Publications
New Paradigms in Hydrogen Explosion Modelling Using an Industrial CFD Code
Sep 2019
Publication
It is well-known that deflagration to detonation transition (DDT) may be a significant threat for hydrogen explosions. This paper presents a summary of the work carried out for the development of models in order to enable the industrial computational fluid dynamic (CFD) tool FLACS to provide indications about the possibility of a deflagration-to-detonation transition (DDT). The likelihood of DDT has been expressed in terms of spatial pressure gradients across the flame front. This parameter is able to visualize when the flame front captures the pressure front which is the case in situations when fast deflagrations transition to detonation. Reasonable agreement was obtained with experimental observations in terms of explosion pressures transition times and flame speeds for several practical geometries. The DDT model has also been extended to develop a more meaningful criterion for estimating the likelihood of DDT by comparison of the geometric dimensions with the detonation cell size. The conclusion from simulating these experiments is that the FLACS DPDX criterion seems robust and will generally predict the onset DDTs with reasonable precision including the exact location where DDT may happen. The standard version of FLACS can however not predict the consequences if there is DDT as only deflagration flames are modelled. Based on the methodology described above an approach for predicting detonation flames and explosion loads has been developed. The second part of the paper covers new paradigms associated with risk assessment of a hydrogen infrastructure such as a refueling station. In particular approaches involving one-to-one coupling between CFD and FEA modelling are summarized. The advantages of using such approaches are illustrated. This can have wide-ranging implications on the design of things like protection walls against hydrogen explosions.
Highly Resolved Large Eddy Simulation of Subsonic Hydrogen Jets – Evaluation of ADREA-HF Code Against Detailed Experiments
Sep 2019
Publication
The main objective of this work is the Large Eddy Simulation (LES) of hydrogen subsonic jets in order to evaluate modelling strategies and to provide guidelines for similar simulations. The ADREAHF code and the experiments conducted by Sandia National Laboratories are used for that purpose. These experiments are particularly ideal for LES studies because turbulent fluctuations have been measured which is something rare in hydrogen experiments. Hydrogen is released vertically from a small orifice of 1.91 mm diameter into an unconfined stagnant environment. Three experimental cases are simulated with different inlet velocity (49.7 76.0 and 133.9 m/s) which corresponds to transitional or turbulent flows. Hydrogen mass fraction and velocity mean values and fluctuations are compared against the experimental data. The Smagorinsky subgrid-scale model is mainly used. In the 49.7 m/s case the RNG LES is also evaluated. Several grid resolutions are used to assess the effect on the results. The amount of the resolved by the LES turbulence and velocity spectra are presented. Finally the effect of the release modelling is discussed.
Detailed Examination of Deformations Induced by Internal Hydrogen Explosions: Part 1 Experiments
Sep 2019
Publication
In industry handling hydrogen explosion presents a potential danger due to its effects on people and property. In the nuclear industry this explosion which is possible during severe accidents can challenge the reactor containment and it may lead to a release of radioactive materials into the environment. The Three Mile Island accident in the United States in 1979 and more recently the Fukushima accident in Japan have highlighted the importance of this phenomenon for a safe operation of nuclear installations as well as for the accident management.<br/>In 2013 the French Research Agency (ANR) launched the MITHYGENE project with the main aim of improving knowledge on hydrogen risk for the benefit of reactor safety. One of the topics in this project is devoted to the effect of hydrogen explosions on solid structures. In this context CEA conducted a test program with its SSEXHY facility to build a database on deformations of simple structures following an internal hydrogen explosion. Different regimes of explosion propagation have been studied ranging from detonation to slow deflagration. Different targets were tested such as cylinders and plates of variable thickness and diameter. Detailed instrumentation was used to obtain data for the validation of coupled CFD models of combustion and structural dynamics.<br/>This article details the experimental set-up and the results obtained. A companion article focuses on the comparison between these experimental results and the prediction of CFD numerical models
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Experimental Investigation of Unconfined Spherical and Cylindrical Flame Propagation in Hydrogen-air Mixtures
Sep 2019
Publication
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.
A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Jun 2020
Publication
The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions (2) comparability of hydrogen permeability (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
A Large-Scale Study on the Effect of Ambient Conditions on Hydrogen Recombiner Induced Ignition
Sep 2019
Publication
Hydrogen recombiners (known in the nuclear industry as passive autocatalytic recombiners-PARs) in general can be utilized for mitigation of hydrogen in controlled areas where there is potential for hydrogen release and ventilation is not practical. Recombiners are widely implemented in the nuclear industry however there are other applications of recombiners outside the nuclear industry that have not yet been explored practically. The most notable benefit of recombiners over conventional hydrogen mitigation measures is their passive capability where power or operator actions are not needed for the equipment to remove hydrogen when it is present.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
Micro-grid Design and Life-cycle Assessment of a Mountain Hut's Stand-alone Energy System with Hydrogen Used for Seasonal Storage
Dec 2020
Publication
Mountain huts as special stand-alone micro-grid systems are not connected to a power grid and represent a burden on the environment. The micro-grid has to be flexible to cover daily and seasonal fluctuations. Heat and electricity are usually generated with fossil fuels due to the simple on-off operation. By introducing renewable energy sources (RESs) the generation of energy could be more sustainable but the generation and consumption must be balanced. The paper describes the integration of a hydrogen-storage system (HSS) and a battery-storage system (BattS) in a mountain hut. The HSS involves a proton-exchange-membrane water electrolyser (PEMWE) a hydrogen storage tank (H2 tank) a PEM fuel cell (PEMFC) and a BattS consisting of lead-acid batteries. Eight micro-grid configurations were modelled using HOMER and evaluated from the technical environmental and economic points of view. A life-cycle assessment analysis was made from the cradle to the gate. The micro-grid configurations with the HSS achieve on average a more than 70% decrease in the environmental impacts in comparison to the state of play at the beginning but require a larger investment. Comparing the HSS with the BattS as a seasonal energy storage the hydrogen-based technology had advantages for all of the assessed criteria.
Unattended Hydrogen Vehicle Fueling Challenges and Historical Context
Sep 2019
Publication
Hydrogen fuelling in the US is unattended activity although this precedent is not without several challenges that have been addressed in the past decade. This paper provides the recent history and the generic safety case which has established this precedent for hydrogen. The paper also explores the longer history of unattended gasoline fuelling and attempts to help place hydrogen fuelling into the longer history of fuelling personal vehicles.
Risk Assessment and Ventilation Modeling for Hydrogen Vehicle Repair Garages
Sep 2019
Publication
The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability (HAZOP) study was performed to identify key risk-significant scenarios related to hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location behaviour and severity of hydrogen release based on key HAZOP scenarios. This work compares current fire code requirements to an alternate ventilation strategy to further reduce potential hazardous conditions. It is shown that position direction and velocity of ventilation have a significant impact on the amount of flammable mass in the domain.
Large Scale Experiments and Model Validation of Pressure Peaking Phenomena-ignited Hydrogen Releases
Jan 2021
Publication
The Pressure Peaking Phenomena (PPP) is the effect of introducing a light gas into a vented volume of denser gas. This will result in a nonequilibrium pressure as the light gas pushes the dense gas out at the vent. Large scale experiments have been performed to produce relevant evidence. The results were used to validate an analytical model. Pressure and temperature were measured inside a constant volume while the mass flow and vent area were varied. The analytical model was based on the conservation of mass and energy. The results showed that increasing the mass flow rate the peak pressure increases and with increasing the ventilation area the peak pressure decreases. Peak pressure was measured above 45 kPa. Longer combustion time resulted in higher temperatures increasing an underpressure effect. The experimental results showed agreement with the analytical model results. The model predicts the pressures within reasonable limits of+/-2 kPa. The pressure peaking phenomena could be very relevant for hydrogen applications in enclosures with limited ventilation. This could include car garages ship hull compartments as well as compressor shielding. This work shows that the effect can be modeled and results can be used in design to reduce the consequences.
Effect of TiO2 on Electrocatalytic Behavior of Ni-Mo Alloy Coating for Hydrogen Energy
Jun 2018
Publication
Ni-Mo-TiO2 composite coating has been developed through electrodeposition method by depositing titanium dioxide (TiO2) nanoparticles parallel to the process of Ni-Mo alloy coating. The experimental results explaining the increased electrocatalytic activity of Ni-Mo alloy coating on incorporation of TiO2 nanoparticles into its alloy matrix is reported here. The effect of addition of TiO2 on composition morphology and phase structure of TiO2 – composite coating is studied with special emphasis on its electrocatalytic activity for hydrogen evolution reaction (HER) in 1.0 M KOH solution. The electrocatalytic activity of alloy coatings were validated using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Under optimal condition TiO2 – composite alloy coating represented as (Ni-Mo-TiO2)2.0 A dm 2 is found to exhibit the highest electrocatalytic activity for HER compared to its binary alloy counterpart. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 composite coating was attributed to the increased Mo content porosity and roughness of coating affected due to addition of TiO2 nanoparticles supported by SEM EDX XRD and AFM study. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating was found due to decreased Rct and increased Cdl values demonstrated by EIS study. Better electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating compared to (Ni-Mo)2.0 A dm 2 coating has been explained through mechanism. Experimental study revealed that (Ni-Mo-TiO2)2.0 A dm 2 composite coating follows Volmer-Heyrovsky mechanism compared to Tafel mechanism in case of (Ni-Mo-TiO2)2.0 A dm 2 coating assessed on the basis of Tafel slopes.
CFD Modelling of Underexpanded Hydrogen Jets Exiting Rectangular Shaped Openings
May 2020
Publication
Underexpanded jet releases from circular nozzles have been studied extensively both experimentally and numerically. However jet releases from rectangular openings have received much less attention and information on their dispersion behaviour is not as widely available. In this paper Computational Fluid Dynamics (CFD) is used to assess the suitability of using a pseudo-source approach to model jet releases from rectangular openings. A comparative study is performed to evaluate the effect of nozzle shape on jet structure and dispersion characteristics for underexpanded hydrogen jet releases. Jet releases issuing from a circular nozzle and rectangular nozzles with aspect ratios ranging from two to eight are modelled including resolution of the near-field behaviour. The experimental work of Ruggles and Ekoto (2012 2014) is used as a basis for validating the modelling approach used and an additional case study in which jets with a stagnation-to-ambient pressure ratio of 300:1 are modelled is also performed. The CFD results show that for the 10:1 pressure ratio release the hazard volume and hazard distance remain largely unaffected by nozzle shape. For the higher pressure release the hazard volume is larger for the rectangular nozzle releases than the equivalent release through a circular orifice though the distance to lower flammability limit is comparable across the range of nozzle shapes considered. For both of the release pressures simulated the CFD results illustrate that a pseudo-source approach produces conservative results for all nozzle shapes considered. This finding has useful practical implications for consequence analysis in industrial applications such as the assessment of leaks from flanges and connections in pipework.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
The Effect of Graphite Size on Hydrogen Absorption and Tensile Properties of Ferritic Ductile Cast Iron
Jun 2019
Publication
Ductile cast iron (DCI) is one of prospective materials used for the hydrogen equipment because of low-cost good workability and formability. The wide range of mechanical properties of DCI is obtained by controlling microstructural factors such as graphite size volume fraction of graphite matrix structure and so on. Therefore it is important to find out an optimal microstructural condition that is less susceptible to hydrogen embrittlement. In this study the effects of graphite size on the hydrogen absorption capability and the hydrogen-induced ductility loss of ferritic DCI were investigated.<br/>Several kinds of ferritic DCIs with a different graphite diameter of about 10 µm - 30 µm were used for the tensile test and the hydrogen content measurement. Hydrogen charging was performed prior to the tensile test by exposing a specimen to high-pressure hydrogen gas. Then the tensile test was performed in air at room temperature. The hydrogen content of a specimen was measured by a thermal desorption analyzer.<br/>It was found that the amount of hydrogen stored in DCI was dependent on the graphite size. As the graphite diameter increased the hydrogen content sharply increased at a certain graphite diameter and then it became nearly constant irrespective of increase in graphite diameter. In other words there was the critical graphite diameter that significantly changed the hydrogen absorption capability. The ductility was decreased by hydrogen and the hydrogen-induced ductility loss was dependent on the hydrogen content. Therefore the hydrogen embrittlement of DCI became remarkable when the graphite size was larger than the critical value.
Paving the Way to the Fuel of the Future—Nanostructured Complex Hydrides
Dec 2022
Publication
Hydrides have emerged as strong candidates for energy storage applications and their study has attracted wide interest in both the academic and industry sectors. With clear advantages due to the solid-state storage of hydrogen hydrides and in particular complex hydrides have the ability to tackle environmental pollution by offering the alternative of a clean energy source: hydrogen. However several drawbacks have detracted this material from going mainstream and some of these shortcomings have been addressed by nanostructuring/nanoconfinement strategies. With the enhancement of thermodynamic and/or kinetic behavior nanosized complex hydrides (borohydrides and alanates) have recently conquered new estate in the hydrogen storage field. The current review aims to present the most recent results many of which illustrate the feasibility of using complex hydrides for the generation of molecular hydrogen in conditions suitable for vehicular and stationary applications. Nanostructuring strategies either in the pristine or nanoconfined state coupled with a proper catalyst and the choice of host material can potentially yield a robust nanocomposite to reliably produce H2 in a reversible manner. The key element to tackle for current and future research efforts remains the reproducible means to store H2 which will build up towards a viable hydrogen economy goal. The most recent trends and future prospects will be presented herein.
Hydrogen Embrittlement: The Game Changing Factor in the Applicability of Nickel Alloys in Oilfield Technology
Jun 2017
Publication
Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE) as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ′ γ′′ and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ′ and γ′′ as well as the δ-phase rather than by the strength level only. In addition several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718 depending upon the characteristics of these phases when present in the microstructure.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Magnetron Sputter Deposited NiCu Alloy Catalysts for Production of Hydrogen Through Electrolysis in Alkaline Water
Jul 2018
Publication
NiCu alloy catalysts with varying composition for electrolysis in alkaline water have been prepared by DC magnetron co-sputtering under Ar gas environment at substrate bias of 60 V. Nanocrystallinity lattice parameters and grain size of the NiCu alloys have been measured by grazing incidence X-ray diffraction (GIXRD). Elemental and microstructural analysis of the NiCu alloy have been done by field emission scanning electron microscopy (FESEM) as well as transmission electron microscopy (TEM). To analyze the NiCu alloys activity towards hydrogen evolution reaction (HER) cyclic voltammetry measurements have been done in a 6 M KOH at room temperature and further HER activities have been correlated with the varying Cu concentration in NiCu alloy catalysts.
A Review at the Role of Storage in Energy Systems with a Focus on Power to Gas and Long-term Storage
Aug 2017
Publication
A review of more than 60 studies (plus m4ore than 65 studies on P2G) on power and energy models based on simulation and optimization was done. Based on these for power systems with up to 95% renewables the electricity storage size is found to be below 1.5% of the annual demand (in energy terms). While for 100% renewables energy systems (power heat mobility) it can remain below 6% of the annual energy demand. Combination of sectors and diverting the electricity to another sector can play a large role in reducing the storage size. From the potential alternatives to satisfy this demand pumped hydro storage (PHS) global potential is not enough and new technologies with a higher energy density are needed. Hydrogen with more than 250 times the energy density of PHS is a potential option to satisfy the storage need. However changes needed in infrastructure to deal with high hydrogen content and the suitability of salt caverns for its storage can pose limitations for this technology. Power to Gas (P2G) arises as possible alternative overcoming both the facilities and the energy density issues. The global storage requirement would represent only 2% of the global annual natural gas production or 10% of the gas storage facilities (in energy equivalent). The more options considered to deal with intermittent sources the lower the storage requirement will be. Therefore future studies aiming to quantify storage needs should focus on the entire energy system including technology vectors (e.g. Power to Heat Liquid Gas Chemicals) to avoid overestimating the amount of storage needed.
No more items...