Publications
Numerical Investigation of Premixed Hydrogen Combustion in Dual-fuel Marine Engines at High Load
Jun 2025
Publication
Zero-emission fuels are expected to drive the maritime sector decarbonisation with hydrogen emerging as a long-term solution. This study aims to investigate by using CFD modelling a hydrogen fuelled marine dual-fuel engine to identify operating settings ranges for different hydrogen energy fractions (HEF) as well as parametrically optimise the diesel fuel injection timing and temperature at inlet valve closing (IVC). A large marine four-stroke engine with nominal power of 10.5 MW at 500 rev/m is considered assuming operation at 90 % load and hydrogen injection in the cylinders intake ports. CFD models are developed for several operating scenarios in both diesel and dual-fuel modes. The models are validated against measured data for the engine diesel mode and literature data for a hydrogen-fuelled light-duty engine. A convergence study is conducted to select the grid compromising between computational effort and accuracy. Parametric runs for 20 % 40 % and 60 % HEF with different IVC temperature and diesel start of injection are modelled to quantify the engine performance emissions and combustion characteristics. A single parameter optimisation is conducted to determine the most effective pilot diesel injection timings. The results reveal the IVC temperature range for stable hydrogen combustion to avoid incomplete combustion at low IVC temperature and knocking above 360 K. The proposed settings lead to higher peak heat release rate and in-cylinder pressure compared to the diesel mode without exceeding the permissible in-cylinder pressure rise limits for 60 % HEF. However NOx emissions increase to 12.9 g/kWh in the dual-fuel mode. The optimal start of injection (SOI) for the diesel fuel in the case of 60 % HEF is found 8 ◦CA BTDC resulting in an indicated thermal efficiency of 43.2 % and stable combustion. Advancing SOI beyond the optimal value results in incomplete combustion. This is the first study on hydrogen use in large marine four-stroke engines providing insights for the engine design and operation and as such it contributes to the maritime industry decarbonisation efforts.
Evaluating the Potential for Underground Hydrogen Storage (UHS) in Lithuania: A Review of Geological Viability and Storage Integrity
Feb 2025
Publication
The aim of this study is to review and identify H2 storage suitability in geological reservoirs of the Republic of Lithuania. Notably Lithuania can store clean H2 effectively and competitively because of its wealth of resources and well-established infrastructure. The storage viability in Lithuanian geological contexts is highlighted in this study. In addition when it comes to injectivity and storage capacity salt caverns and saline aquifers present less of a challenge than other kinds of storage medium. Lithuania possesses sizable subterranean reservoirs (Cambrian rocks) that can be utilized to store H2. For preliminary assessment the cyclic H2 injection and production simulation is performed. A 10-year simulation of hydrogen injection and recovery in the Syderiai saline aquifer demonstrated the feasibility of UHS though efficiency was reduced by nearly 50% when using a single well for both injection and production. The study suggests using separate wells to improve efficiency. However to guarantee economic injectivity and containment security a detailed assessment of the geological structures is required specifically at the pore scale level. The volumetric approach estimated a combined storage capacity of approximately 898.5 Gg H2 (~11 TWh) for the Syderiai and Vaskai saline aquifers significantly exceeding previous estimates. The findings underscore the importance of detailed geological data and further research on hydrogen-specific factors to optimize UHS in Lithuania. Addressing technical geological and environmental challenges through multidisciplinary research is essential for advancing UHS implementation and supporting Lithuania’s transition to a sustainable energy system. UHS makes it possible to maximize the use of clean energy reduce greenhouse gas emissions and build a more sustainable and resilient energy system. Hence intensive research and advancements are needed to optimize H2 energy for broader applications in Lithuania.
Innovative Aircraft Propulsive Configurations: Technology Evaluation and Operations in the SIENA Project
Mar 2025
Publication
In this paper developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft) an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be scaled across five aircraft categories from small General Aviation airplanes to long-range airliners. The assessed propulsive architectures consider various components such as batteries and fuel cells to provide electricity as well as electric motors and jet engines to provide thrust combined to find feasible aircraft architectures that satisfy certification constraints and deliver the required performance. The results provide a comprehensive analysis of the impact of key technology performance indicators on aircraft performance. They also highlight technology switching points as well as the potential for scaling up technologies from smaller to larger aircraft based on different hypotheses and assumptions concerning the upcoming technological advancements of components crucial for the decarbonization of aviation. Given the considered scenarios the common denominator of the obtained results is hydrogen as the main energy source. The presented work shows that for the underlying models and technology assumptions hydrogen can be efficiently used by fuel cells for propulsive and system power for smaller aircraft (General Aviation commuter and regional) typically driven by propellers. For short- to long-range jet aircraft direct combustion of hydrogen combined with a fuel cell to power the on-board subsystems appears favorable. The results are obtained for two different temporal scenarios 2030 and 2050 and are assessed using Payload-Range Energy Efficiency as the key performance indicator. Naturally introducing such innovative architectures will face a lack of applicable regulation which could hamper a smooth entry into service. These regulatory gaps are assessed detailing the level of maturity in current regulations for the different technologies and aircraft categories.
Green Energy and Steel Imports Reduce Europe's Net-zero Infrastructure Needs
Jun 2025
Publication
Importing renewable energy to Europe may offer many potential benefits including reduced energy costs lower pressure on infrastructure development and less land use within Europe. However open questions remain: on the achievable cost reductions how much should be imported whether the energy vector should be electricity hydrogen or derivatives like ammonia or steel and their impact on Europe’s infrastructure needs. This study integrates a global energy supply chain model with a European energy system model to explore net-zero emission scenarios with varying import volumes costs and vectors. We find system cost reductions of 1-10% within import cost variations of ± 20% with diminishing returns for larger import volumes and a preference for methanol steel and hydrogen imports. Keeping some domestic power-to-X production is beneficial for integrating variable renewables leveraging local carbon sources and power-to-X waste heat. Our findings highlight the need for coordinating import strategies with infrastructure policy and reveal maneuvering space for incorporating non-cost decision factors.
Clean Hydrogen Joint Undertaking: Consolidated Annual Activity Report Year 2024
Aug 2025
Publication
The year 2024 saw a year of important developments for the Clean Hydrogen JU continuing built on the achievements of previous years and intensifying the efforts on hydrogen valleys. With a total operational commitment of EUR 203 million and the launch of 22 new projects the overall portfolio reached a total number of 147 projects under active management towards the end of the year. The budget execution reached the outstanding level of 98% in for commitments and 84% in payments in line with previous year showing the JU’s continued effort to use the available credits. In 2024 the JU launched a call for proposals with a budget of EUR 113.5 million covering R&I activities across the whole hydrogen value chain to which was added an amount of EUR 60 million from the RePowerEU plan focusing on hydrogen valleys. That amount served for valleys-related grants and the “Hydrogen Valleys Facility” tender designed for project development assistance that will support Hydrogen Valleys at different levels of maturity. The Hydrogen Valleys concept has become a key instrument for the European Commission to scale up hydrogen technology deployment and establish interconnections between hydrogen ecosystems. At the end of 2024 the Clean Hydrogen JU has already funded 20 hydrogen valleys. This support was complemented by additional credits from third countries and the optimal use- of leftover credits from previous years allowing the award of 29 new grants from the call for 2024.
Comparison of Large Eddy Simulation with Local Species, Temperature and Velocity Measurements in Dual Swirl Confined Hydrogen Flames
Oct 2025
Publication
Developing new injection systems and combustion chambers for hydrogen is a central topic for the new generation of engines. In this effort simulations take a central role but methods developed for conventional hydrocarbons (methane kerosene) must be revisited for hydrogen. Validation then becomes an essential part and clean well documented experiments are needed to guaranty that computational fluid dynamics solvers are as predictive and accurate as expected. In this framework the HYLON case is a swirled hydrogen/air burner used by multiple groups worldwide to validate simulation methods for hydrogen combustion in configurations close to gas turbine burners with experimental data available through the TNF web site. The present study compares recent Raman spectroscopy and Particle Image Velocimetry measurements and Large Eddy Simulations (LES). The LES results are evaluated against a dataset comprising mean and RMS measurements of H2 N2 O2 H2O molar fractions temperature and velocity fields offering new insights into flame stabilization mechanisms. The simulations incorporate conjugate heat transfer to predict the combustor wall temperatures and are conducted for two atmospheric-pressure operating conditions each representing distinct combustion regimes diffusion and partially premixed. Novelty and significance statement Data on confined hydrogen flames in burner similar as industrial ones are limited. This work aims to fill this gap by performing multiple and simultaneous diagnostics on the swirled hydrogen-air flame called HYLON. For the first time in such a swirled configuration mean and RMS fields of temperature main species and velocities are compared to LES allowing new insight into the potential and limits of the models as well as the physics of these flames. These experimental results will be made available on TNF as over 30 research groups worldwide have expressed interest in using them.
Geopolitics of Renewables: Asymmetries, New Interdependencies, and Cooperation around Portuguese Solar Energy and Green Hydrogen Strategies
Oct 2025
Publication
This article explores how the implementation of solar PV and transportation infrastructure – grid or hydrogen pipeline – has implications for various aspects of security cooperation and geopolitical powershifts. Highlighting the emerging intra-European green hydrogen pipeline project H2Med we examine the Portuguese geopolitical ambitions related to their geographical advantage for solar PV energy production. Using media and document analysis we identified two main axes of solar PV implementation in Portugal – one centered on resilience and one on exports – and further explored underlying and resulting tensions in neighboring countries’ energy strategies and cleantech innovation policies. Our analysis revealed that policy prioritizations in solar PV diffusion result in unequal effects on resilience energy security and power shifts. In particular solar PV implementations such as individual to local or regional grid-based ‘prosumption’ setups result in notably different geopolitical effects compared to large-scale solar PV to green hydrogen-production for storage and export. Thereby emerging possibilities of storage and long-distance trade of renewable energies have more significant implications on geopolitics and energy security than what is typically recognized.
Safety Analysis of Hydrogen-Powered Train in Different Application Scenarios: A Review
Mar 2025
Publication
Currently there are many gaps in the research on the safety of hydrogen-powered trains and the hazardous points vary across different scenarios. It is necessary to conduct safety analysis for various scenarios in order to develop effective accident response strategies. Considering the implementation of hydrogen power in the rail transport sector this paper reviews the development status of hydrogen-powered trains and the hydrogen leak hazard chain. Based on the literature and industry data a thorough analysis is conducted on the challenges faced by hydrogen-powered trains in the scenario of electrified railways tunnels train stations hydrogen refueling stations and garages. Existing railway facilities are not ready to deal with accidental hydrogen leakage and the promotion of hydrogen-powered trains needs to be cautious.
Pathways for Hydrogen Adoption in the Brazilian Trucking Industry: A Low-Carbon Alternative to Fossil Fuels
Oct 2025
Publication
The growing demand for sustainable solutions in the transportation sector and global decarbonization goals have fueled debate on using hydrogen as an energy source. Although hydrogen’s potential is recognized in Brazil its application in heavy-duty vehicles still faces structural and technological barriers. This study aimed to analyze the viability of hydrogen as an energy alternative for trucks in Brazil. The research adopted an exploratory qualitative approach based on the expert analysis method through semi-structured interviews with development engineers representatives of heavy-duty vehicle manufacturers and researchers specializing in hydrogen technologies. The data were organized into a thematic framework and interpreted using content analysis. The results show that although there is growing interest and ongoing initiatives challenges such as the cost of fuel cells the lack of refueling infrastructure and low technological maturity hinder large-scale adoption. From a theoretical perspective the study contributes by integrating specialized literature with practical insights from key industry players broadening the understanding of the energy transition. In practical terms it outlines some strategic paths such as expanding technological development and forming partnerships. From a social perspective it emphasizes the importance of hydrogen as a pillar for sustainable low-carbon mobility capable of positively impacting public health and mitigating climate change.
Waste to Hydrogen: Steam Gasification of Municipal Solid wastes with Carbon Capture for Enhanced Hydrogen Production
Apr 2025
Publication
The research focuses on enhancing hydrogen production using a blend of municipal solid waste (MSW) with Biomass and mixed plastic waste (MPW) under the Bioenergy with Carbon Capture Utilisation and Storage (BECCUS) concept. The key challenges include optimising the feedstock blends and gasification process parameters to maximise hydrogen yield and carbon dioxide capture. This study introduces a novel approach that employs sorption-enhanced gasification and a high-temperature regenerator reactor. Using this method syngas streams with high hydrogen contents of up to 93 mol% and 66 mol% were produced respectively. Thermodynamic simulations with Aspen Plus® validated the integrated system for achieving high-purity hydrogen (99.99 mol%) and effective carbon dioxide isolation. The system produced 70.33 molH2 /kgfeed when using steam as a gasifying agent while 37.95 molH2 /kgfeed was produced under air gasification conditions. Case I employed a mixture of MSW and wood residue at a ratio of 1:1.25 with steam and calcium oxide added at 2:1 and 0.92:1 respectively resulting in 68.80 molH2 /kgfeed and a CO2 capture efficiency of 92 %. Case II utilised MSW and MPW at a 1:1 ratio with steam and calcium oxide at 2:1 and 0.4:1 respectively producing 100.17 molH2 /kgfeed and achieving a 90.09 % CO2 capture efficiency. The optimised parameters significantly improve hydrogen yield and carbon capture offering valuable insights for BECCUS applications.
The Hydrogen Education and Research Landscape - October 2024
Oct 2025
Publication
This report includes information on European training programmes educational materials and the trends and patterns of research and innovation activity in the hydrogen sector with data of patent registrations and publications. It is based on the information available at the European Hydrogen Observatory (EHO) website (https://observatory.cleanhydrogen.europa.eu/) the leading source of hydrogen data in Europe. The data presented in this report is based on research conducted until the end of August 2024. The training programmes section provides insights into major European training initiatives categorized by location. It allows filtering by type of training focus area and language. It covers a wide range of opportunities such as vocational and professional trainings summer schools and Bachelor's or Master's programmes. The education materials chapter summarizes the publicly accessible educational materials available online. Documents can be searched by educational level by course subject by language or by the year of release. The section referring to research and innovation activity analyses trends and patterns in the hydrogen sector using aggregated datasets of patent registrations and publications by country.
Planning Energy Hubs with Hydrogen and Battery Storage for Flexible Ramping Market Participation
Oct 2025
Publication
The integration of renewable resources with advanced storage technologies is critical for sustainable energy systems. In this paper a planning framework for an energy hub incorporating hydrogen and renewable energy systems is developed with the objective of minimizing operational costs while participating in flexible ramping product (FRP) markets. The energy hub is designed to utilize a hybrid storage system comprising multi-type battery energy storage (BESS) accounting for diverse chemistries and degradation behaviors and hydrogen storage (HS) to meet concurrent electric and hydrogen demands. To address uncertainties in renewable generation and market prices a stochastic optimization model is developed to determine the optimal investment capacities while optimizing operational decisions under uncertainty using scenario-based stochastic programming. Financial risks associated with price and renewable variability are mitigated through the Conditional Value-at-Risk (CVaR) metric. Case studies demonstrate that hybrid storage systems including both BESS and HS can reduce total costs by 23.62% compared to single-storage configurations that rely solely on BESS. Based on the results BESS participates more in providing flexible ramp-up services while HS plays a major role in providing flexible ramp-down services. The results emphasize the critical role of co-optimized hydrogen and multi-type BESS in enhancing grid flexibility and economic viability.
Country Risk Impacts on Export Costs of Green Hydrogen and its Synthetic Downstream Products from the Middle East and North Africa
May 2025
Publication
Green hydrogen produced from renewable energy sources such as wind and solar is increasingly recognized as a critical enabler of the global energy transition and the decarbonization of industrial and transport sectors. The successful adoption of green hydrogen and its derivatives is closely linked to production costs which can vary substantially between countries depending not only on resource potential but also on country-specific financing conditions. These differences arise from country-specific risk factors that affect the costs of capital ultimately influencing investment decisions. However comprehensive assessments that integrate these risks with future cost projections for renewable energy green hydrogen and its synthetic downstream products are lacking. Using the Middle East and North Africa (MENA) as an example this study introduces a novel approach that allows to incorporate mainly qualitative country-specific investment risks into quantitative analyses such as costpotential and energy modelling. Our methodology calculates weighted average costs of capital (WACC) for 17 MENA countries under different risk scenarios providing a more nuanced assessment compared to traditional models that use uniform cost of capital assumptions. The results indicate significant variations in WACC such as between 4.67% in the United Arab Emirates and 24.84% in Yemen or Syria in the business-as-usual scenario. The incorporation of country-specific capital cost scenarios in quantitative analysis is demonstrated by modelling the cost-potential of Fischer-Tropsch (FT) fuels. The results show that countryspecific investment risks significantly impact costs. For instance by 2050 the starting LCOFs in high-risk scenarios can be up to 180% higher than in lowerrisk contexts. This underlines that while renewable energy potential and its cost are important it are the country-specific risk factors—captured through WACC—that have a greater influence in determining the competitiveness of exports and consequently the overall development of the renewable energy green hydrogen and synthetic fuel sectors.
Sustainable Aviation Fuels: Addressing Barriers to Global Adoption
Oct 2025
Publication
The aviation industry is responsible for approximately 2–3% of worldwide CO2 emissions and is increasingly subjected to demands for the attainment of net-zero emissions targets by the year 2050. Traditional fossil jet fuels which exhibit lifecycle emissions of approximately 89 kg CO2-eq/GJ play a substantial role in exacerbating climate change contributing to local air pollution and fostering energy insecurity. In contrast Sustainable Aviation Fuels (SAFs) derived from renewable feedstocks including biomass municipal solid waste algae or through CO2- and H2-based power-to-liquid (PtL) represent a pivotal solution for the immediate future. SAFs generally accomplish lifecycle greenhouse gas (GHG) reductions of 50–80% (≈20–30 kg CO2-eq/GJ) possess reduced sulfur and aromatic content and markedly diminish particulate emissions thus alleviating both climatic and health-related repercussions. In addition to their environmental advantages SAFs promote energy diversification lessen reliance on unstable fossil fuel markets and invigorate regional economies with projections indicating the creation of up to one million green jobs by 2030. This comprehensive review synthesizes current knowledge on SAF sustainability advantages compared to conventional aviation fuels identifying critical barriers to large-scale deployment and proposing integrated solutions that combine technological innovation supportive policy frameworks and international collaboration to accelerate the aviation industry’s sustainable transformation.
Green Hydrogen: A Pathway to Vietnam’s Energy Security
Oct 2025
Publication
Green hydrogen is increasingly recognized as a pivotal energy carrier in the global transition toward low-carbon energy systems. Beyond its established applications in industry and transportation the development of green hydrogen could accelerate its integration into the power generation sector thus enabling a more sustainable deployment of renewable energy sources. Vietnam endowed with abundant renewable energy potential—particularly solar and wind—has a strong foundation for green hydrogen. This emerging energy source holds significant potential to support the strategic objectives in recent national energy policies aligning with the country’s socio-economic development. However despite this promise the integration of green hydrogen into Vietnam’s energy system remains limited. This paper provides a critical review of the current landscape of green hydrogen in Vietnam examining both the opportunities and challenges associated with its production and deployment. Special attention is given to regulatory frameworks infrastructure readiness and economic viability. Additionally the study also explores the potential of green hydrogen in enhancing energy security within the context of the national energy transition.
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
Oct 2025
Publication
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However its practical application requires achieving a high degree of purity throughout the production process. In this study the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide alumina. Alumina and dolomite were coated with Ni at different loadings while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 ◦C with continuous monitoring of H2 CO2 CO and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%) mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast alumina and dolomite achieved H2 purities of around 70% which increased with Ni loading. The improvement was particularly significant in dolomite owing to its higher porosity and the recarbonation processes of CaO enabling H2 purities of up to 90%.
Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
Jun 2025
Publication
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen as a versatile energy carrier can be generated through photocatalysis under sunlight or via electrolysis powered by solar or wind energy. However the advancement of photocatalysis is hindered by the limited availability of effective visible light-responsive semiconductors and the challenges of charge separation and transport. To address these issues researchers are focusing on the development of novel nanostructured semiconductors and composite materials that can enhance photocatalytic performance. In this paper we provide an overview of the advanced photocatalytic materials prepared so far that can be activated by sunlight and their efficiency in H2 production. One of the key strategies in this research area concerns improving the separation and transfer of electron–hole pairs generated by light which can significantly boost H2 production. Advanced hybrid materials such as organic–inorganic hybrid composites consisting of a combination of polymers with metal oxide photocatalysts and the creation of heterojunctions are seen as effective methods to improve charge separation and interfacial interactions. The development of Schottky heterojunctions Z-type heterojunctions p–n heterojunctions from nanostructures and the incorporation of nonmetallic atoms have proven to reduce photocorrosion and enhance photocatalytic efficiency. Despite these advancements designing efficient semiconductor-based heterojunctions at the atomic scale remains a significant challenge for the realization of large-scale photocatalytic H2 production. In this review state-of-the-art advancements in photocatalytic hydrogen production are presented and discussed in detail with a focus on photocatalytic nanostructures heterojunctions and hybrid composites.
Strategies to Increase Hydrogen Energy Share of a Dual-Fuel Hydrogen–Kerosene Engine for Sustainable General Aviation
Mar 2025
Publication
Reducing CO2 emissions in general aviation is a critical challenge where battery electric and fuel cell technologies face limitations in energy density cost and robustness. As a result hydrogen (H2) dual-fuel combustion is a promising alternative but its practical implementation is constrained by abnormal combustion phenomena such as knocking and pre-ignition which limit the achievable H2 energy share. In response to these challenges this paper focuses on strategies to mitigate these irregular combustion phenomena while effectively increasing the H2 energy share. Experimental evaluations were conducted on an engine test bench using a one-cylinder dual-fuel H2 kerosene (Jet A-1) engine utilizing two strategies including water injection (WI) and rising the air–fuel ratio (AFR) by increasing the boost pressure. Additionally crucial combustion characteristics and emissions are examined and discussed in detail contributing to a comprehensive understanding of the outcomes. The results indicate that these strategies notably increase the maximal possible hydrogen energy share with potential benefits for emissions reduction and efficiency improvement. Finally through the use of 0D/1D simulations this paper offers critical thermodynamic and efficiency loss analyses of the strategies enhancing the understanding of their overall impact.
An International Review of Hydrogen Technology and Policy Developments, with a Focus on Wind- and Nuclear Power-Produced Hydrogen and Natural Hydrogen
Aug 2025
Publication
The potential for hydrogen to reshape energy systems has been recognized for over a century. Yet as decarbonization priorities have sharpened in many regions three distinct frontier areas are critical to consider: hydrogen produced from wind; hydrogen produced from nuclear power; and the development of natural hydrogen. These pathways reflect technology and policy changes including a 54% increase in the globally installed wind capacity since 2020 plus new signs of potential emerging in nuclear energy and natural hydrogen. Broadly speaking there are a considerable number of studies covering hydrogen production from electrolysis yet none systematically examine wind- and nuclear-derived hydrogen natural hydrogen or the policies that enable their adoption in key countries. This article highlights international policy and technology developments with a focus on prime movers: Germany China the US and Russia.
Development of an Experimental Setup for Testing X52 Steel SENT Specimens in Electrolytic Hydrogen to Explore Repurposing Potential of Pipelines
Apr 2025
Publication
Hydrogen is considered a key alternative to fossil fuels in the broader context of ecological transition. Repurposing natural gas pipelines for hydrogen transport is one of the challenges of this approach. However hydrogen can diffuse into metallic lattices leading to hydrogen embrittlement (HE). For this reason typically ductile materials can experience unexpected brittle fractures and it is therefore necessary to assess the HE propensity of the current pipeline network to ensure its fitness for hydrogen transport. This study examines the relationship between the microstructure of the circumferential weld joint in X52 pipeline steel and hydrogen concentration introduced electrolytically. Base material heat affected zone and fused zone were subjected to 1800 3600 7200 and 14400 s of continuous charging with a current density J = − 10 mA/cm2 in an acid solution. Results showed that the fusion zone absorbed the most hydrogen across all charging times while the base material absorbed more hydrogen than the heat-affected zone due to the presence of non-metallic inclusions. Fracture toughness was assessed using single edge notch tension specimens (SENT) in air and electrolytic hydrogen. Results indicate that the base material is particularly vulnerable to hydrogen environments exhibiting the greatest reduction in toughness when exposed to hydrogen compared to air.
No more items...