicles are a relatively new technology yet to penetrate the market it is also prudent to consider the ethical legal and social issues (ELSI) associated with their implementation alongside the potential energy and environmental impacts. Through a review of ELSI and energy and environmental literature we identify research gaps and identify how flying vehicles may impact upon the energy transition over time. Our research identifies several critical aspects of both ELSI and energy and environmental academia relevant to the future deployment of flying vehicles and describes a deployment timeline and the resultant societal outcomes. We find that flying vehicles could drive the energy transition and the hydrogen economy and that their widespread adoption could engender shared socio-environmental benefits. Our findings are relevant to transportation and environmental policymakers and identify critical considerations for the planned introduction of new shared transportation options to the market conducive to a sustainable energy transition.
No more items...