Publications
Regional Capabilities and Hydrogen Adoption Barriers
Dec 2023
Publication
Hydrogen is gaining importance to decarbonize the energy system and tackle the climate crisis. This exploratory study analyzes three focus groups with representatives from relevant organizations in a Northern German region that has unique beneficial characteristics for the transition to a hydrogen economy. Based upon this data (1) a category system of innovation adoption barriers for hydrogen technologies is developed (2) decision levels associated with the barriers are identified (3) detailed insights on how decision levels contribute to the adoption barriers are provided and (4) the barriers are evaluated in terms of their importance. Our analysis adds to existing literature by focusing on short-term barriers and exploring relevant decision levels and their associated adoption barriers. Our main results comprise the following: flaws in the funding system complex approval procedures lack of networks and high costs contribute to hydrogen adoption barriers. The (Sub-)State level is relevant for the uptake of the hydrogen economy. Regional entities have leeway to foster the hydrogen transition especially with respect to the distribution infrastructure. Funding policy technological suitability investment and operating costs and the availability of distribution infrastructure and technical components are highly important adoption barriers that alone can impede the transition to a hydrogen economy.
Environmental and Material Criticality Assessment of Hydrogen Production via Anion Exchange Membrane Electrolysis
Oct 2023
Publication
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work prospective life cycle assessment and criticality assessment are applied first to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and second to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view the catalyst spraying process heavily dominates the ozone depletion impact category while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded subject to the expected technical progress for this technology.
Effect of Gas Composition and Initial Turbulence on the Propagation Dynamics of Premixed Flames of Hydrogen-blended Natural Gas Fuel
Jul 2024
Publication
In order to reduce carbon emissions the effects of gas composition and initial turbulence on the premixed flame dynamics of hydrogen-blended natural gas were investigated. The results show that an increase in hydrogen content leads to earlier formation of flame wrinkles. When the equivalence ratio is 1 and hydrogen blending ratio is below 20% Tulip flames appear approximately 2.25 m away from the ignition point. When hydrogen blending ratio exceeds 20% Tulip flames appear approximately 1.3 m away from the ignition point and twisted Tulip flames appear approximately 2.5 m away from the ignition position. During the 0.05 m process of flame propagation downstream from ignition point flame propagation velocity increases by about 2 m/s for every 10% increase in hydrogen content. The increase in hydrogen content has the most significant impact on the flame propagation velocity during the ignition stage. The average flame propagation velocity increases with the increase of hydrogen blending ratio. The greater the initial turbulence the more obvious the stretching deformation of flame front structure. With the increase of wind speed the flame propagation velocity first increases and then decreases. At a wind speed of 3 m/s the flame propagation velocity reaches its maximum value.
An Analytical Model for the Electrolyser Performance Derived from Materials Parameters
Oct 2017
Publication
Hydrogen is seen as a key element for the transition from a fossil fuel based economy to a renewable sustainable economy. Hydrogen can be used either directly as an energy carrier or as a feedstock for the reduction of CO2 to synthetic hydrocarbons. Hydrogen can be produced by electrolysis decomposing water in oxygen and hydrogen. This paper presents an overview of the three major electrolysis technologies: acidic (PEM) alkaline (AEL) and solid oxide electrolysis (SOEC). An updated list of existing electrolysers and commercial providers is provided. Most interestingly the specific prices of commercial devices are also given when available. Despite tremendous development of the PEM technology in the past decades the largest and most efficient electrolysers are still alkaline. Thus this technology is expected to play a key role in the transition to the hydrogen society. A detailed description of the components in an alkaline electrolyser and an analytical model of the process are provided. The analytical model allows investigating the influence of the different operating parameters on the efficiency. Specifically the effect of temperature on the electrolyte conductivity—and thus on the efficiency—is analyzed. It is found that in the typical range of operating temperatures for alkaline electrolysers of 65˚C - 220˚C the efficiency varies by up to 3.5 percentage points increasing from 80% to 83.5% at 65˚C and 220˚C respectively.
Current Standards and Configurations for the Permitting and Operation of Hydrogen Refueling Stations
Mar 2023
Publication
The literature lacks a systematic analysis of HRS equipment and operating standards. Researchers policymakers and HRS operators could find this information relevant for planning the network's future expansion. This study is intended to address this information need by providing a comprehensive strategic overview of the regulations currently in place for the construction and maintenance of hydrogen fueling stations. A quick introduction to fundamental hydrogen precautions and hydrogen design is offered. The paper therefore provides a quick overview of hydrogen's safety to emphasize HRS standards rules and regulations. Both gaseous and liquid safety issues are detailed including possible threats and installation and operating expertise. After the safety evaluation layouts equipment and operating strategies for HRSs are presented followed by a review of in-force regulations: internationally by presenting ISO IEC and SAE standards and Europeanly by reviewing the CEN/CENELEC standards. A brief and concise analysis of Italy's HRS regulations is conducted with the goal of identifying potential insights for strategic development and more convenient technology deployment.
Fuel Cell Systems for Long-endurance Autonomous Underwater Vehicles - Challenges and Benefits
Jun 2019
Publication
Autonomous underwater vehicles (AUVs) are programmable robotic vehicles that can drift drive or glide through the ocean without real-time control by human operators. AUVs that also can follow a planned trajectory with a chosen depth profile are used for geophysical surveys subsea pipeline inspection marine archaeology and more. Most AUVs are followed by a mother ship that adds significantly to the cost of an AUV mission. One pathway to reduce this need is to develop long-endurance AUVs by improving navigation autonomy and energy storage. Long-endurance AUVs can open up for more challenging mission types than what is possible today. Fuel cell systems are a key technology for increasing the endurance of AUVs beyond the capability of batteries. However several challenges exist for underwater operation of fuel cell systems. These are related to storage or generation of hydrogen and oxygen buoyancy and trim and the demanding environment of the ambient seawater. Protecting the fuel cell inside a sealed container brings along more challenges related to condensation cooling and accumulation of inert gases or reactants. This paper elaborates on these technical challenges and describes the solutions that the Norwegian Defence Research Establishment (FFI) has chosen in its development of a fuel cell system for long-endurance AUVs. The reported solutions enabled a 24 h demonstration of FFI's fuel cell system under water. The remaining work towards a prototype sea trial is outlined.
Cleaner Energy Solutions using Wind Energy and Hydrogen Production in Agriculture
Feb 2025
Publication
This study evaluates the integration of wind energy into greenhouse agriculture in the Safi region a major agricultural area in Morocco. As part of cleaner energy systems five wind turbines were analyzed to determine their performance. After performing a statistical analysis using the Weibull distribution with two parameters the results showed that the VESTAS V82- 0.9/1.65MW – 70m turbine was the most efficient. It achieved a capacity factor of 41.72% an annual energy production of 3 326.17 MWh and the ability to supply electricity to 6 960 m² of agricultural greenhouses. Environmental benefits include a significant reduction in carbon dioxide emissions. Economically the results vary with a payback period of less than 5 years for the VESTAS turbine but a longer period of 10.49 years for the Norwin – 30m turbine. To address fluctuations in wind energy caused by daily wind speed variations this innovative study explores combining wind power with hydrogen production. The results indicate that the Safi region has the potential to produce between 25 188.76 kg and 44 875.25 kg of hydrogen annually depending on the turbine used. Additionally this approach could reduce annual CO2 emissions by up to 2 606 609 kg. These findings highlight a promising innovation in cleaner energy systems to enhance agricultural sustainability through renewable energy solutions.
Hydrogen Demand Estimation for Sustainable Transport: A Comprehensive Review
Aug 2025
Publication
Hydrogen demand estimation for various transport modes supports policy and decision-making for the transition towards a sustainable low-carbon future transport system. It is one of the major factors that determine infrastructure construction production and distribution cost optimisation. Researchers have developed various methods for modelling hydrogen demand and its geographical distribution each based on different sets of predictor variables. This paper systematically reviews these methods and examines the key variables used in hydrogen demand estimation including the number of vehicles travel distance penetration rate and fuel economy. It emphasises the role of spatial analysis in uncovering the geographical distribution of hydrogen demand providing insights for strategic infrastructure planning. Furthermore the discussion underscores the significance of minimising uncertainty by incorporating multiple scenarios into the model thereby accommodating the dynamic nature of hydrogen adoption in transport. The necessity for multi-temporal estimation which accounts for the changing nature of hydrogen demand over time is also highlighted. In addition this paper advocates for a holistic approach to hydrogen demand estimation integrating spatiotemporal analysis. Future research could enhance the reliability of hydrogen demand models by addressing uncertainty through advanced modelling techniques to improve accuracy and spatial-temporal resolution.
Adaptive Sliding Mode Control of an Interleaved Buck Converter–Proton Exchange Membrane Electrolyzer for a Green Hydrogen Production System
Mar 2025
Publication
This paper presents an advanced Adaptive Sliding Mode Control (ASMC) strategy specifically developed for a hydrogen production system based on a Proton Exchange Membrane electrolyzer (PEM electrolyzer). This work utilized a static model of the PEM electrolyzer characterized by its V-I electrical characteristic which was approximated by a linear equation. The ASMC was designed to estimate the coefficients of this equation which are essential for designing an efficient controller. The primary objective of the proposed control strategy is to ensure the overall stability of the integrated system comprising both an interleaved buck converter (IBC) and PEM electrolyzer. The control framework aims to maintain the electrolyzer voltage at its reference value despite the unknown coefficients while ensuring equal current distribution among the three parallel legs of the IBC. The effectiveness of the proposed approach was demonstrated through numerical simulations in MATLAB-SIMULINK and was validated by the experimental results. The results showed that the proposed ASMC achieved a voltage tracking error of less than 2% and a current distribution imbalance of only 1.5%. Furthermore the controller exhibited strong robustness to parameter variations effectively handling fluctuations in the electrolyzer’s ohmic resistance (Rohm) (from ±28.75% to ±40.35%) and in the reversible voltage (Erev) (from ±28.67% to ±40.19%) highlighting its precision and reliability in real-world applications.
Optimal Configuration of Hydrogen- and Battery-based Electric Bus Transit Systems
Feb 2025
Publication
Electric bus transit is crucial in reducing greenhouse gas (GHG) emissions decreasing fossil fuel reliance and combating climate change. However the transition to electric-powered buses demands a comprehensive plan for optimal resource allocation technology choice infrastructure deployment and component sizing. This study develops system configuration optimization models for battery electric buses (BEBs) and hydrogen fuel cell buses (HFCBs) minimizing all related costs (i.e. capital and operational costs). These models optimize component sizing of the charging/refueling stations fleet configuration and energy/fuel management system in three operational schemes: BEBs opportunity charging BEBs overnight charging and electrolysis-powered HFCBs overnight refueling. The results indicate that the BEB opportunity system is the most economically viable choice. Meanwhile HFCB requires a higher cost (134.5%) and produces more emissions (215.7%) than the BEB overnight charging system. A sensitivity analysis indicates that a significant reduction in the HFCB unit and electricity costs is required to compete economically with BEB systems.
The Transition to an Eco-Friendly City as a First Step Toward Climate Neutrality with Green Hydrogen
Mar 2025
Publication
A city of the future will need to be eco-friendly while meeting general social and economic requirements. Hydrogen-based technologies provide solutions for initially limiting CO2 emissions with prospects indicating complete decarbonization in the future. Cities will need to adopt and integrate these technologies to avoid a gap between the development of hydrogen production and its urban application. Achievable results are analyzed by injecting hydrogen into the urban methane gas network initially in small proportions but gradually increasing over time. This paper also presents a numerical application pertaining to the city of Bucharest Romania—a metropolis with a population of 2.1 million inhabitants. Although the use of fuel cells is less advantageous for urban transport compared to electric battery-based solutions the heat generated by hydrogen-based technologies such as fuel cells can be efficiently utilized for residential heating. However storage solutions are required for residential consumption separate from that of urban transport along with advancements in electric transport using existing batteries which necessitate a detailed economic assessment. For electricity generation including cogeneration gas turbines have proven to be the most suitable solution. Based on the analyzed data the paper synthesizes the opportunities offered by hydrogen-based technologies for a city of the future.
Hydrogen for a Sustainable Europe
Nov 2024
Publication
This brochure provides a detailed overview of the EU’s funding mechanisms and an inspiring look at real projects managed by CINEA. These examples illustrate how diverse stakeholders from industry leaders to research institutions are translating hydrogen ambitions into impactful on-the-ground solutions that address both technological and societal needs.
Optimum Geological Storage Depths for Structural H2 Geo-storage
Sep 2021
Publication
H2 geo-storage has been suggested as a key technology with which large quantities of H2 can be stored and withdrawn again rapidly. One option which is currently explored is H2 storage in sedimentary geologic for mations which are geographically widespread and potentially provide large storage space. The mechanism which keeps the buoyant H2 in the subsurface is structural trapping where a caprock prevents the H2 from rising by capillary forces. It is therefore important to assess how much H2 can be stored via structural trapping under given geo-thermal conditions. This structural trapping capacity is thus assessed here and it is demonstrated that an optimum storage depth for H2 exists at a depth of 1100 m at which a maximum amount of H2 can be stored. This work therefore aids in the industrial-scale implementation of a hydrogen economy.
Designing Effective Hydrogen Markets: Policy Recommendations from Electricity and Gas Market Reform
Aug 2025
Publication
For low-carbon hydrogen to become a viable decarbonization solution the creation of a robust and effective market is essential. This paper examines the applicability of market reforms from the renewable energy natural gas and liquefied natural gas (LNG) sectors with a focus on pricing mechanisms business models and infrastructure access to facilitate hydrogen market development. Applying the Structure-Conduct-PerformanceRegulation (SCP-R) framework and informed by stakeholder insights we identify critical enablers for advancing the hydrogen market formation. Our analysis highlights the importance of innovative pricing strategies and regulatory measures incentivizing investment and managing risks. Establishing a market reference price for low-carbon hydrogen — akin to benchmarks in the natural gas and LNG sectors—is critical for ensuring transparency predictability and regional adaptability in trade. Additionally customized business models are also needed to mitigate volume risks for producers. Government interventions such as offtake agreements and the development of hydrogen hubs are indispensable for fostering competition and driving decarbonization.
European Maritime Transport Environmental Report 2025
Jan 2025
Publication
This second edition of the European Maritime Transport Environmental Report (EMTER 2025) examines the progress made towards achieving Europe′s decarbonisation targets and environmental goals for the maritime sector while indicating the most important trends key challenges and opportunities. The objective was to update the indicators developed for the first report analyse new datasets and fill existing gaps to provide a data and knowledge-based assessment of the maritime transport sector′s transition to sustainability.
Distributed Robust Optimal Control Strategy for Integrated Energy Systems based on Energy Trading
Sep 2025
Publication
Under the background of energy interconnection and low-carbon electricity integrated energy systems (IES) play an important role in energy conservation and emission reduction. To further promote the low-carbon transition of energy this paper proposes a distributed robust optimal control strategy for IESs based on energy trading. Firstly an IES model that includes an electric hydrogen module and gas hydrogen doping combined heat and power is established and ladder-type carbon trading is introduced to reduce carbon emissions. Secondly for the energy trading issues between photovoltaic (PV) prosumers and IES a bi-level model is constructed using Stackelberg game method where the IES acts as the leader and the PV prosumers as the followers. Noteworthy a distributed robust optimization method is used to address the uncertainty of renewable energy and load. Additionally the Nash bargaining method ensures an equitable balance of benefits among the various IESs and encourages them to participate in market transactions. On this basis an intermediary transaction mode is proposed to address cheating behaviors in trading. Finally the simulation results demonstrate that the proposed strategy not only effectively promotes cooperative operation among multiple IESs but also significantly reduces the system’s operating costs and carbon emissions.
Distribution of Relaxation Times Analysis of High-temperature PEM Fuel Cell Impedance Spectra
Feb 2017
Publication
In this study Distribution of Relaxation Times (DRT) was successfully demonstrated in the analysis of the impedance spectra of High-Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFC) doped with phosphoric acid. Electrochemical impedance spectroscopy (EIS) was performed and the quality of the recorded spectra was verified by Kramers-Kronig relations. DRT was then applied to the measured spectra and polarization losses were separated on the basis of their typical time constants. The main features of the distribution function were assigned to the cell’s polarization processes by selecting appropriate experimental conditions. DRT can be used to identify individual internal HT-PEMFC fuel cell phenomena without any a-priori knowledge about the physics of the system. This method has the potential to further improve EIS spectra interpretation with either equivalent circuits or physical models.
A Review of Type V Composite Pressure Vessels and Automated Fibre Placement Based Manufacturing
Feb 2023
Publication
Hydrogen is emerging as a promising future energy medium in a wide range of industries. For mobile applica tions it is commonly stored in a gaseous state within high-pressure composite overwrapped pressure vessels (COPVs). The current state of the art pressure vessel technology known as Type V eliminates the internal polymer gas barrier used in Type IV vessels and instead relies on carbon fibre laminate to provide structural properties and prevent gas leakage. Achieving this functionality at high pressure poses several engineering challenges that have thus far prohibited commercial application. Additionally the traditional manufacturing process for COPVs filament winding has several constraints that limit the design space. Automated fibre placement (AFP) a highly flexible robotic composites manufacturing technique has the potential to replace filament winding for composite pressure vessel manufacturing and provide pathways for further vessel optimi sation. A combination of both AFP and Type V technology could provide an avenue for a new generation of highperformance composite pressure vessels. This critical review presents key work on industry-standard Type IV vessels alongside the current state of Type V CPV technology including manufacturing developments challenges cost relevance to commercial standards and future fabrication solutions using AFP. Additionally a novel Type V CPV design concept for a two-piece AFP produced vessel is presented.
Model Complexity and Optimization Trade-offs in the Design and Scheduling of Hybrid Hydrogen-battery Systems
Jul 2025
Publication
The production of hydrogen from renewable sources could play a significant role in supporting the transition toward a decarbonized energy system. This study has involved investigating optimization strategies − mixedinteger linear programming (MILP) a hybrid particle swarm optimization (PSO)-MILP framework and PSO combined with a rule-based energy management strategy (EMS) − applied to a power-to-hydrogen system for industrial applications. The analysis evaluates the levelized cost of hydrogen production (LCOH) carbon emissions and the impact of key factors such as battery degradation electrolyzer efficiency real-time pricing and hydrogen load management. The obtained results indicated that the MILP-based models achieved moderate LCOH values (10.1–10.7 €/kg) but incurred higher CO2 emissions (20.2–24.6 kt/y). Instead the PSO model combined with the rule-based EMS lowered emissions to 14.3 kt/y (a 27–45% reduction) albeit with a higher LCOH (11.6 €/kg). The hybrid PSO-MILP models struck a balance achieving LCOH values of between 9.2 and 9.7 €/kg with CO2 emissions of 19.7–20.3 kt/y as they benefited from the integration of piecewise affine linearization for modeling electrolyzer efficiency and battery degradation. In terms of computational efforts the MILP-based models required more than 48 h to converge while the PSO-MILP models completed within 27–35 h and the PSO model with rule-based EMS achieved results in 1.5 h. These findings offer guidance that can be used to select the most suitable optimization method on the basis of the desired performance targets resource constraints and computational complexity thereby contributing to the design of more sustainable energy systems.
Hydrogen Production Model: A Computational Approach to Optimise Cost Reduction Strategies, Environmental Impact, and Financial Viability
Jul 2025
Publication
This study presents a comprehensive techno-economic and environmental evaluation of hydrogen production from organic waste feedstocks in Bangladesh utilizing an integrated approach through advanced modelling tools. The research combines H2A (Hydrogen Production Cost Analysis) HDSAM (Hydrogen Delivery Scenario Analysis Model) and H2FAST (Hydrogen Financial Assessment Tool) to assess the feasibility of large-scale hydrogen production distribution and storage. H2A is employed to analyze hydrogen production costs considering various feedstocks and production methods while HDSAM evaluates the delivery pathways and logistics of liquid and gaseous hydrogen. H2FAST is used to perform detailed financial modelling focusing on investment risks profitability and financial metrics of hydrogen projects. This integrated methodology provides a comprehensive analysis of the hydrogen value chain addressing key factors such as production costs logistics and financial feasibility. Main results of the study indicate that hydrogen production costs can range from $2.16/kg to $2.18/kg depending on feedstock efficiency and plant utilization. Financial assessments show that larger-scale hydrogen stations (4000 kg/day) benefit from economies of scale with hydrogen costs dropping to approximately $8.51/kg compared to $12.75/kg for smaller stations (400 kg/day). The study concludes incorporates region-specific data for Bangladesh addressing local challenges such as infrastructure limitations financial constraints and energy demands offering a tailored analysis that can inform future hydrogen projects in Bangladesh and similar developing economies.
No more items...