Publications
Analysis of the Levelized Cost of Renewable Hydrogen in Austria
Mar 2023
Publication
Austria is committed to the net-zero climate goal along with the European Union. This requires all sectors to be decarbonized. Hereby hydrogen plays a vital role as stated in the national hydrogen strategy. A report commissioned by the Austrian government predicts a minimum hydrogen demand of 16 TWh per year in Austria in 2040. Besides hydrogen imports domestic production can ensure supply. Hence this study analyses the levelized cost of hydrogen for an off-grid production plant including a proton exchange membrane electrolyzer wind power and solar photovoltaics in Austria. In the first step the capacity factors of the renewable electricity sources are determined by conducting a geographic information system analysis. Secondly the levelized cost of electricity for wind power and solarphotovoltaics plants in Austria is calculated. Thirdly the most cost-efficient portfolio of wind power and solar photovoltaics plants is determined using electricity generation profiles with a 10-min granularity. The modelled system variants differ among location capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. Finally selected variables are tested for their sensitivities. With the applied model the hydrogen production cost for decentralized production plants can be calculated for any specific location. The levelized cost of hydrogen estimates range from 3.08 EUR/kg to 13.12 EUR/kg of hydrogen whereas it was found that the costs are most sensitive to the capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. The novelty of the paper stems from the model applied that calculates the levelized cost of renewable hydrogen in an off-grid hydrogen production system. The model finds a cost-efficient portfolio of directly coupled wind power and solar photovoltaics systems for 80 different variants in an Austria-specific context.
Eco-Sustainable Energy Production in Healthcare: Trends and Challenges in Renewable Energy Systems
Oct 2023
Publication
The shift from fossil fuels to renewable energy systems represents a pivotal step toward the realization of a sustainable society. This study aims to analyze representative scientific literature on eco-sustainable energy production in the healthcare sector particularly in hospitals. Given hospitals’ substantial electricity consumption the adoption of renewable energy offers a reliable low-CO2 emission solution. The COVID-19 pandemic has underscored the urgency for energyefficient and environmentally-responsible approaches. This brief review analyzes the development of experimental simulation and optimization projects for sustainable energy production in healthcare facilities. The analysis reveals trends and challenges in renewable energy systems offering valuable insights into the potential of eco-sustainable solutions in the healthcare sector. The findings indicate that hydrogen storage systems are consistently coupled with photovoltaic panels or solar collectors but only 14% of the analyzed studies explore this potential within hospital settings. Hybrid renewable energy systems (HRES) could be used to meet the energy demands of healthcare centers and hospitals. However the integration of HRES in hospitals and medical buildings is understudied.
Hydrogen Production from Low-temperature Geothermal Energy - A Review of Opportunities, Challenges, and Mitigating Solutions
Jun 2024
Publication
This study aims to provide a comprehensive review of the potential of geothermal energy for producing hydrogen with a focus on the Australian context where low-temperature geothermal reservoirs particularly hot sedimentary aquifers (HSAs) are prevalent. The work includes an overview of various geothermal technologies and hydrogen production routes and evaluates potential alternatives for hydrogen production in terms of energy and exergy efficiency economic performance and hydrogen production rate. Values for energy efficiency are reported in the literature to range from 3.51 to 47.04% 7.4–67.5% for exergy efficiency a cost ranging from 0.59 to 5.97 USD/kg of hydrogen produced and a hydrogen production rate ranging from 0.11 to 5857 kg/h. In addition the article suggests and evaluates multiple metrics to appraise the feasibility of HSAs geothermal reservoirs with results tailored to Australia but that can be extended to jurisdictions with similar conditions worldwide. Furthermore the performance of various hydrogen production systems is investigated by considering important operating conditions. Lastly the key factors and possible solutions associated with the hydrogeological and financial conditions that must be considered in developing hydrogen production using lowtemperature geothermal energy are summarised. This study shows that low-temperature HSAs (~100 ◦C) can still be used for hydrogen generation via supplying power to conventional electrolysis processes by implementing several improvements in heat source temperature and energy conversion efficiency of Organic Rankine Cycle (ORC) power plants. Geothermal production from depleted or even active oilfields can reduce the capital cost of a hydrogen production system by up to 50% due to the use of pre-existing wellbores under the right operating conditions. Thus the results of this study bring novel insights in terms of both the opportunities and the challenges in producing clean hydrogen from geothermal energy applicable not only to the hydro-geological and socio-economic conditions in Australia but also worldwide exploring the applicability of geothermal energy for clean hydrogen production with similar geothermal potential.
Quantitative Risk Assessment of Hydrogen Refueling Station in Cheonan City of South Korea
Oct 2023
Publication
The average temperature of the Earth has risen due to the accumulation of greenhouse gases emitted from the usage of fossil fuels. The consequential climate changes have caused various problems fueling the growing demand for environmentally friendly energy sources that can replace fossil fuels. Batteries and hydrogen have thus been utilized as substitute energy sources for automobiles to reduce fossil fuel consumption. Consequently the number of hydrogen refueling stations is increasing due to an increase in the number of hydrogen-powered vehicles. However several incidents have been reported in the United States of America and Japan where hydrogen refueling stations have been operating for a long time. A risk assessment of hydrogen refueling stations operating in urban areas was performed in this study by calculating the risk effect range using a process hazard analysis tool (PHAST) v8.7 from DNV-GL and a hydrogen risk assessment model (HyRAM) from Sandia National Laboratories (SNL). The societal risk was assessed through a probit model based on the calculation results. The assessment results showed that the risk caused by jet fire and overpressure in an incident is lower than the ‘as low as reasonably practicable’ (ALARP) level.
Fuelling the Transition Podcast: Building the UK Hydrogen Backbone
Feb 2022
Publication
In this episode Tony Green Hydrogen Director at National Grid and John Williams Head of Hydrogen Expertise Cluster at AFRYManagement Consulting join us to discuss the challenges in implementing hydrogen. Tony is involved in two exciting hydrogen projects: FutureGrid andProject Union. FutureGrid involves building a facility to create a representative whole-network to trial hydrogen. Project Union will develop a UK hydrogen ‘backbone’ joining together clusters around the country potentially creating a 2000km hydrogen network.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity
May 2022
Publication
Alkaline electrolyzers are the most widespread technology due to their maturity low cost and large capacity in generating hydrogen. However compared to proton exchange membrane (PEM) electrolyzers they request the use of potassium hydroxide (KOH) or sodium hydroxide (NaOH) since the electrolyte relies on a liquid solution. For this reason the performances of alkaline electrolyzers are governed by the electrolyte concentration and operating temperature. Due to the growing development of the water electrolysis process based on alkaline electrolyzers to generate green hydrogen from renewable energy sources the main purpose of this paper is to carry out a comprehensive survey on alkaline electrolyzers and more specifically about their electrical domain and specific electrolytic conductivity. Besides this survey will allow emphasizing the remaining key issues from the modeling point of view.
Combustion Characteristics of Hydrogen in a Noble Gas Compression Ignition Engine
Jul 2021
Publication
Hydrogen eliminates carbon emissions from compression ignition (CI) engines while noble gases eliminate nitrogen oxide (NOx) emissions by replacing nitrogen. Noble gases can increase the in-cylinder temperature during the compression stroke due to their high specific heat ratio. This paper aims to find the optimum parameters for hydrogen combustion in an argon–oxygen atmosphere and to study hydrogen combustion in all noble gases providing hydrogen combustion data with suitable engine parameters to predict hydrogen ignitability under different conditions. Simulations are performed with Converge CFD software based on the Yanmar NF19SK direct injection CI (DICI) engine parameters. The results are validated with the experimental results of hydrogen combustion in an argon–oxygen atmosphere with a rapid compression expansion machine (RCEM) and modifications of the hydrogen injection timing and initial temperature are proposed. Hydrogen ignition in an argon atmosphere is dependent on a minimum initial temperature of 340 K but the combustion is slightly unstable. Helium and neon are found to be suitable for hydrogen combustion in low compression ratio (CR) engines. However krypton and xenon require temperature modification and a high CR for stable ignition. Detailed parameter recommendations are needed to improve hydrogen ignitability in conventional diesel engines with the least engine modification.
Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model—A Comparative Study
Apr 2021
Publication
Facing global warming and recent bans on the use of diesel in vehicles there is a growing need to develop vehicles powered by renewable energy sources to mitigate greenhouse gas and pollutant emissions. Among the various forms of non-fossil energy for vehicles hydrogen fuel is emerging as a promising way to combat global warming. To date most studies on vehicle carbon emissions have focused on diesel and electric vehicles (EVs). Emission assessment methodologies are usually developed for fast-moving consumer goods (FMCG) which are non-durable household goods such as packaged foods beverages and toiletries instead of vehicle products. There is an increase in the number of articles addressing the product carbon footprint (PCF) of hydrogen fuel cell vehicles in the recent years while relatively little research focuses on both vehicle PCF and fuel cycle. Zero-emission vehicles initiative has also brought the importance of investigating the emission throughout the fuel cycle of hydrogen fuel cell and its environmental impact. To address these gaps this study uses the life-cycle assessment (LCA) process of GREET (greenhouse gases regulated emissions and energy use in transportation) to compare the PCF of an EV (Tesla Model 3) and a hydrogen fuel cell car (Toyota MIRAI). According to the GREET results the fuel cycle contributes significantly to the PCF of both vehicles. The findings also reveal the need for greater transparency in the disclosure of relevant information on the PCF methodology adopted by vehicle manufacturers to enable comparison of their vehicles’ emissions. Future work will include examining the best practices of PCF reporting for vehicles powered by renewable energy sources as well as examining the carbon footprints of hydrogen production technologies based on different methodologies.
Decarbonization Pathways, Strategies, and Use Cases to Achieve Net-Zero CO2 Emissions in the Steelmaking Industry
Oct 2023
Publication
The steelmaking industry is responsible for 7% of global CO2 emissions making decarbonization a significant challenge. This review provides a comprehensive analysis of current steel-production processes assessing their environmental impact in terms of CO2 emissions at a global level. Limitations of the current pathways are outlined by using objective criteria and a detailed review of the relevant literature. Decarbonization strategies are rigorously evaluated across various scenarios emphasizing technology feasibility. Focusing on three pivotal areas—scrap utilization hydrogen integration and electricity consumption—in-depth assessments are provided backed by notable contributions from both industrial and scientific fields. The intricate interplay of technical economic and regulatory considerations substantially affects CO2 emissions particularly considering the EU Emissions Trading System. Leading steel producers have established challenging targets for achieving carbon neutrality requiring a thorough evaluation of industry practices. This paper emphasizes tactics to be employed within short- medium- and long-term periods. This article explores two distinct case studies: One involves a hot rolling mill that utilizes advanced energy techniques and uses H2 for the reheating furnace resulting in a reduction of 229 kt CO2 -eq per year. The second case examines DRI production incorporating H2 and achieves over 90% CO2 reduction per ton of DRI.
Looking Beyond Compressed Hydrogen Storage for Sweden: Opportunities and Barriers for Chemical Hydrides
Jun 2024
Publication
As Sweden takes its first steps towards a hydrogen-based economy a strategic approach to infrastructure development for both storage and delivery becomes necessary. Although compressed hydrogen is currently the state-of-the-art its low volumetric density and associated high capital costs pose challenges to widespread societal deployment of hydrogen. In order to avoid technological lock-in alternatives storage technologies including chemical hydrides e.g. methanol ammonia methane and LOHC must also be explored. These alternatives offer higher hydrogen densities safer handling and compatibility with existing infrastructure. However each hydride has unique chemical and physical properties requires distinct feedstock and conversion processes and interacts with the energy system in different ways all of which influences their suitability for various applications. Therefore a comprehensive evaluation of these alternative hydrogen storage technologies as carried out in this article is vital to allow for informed investment decisions and pave the way towards a successful and sustainable hydrogen economy.
Comparing Alternative Pathways for the Future Role of the Gas Grid in a Low-carbon Heating System
Aug 2023
Publication
This paper uses a whole-system approach to examine different strategies related to the future role of the gas grid in a low-carbon heat system. A novel model of integrated gas electricity and heat systems HEGIT is used to investigate four key sets of scenarios for the future of the gas grid using the UK as a case study: (a) complete electrification of heating; (b) conversion of the existing gas grid to deliver hydrogen; (c) a hybrid heat pump system; and (d) a greener gas grid. Our results indicate that although the infrastructure requirements the fuel or resource mix and the breakdown of costs vary significantly over the complete electrification to complete conversion of the gas grid to hydrogen spectrum the total system transition cost is relatively similar. This reduces the significance of total system cost as a guiding factor in policy decisions on the future of the gas grid. Furthermore we show that determining the roles of low-carbon gases and electrification for decarbonising heating is better guided by the trade-offs between short- and long-term energy security risks in the system as well as trade-offs between consumer investment in fuel switching and infrastructure requirements for decarbonising heating. Our analysis of these trade-offs indicates that although electrification of heating using heat pumps is not the cheapest option to decarbonise heat it has clear co-benefits as it reduces fuel security risks and dependency on carbon capture and storage infrastructure. Combining different strategies such as grid integration of heat pumps with increased thermal storage capacity and installing hybrid heat pumps with gas boilers on the consumer side are demonstrated to effectively moderate the infrastructure requirements consumer costs and reliability risks of widespread electrification. Further reducing demand on the electricity grid can be accomplished by complementary options at the system level such as partial carbon offsetting using negative emission technologies and partially converting the gas grid to hydrogen.
Computational Analysis of Liquid Hydrogen Storage Tanks for Aircraft Applications
Mar 2023
Publication
During the last two decades the use of hydrogen (H2 ) as fuel for aircraft applications has been drawing attention; more specifically its storage in liquid state (LH2 ) which is performed in extreme cryogenic temperatures (−253 ◦C) is a matter of research. The motivation for this effort is enhanced by the predicted growth of the aviation sector; however it is estimated that this growth could be sustainable only if the strategies and objectives set by global organizations for the elimination of greenhouse gas emissions during the next decades such as the European Green Deal are taken into consideration and consequently technologies such as hydrogen fuel are promoted. Regarding LH2 in aircraft substantial effort is required to design analyze and manufacture suitable tanks for efficient storage. Important tools in this process are computational methods provided by advanced engineering software (CAD/CAE). In the present work a computational study with the finite element method is performed in order to parametrically analyze proper tanks examining the effect of the LH2 level stored as well as the tank geometric configuration. In the process the need for powerful numerical models is demonstrated owing to the highly non-linear dependence on temperature of the involved materials. The present numerical models’ efficiency could be further enhanced by integrating them as part of a total aircraft configuration design loop.
Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine
Aug 2018
Publication
This work presents the design and application of two control techniques—a model predictive control (MPC) and a proportional integral derivative control (PID) both in combination with a multilayer perceptron neural network—to produce hydrogen gas on-demand in order to use it as an additive in a spark ignition internal combustion engine. For the design of the controllers a control-oriented model identified with the Hammerstein technique was used. For the implementation of both controllers only 1% of the overall air entering through the throttle valve reacted with hydrogen gas allowing maintenance of the hydrogen–air stoichiometric ratio at 34.3 and the air–gasoline ratio at 14.6. Experimental results showed that the average settling time of the MPC controller was 1 s faster than the settling time of the PID controller. Additionally MPC presented better reference tracking error rates and standard deviation of 1.03 × 10−7 and 1.06 × 10−14 and had a greater insensitivity to measurement noise resulting in greater robustness to disturbances. Finally with the use of hydrogen as an additive to gasoline there was an improvement in thermal and combustion efficiency of 4% and 0.6% respectively and an increase in power of 545 W translating into a reduction of fossil fuel use.
Impact of Hydrogen Mixture on Fuel Consumption and Exhaust Gas Emissions in a Truck with Direct‑Injection Diesel Engine
May 2023
Publication
Hydrogen addition affects the composition of exhaust gases in vehicles. However the effects of hydrogen addition to compression ignition engines in running vehicles have not been evaluated. Hydrogen‑mixed air was introduced into the air intake of a truck equipped with a direct‑ injection diesel engine and running on a chassis dynamometer to investigate the effect of hydrogen addition on fuel consumption and exhaust gas components. The reduction in diesel consumption and the increase in hydrogen energy share (HES) showed almost linear dependence where the percentage decrease in diesel consumption is approximately 0.6 × HES. The percentage reduction of CO2 showed a one‑to‑one relationship to the reduction in diesel consumption. The reduction in emissions of CO PM and hydrocarbons (except for ethylene) had one to one or a larger correlation with the reduction of diesel consumption. On the other hand it was observed that NOx emissions increased and the percentage increase of NOx was 1.5~2.0 times that of HES. The requirement for total energy supply was more when hydrogen was added than for diesel alone. In the actual running mode only 50% of the energy of added hydrogen was used to power the truck. As no adjustments were made to the engine in this experiment a possible disadvantage that could be improved by adjusting the combustion conditions.
The Role of Hydrogen in a Decarbonised Future Transport Sector: A Case Study of Mexico
Sep 2023
Publication
In recent years several approaches and pathways have been discussed to decarbonise the transport sector; however any effort to reduce emissions might be complex due to specific socio-economic and technical characteristics of different regions. In Mexico the transport sector is the highest energy consumer representing 38.9% of the national final energy demand with gasoline and diesel representing 90% of the sector´s total fuel consumption. Energy systems models are powerful tools to obtain insights into decarbonisation pathways to understand costs emissions and rate of deployment that could serve for energy policy development. This paper focuses on the modelling of the current Mexican transport system using the MUSE-MX multi-regional model with the aim to project a decarbonisation pathway through two different scenarios. The first approach being business as usual (BAU) which aims to analyse current policies implementation and the second being a goal of net zero carbon emissions by 2050. Under the considered net zero scenario results show potential deployment of hydrogen-based transport technologies especially for subsectors such as lorries (100% H2 by 2050) and freight train (25% H2 by 2050) while cars and buses tend to full electrification by 2050.
Life Cycle Assessments Use in Hydrogen-related Policies: The Case for a Harmonized Methodology Addressing Multifunctionality
May 2024
Publication
Legislation regulating the sustainability requirements for hydrogen technologies relies more and more on life cycle assessments (LCAs). Due to different scopes and development processes different pieces of EU legislation refer to different LCA methodologies with differences in the way multifunctional processes (i.e. co-productions recycling and energy recovery) are treated. These inconsistencies arise because incentive mechanisms are not standardized across sectors even though the end product hydrogen remains the same. The goal of this paper is to compare the life-cycle greenhouse gas (GHG) emissions of hydrogen from four production pathways depending on the multifunctional approach prescribed by the different EU policies (e.g. using substitution or allocation). The study reveals a large variation in the LCA results. For instance the life-cycle GHG emissions of hydrogen co-produced with methanol is found to vary from 1 kg CO2-equivalent/kg H2 (when mass allocation is considered) to 11 kg CO2-equivalent/kg H2 (when economic allocation is used). These inconsistencies could affect the market (e.g. hydrogen from a certain pathway could be considered sustainable or unsustainable depending on the approach) and the environment (e.g. pathways that do not lead to a global emission reduction could be promoted). To mitigate these potential negative effects we urge for harmonized and strict guidelines to assess the life-cycle GHG emissions of hydrogen technologies in an EU policy context. Harmonization should cover international policies too to avoid the same risks when hydrogen will be traded based on its GHG emissions. The appropriate methodological approach for each production pathway should be chosen by policymakers in collaboration with the LCA community and stakeholders from the industry based on the potential market and environmental consequences of such choice.
Positioning Germany in an International Hydrogen Economy: A Policy Review
Apr 2024
Publication
Germany the European Union member state with the largest fiscal space and its leading manufacturer of industrial goods is pursuing an ambitious hydrogen strategy aiming at establishing itself as a major technology provider and importer of green hydrogen. The success of its hydrogen strategy represents not only a key element in realizing the European vision of climate neutrality but also a central driver of an emerging global hydrogen economy. This article provides a detailed review of German policy highlighting its prominent international dimension and its implications for the development of a global renewable hydrogen economy. It provides an overview of the strategy’s central goals and how these have evolved since the launch of the strategy in 2020. Next it moves on to provide an overview of the strategy’s main areas of intervention and highlights corresponding policy instruments. For this we draw on a comprehensive assessment of hydrogen policy instruments which have been systematically analyzed and coded. This was complemented by a detailed analysis of policy documents and information gathered in six interviews with government officials and staff of key implementing agencies. The article places particular emphasis on the strategy’s international dimension. While less significant in financial terms than domestic hydrogen-related spending it represents a defining feature of the German hydrogen strategy setting it apart from strategies in other major economies. The article closes with a reflection on the key features of the strategy compared to other important countries identifies gaps of the strategy and discusses important avenues for future research.
Green Hydrogen for Ammonia Production - A Case for the Netherlands
Jul 2023
Publication
An integrated system is studied to supply green hydrogen feedstock for ammonia production in the Netherlands. The system is modeled to compare wind and solar resources when coupled to Alkaline Electrolysis (AEL) and Proton Exchange Membrane Electrolysis (PEMEL) technologies with a compressed hydrogen storage system. The nominal installed capacity of the electrolysis plant is around 2.3 GW with the most suitable energy source offshore wind and the preferred storage technology pressurized tubes. For Alkaline Electrolysis and Proton Exchange Membrane Electrolysis technologies the levelized cost of hydrogen is 5.30 V/kg H2 and 6.03 V/kg H2 respectively.
A Multi-period Sustainable Hydrogen Supply Chain Model Considering Pipeline Routing and Carbon Emissions: The Case Study of Oman
Nov 2022
Publication
This paper presents a mathematical model for a multi-period hydrogen supply chain design problem considering several design features not addressed in other studies. The model is formulated as a mixed-integer program allowing the production and storage facilities to be extended over time. Pipeline and tube trailer transport modes are considered for carrying hydrogen. The model also allows finding the optimal pipeline routes and the number of transport units. The objective is to obtain an efficient supply chain design within a given time frame in a way that the demand and carbon dioxide emissions constraints are satisfied and the total cost is minimized. A computer program is developed to ease the problem-solving process. The computer program extracts the geographical information from Google Maps and solves the problem using an optimization solver. Finally the applicability of the proposed model is demonstrated in a case study from Oman.
Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method
Aug 2023
Publication
This paper presents a comparative analysis of two hydrogen station configurations during the refueling process: the conventional “directly pressurized refueling process” and the innovative “cascade refueling process.” The objective of the cascade process is to refuel vehicles without the need for booster compressors. The experiments were conducted at the Hydrogen Research and Fueling Facility located at California State University Los Angeles. In the cascade refueling process the facility buffer tanks were utilized as high-pressure storage enabling the refueling operation. Three different scenarios were tested: one involving the cascade refueling process and two involving compressor-driven refueling processes. On average each refueling event delivered 1.6 kg of hydrogen. Although the cascade refueling process using the high-pressure buffer tanks did not achieve the pressure target it resulted in a notable improvement in the nozzle outlet temperature trend reducing it by approximately 8 ◦C. Moreover the overall hydrogen chiller load for the two directly pressurized refuelings was 66 Wh/kg and 62 Wh/kg respectively whereas the cascading process only required 55 Wh/kg. This represents a 20% and 12% reduction in energy consumption compared to the scenarios involving booster compressors during fueling. The observed refueling range of 150–350 bar showed that the cascade process consistently required 12–20% less energy for hydrogen chilling. Additionally the nozzle outlet temperature demonstrated an approximate 8 ◦C improvement within this pressure range. These findings indicate that further improvements can be expected in the high-pressure region specifically above 350 bar. This research suggests the potential for significant improvements in the high-pressure range emphasizing the viability of the cascade refueling process as a promising alternative to the direct compression approach.
No more items...