Publications
Research into the Kinetics of Hydrogen Desorption from the MNTZV-159 Metal Hydride Storage Tank in the Operating Conditions of a Low-Pressure Refuelling Station
Aug 2025
Publication
A form of long-term hydrogen storage with high volume efficiency is hydrogen absorption into the host lattice of a metal or an alloy. Unlike high-pressure hydrogen storage this form of storage is characterised by a low operating pressure. By employing metal hydride (MH) materials in a low-pressure refuelling station it is possible to significantly increase the safety of hydrogen storage and at the same time to facilitate the refuelling of external devices that use MH storage tanks without the necessity of using a compressor. In this article a methodology for the identification of the mathematical correlations among the hydrogen pressure in the storage tank the hydrogen concentration in the alloy and the volumetric flow rate of hydrogen is described. This methodology may be used to identify the kinetics of the process and to create simplified simulations of the hydrogen release from an absorption-based storage tank by applying a finite difference method. The mathematical correlations are based on measurements of hydrogen desorption during which hydrogen was released from the storage tank at stabilised pressure levels. The resulting mathematical description facilitates the identification of the approximate hydrogen pressure depending on its flow rate for a particular MH storage tank while respecting the complexity of its internal structure heat transfer and the hydrogen’s passage through a porous powder MH material. The identified mathematical dependence applies to the certified MNTZV-159 storage tank at pressures ranging from 7 to 29.82 bar with hydrogen concentrations ranging from 0.223 to 1.342% an input temperature of 59.5 ◦C and a cooling water flow rate of 4.36 L·min−1 . This methodology for the identification of a correlation between the flow rate pressure and hydrogen concentration applies to this particular type of storage tank and it depends not only on the alloy used and the quantity of this alloy but also on the internal structure of the heat exchanger.
Catalyst, Reactor, and Purification Technology in Methanol Steam Reforming for Hydrogen Production: A Review
Aug 2025
Publication
Methanol steam reforming (MSR) represents a highly promising pathway for sustainable hydrogen production due to its favorable hydrogen-to-carbon ratio and relatively low operating temperatures. The performance of the MSR process is strongly dependent on the selection and rational design of catalysts which govern methanol conversion hydrogen selectivity and the suppression of undesired side reactions such as carbon monoxide formation. Moreover advancements in reactor configuration and thermal management strategies play a vital role in minimizing heat loss and enhancing heat and mass transfer efficiency. Effective carbon monoxide removal technologies are indispensable for obtaining high-purity hydrogen particularly for applications sensitive to CO contamination. This review systematically summarizes recent progress in catalyst development reactor design and gas purification technologies for MSR. In addition the key technical challenges and potential future directions of the MSR process are critically discussed. The insights provided herein are expected to contribute to the development of more efficient stable and scalable MSR-based hydrogen production systems.
Recent Progress in Bio-hydrogen Production for Sustainable Energy and Chemical Production
Sep 2025
Publication
To combat global warming the decarbonisation of energy systems is essential. Hydrogen (H2) is an established chemical feedstock in many industries (fertiliser production steel manufacturing etc.) and has emerged as a promising clean energy carrier due to its high energy density and carbon-free usage. However most H2 is currently produced from fossil fuels undermining its sustainability. Biomass offers a renewable carbon-neutral feedstock for H2 production potentially reducing its environmental impact. This review examines thermochemical biological and electrochemical methods of bio-H2 generation. Thermochemical processes - including gasification fast pyrolysis and steam reforming - are the most technologically advanced offering high H2 yields. However challenges such as catalyst deactivation tar formation and pre- and post-processing limit efficiency. Advanced strategies like chemical looping sorption enhancement and membrane reactors are being developed to address these issues. Biological methods including dark and photo fermentation operate under mild conditions and can process diverse waste feedstocks. Despite their potential low H2 yields and difficulties in microbial inhibitors hinder scalability. Ensuring that microbial populations remain stable through the use of additives and optimising the bioreactors hydraulic retention rate also remain a challenge Combined fermentation systems and valorising byproducts could enhance performance and commercial viability. Electrochemical reforming of biomass-derived compounds is an emerging method that may enhance water electrolysis by co-producing value-added by-products. However current studies focus on biomass-derived compounds rather than complex biomass feedstocks limiting commercial relevance. Future research should focus on feedstock complexity electrocatalyst development and system scaling. A technology readiness comparison shows that thermochemical methods are the most commercially mature followed by biological and electrochemical approaches. Each method holds promise within specific niches warranting continued innovation and interdisciplinary development.
Use of Depleted Oil and Gas Reservoirs as Bioreactors to Produce Hydrogen and Capture Carbon Dioxide
Aug 2025
Publication
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations rich in residual hydrocarbons (RH) and native H2 producing microbiota can be repurposed as bioreactors for hydrogen production. This process often referred to as “Gold Hydrogen” involves the in situ microbial conversion of RH into H2 typically via dark fermentation and is distinct from green blue or grey hydrogen due to its reliance on indigenous subsurface biota and RH. Strategies include nutrient modulation and chemical additives to stimulate native hydrogenogenic genera (Clostridium Petrotoga Thermotoga) or the injection of improved inocula. While this approach has potential environmental benefits such as integrated CO2 sequestration and minimized surface disturbance it also presents risks namely the production of CO2 and H2S and fracturing which require strict monitoring and mitigation. Although infrastructure reuse reduces capital expenditures achieving economic viability depends on overcoming significant technical operational and biotechnological challenges. If widely applied this model could help decarbonize the energy sector repurpose legacy infrastructure and support the global transition toward low-carbon technologies.
Trends, Challenges, and Viability in Green Hydrogen Initiatives
Aug 2025
Publication
This review explores the current status of green hydrogen integration into energy and industrial ecosystems. By considering notable examples of existing and developing green hydrogen initiatives combined with insights from the relevant scientific literature this paper illustrates the practical implementation of those systems according to their main end use: power and heat generation mobility industry or their combination. Main patterns are highlighted in terms of sectoral applications geographical distribution development scales storage solutions electrolyzer technology grid interaction and financial viability. Open challenges are also addressed including the high production costs an underdeveloped transport and distribution infrastructure the geopolitical aspects and the weak business models with the industrial sector appearing as the most favorable environment where such challenges may first be overcome in the medium term.
Pore-scale Evaluation of Hydrogen Storage and Recovery in Basaltic Formations
Jul 2025
Publication
Underground hydrogen storage (UHS) in basaltic rocks offers a scalable solution for large-scale sustainable energy needs yet its efficiency is limited by poorly constrained pore-scale hysteresis during cyclic hydrogenbrine flow. While basaltic rocks have been extensively studied for carbon sequestration and critical mineral extraction the pore-scale physics governing cyclic hydrogen-brine interactions particularly the roles of snap-off wettability and hysteresis remain inadequately understood. This knowledge gap hinders the development of predictive models and optimization strategies for UHS performance. This study presents a pore-scale investigations of cyclic hydrogen-brine flow in basaltic formations combining micro-computed tomography imaging with pore network modelling. A systematic workflow is employed to evaluate the effects of repeated drainage-imbibition cycles on multiphase flow properties under varying wetting regimes with emphasis on hysteresis evolution and its influence on recoverable hydrogen. Model validation is achieved through a novel benchmarking approach that incorporates synthetic fractures and morphological scaling enabling calibration against experimental capillary pressure and relative permeability. Results show that hydrogen trapping is primarily governed by snap-off and pore-body isolation particularly within large angular pores exhibiting high aspect ratios and limited connectivity. Strong hysteresis is observed between drainage and imbibition with hydrogen saturations averaging 85% predominantly in larger pore spaces compared to a residual saturation of 61% following imbibition. Repeated cycling leads to a gradual increase in residual saturation which eventually stabilizes indicating the onset of a hysteresis equilibrium state. Wettability emerges as a critical second-order control on displacement dynamics. Shifting from strongly to weakly water-wet conditions reduces capillary entry pressures enhances brine re-invasion and increases hydrogen recovery efficiency by ∼6%. These findings offer mechanistic insights into capillary trapping and wettability effects providing a framework for optimizing UHS reactive and abundant yet underutilized basalt formations and supporting ongoing global decarbonization efforts through reliable subsurface hydrogen storage.
Global Trends in Innovation Across Hydrogen Production, Supply and Demand Chains
Aug 2025
Publication
The global shift away from fossil fuels necessitates swift and transformative action underscoring the need for timely and accurate insights into emerging low-carbon technologies. This review provides a comprehensive and systematic analysis of innovation trends within the hydrogen technology ecosystem. Drawing on global patent data as a key indicator of industrial innovation the study offers a forward-looking assessment of technological developments spanning the entire hydrogen value chain like production storage distribution transformation and end-use applications across various sectors. By evaluating patent activity over time and across regions the review highlights significant innovation trends identifies leading industrial contributors and maps the evolving global competitive landscape. Particular attention is given to regional dynamics and sector-specific breakthroughs offering a nuanced perspective for policymakers investors and stakeholders engaged in energy transition planning. As hydrogen becomes increasingly central to decarbonization strategies worldwide this study serves as a critical intelligence resource illuminating current trajectories and signalling potential technological inflection points in the ongoing energy transformation.
The Link Between Microstructural Heterogeneity and Hydrogen Redistribution
Jul 2025
Publication
Green hydrogen is likely to play a major role in decarbonising the aviation industry. It is crucial to understand the effects of microstructure on hydrogen redistribution which may be implicated in the embrittlement of candidate fuel system metals. We have developed a multiscale finite element modelling framework that integrates micromechanical and hydrogen transport models such that the dominant microstructural effects can be efficiently accounted for at millimetre length scales. Our results show that microstructure has a significant effect on hydrogen localisation in elastically anisotropic materials which exhibit an interesting interplay between microstructure and millimetre-scale hydrogen redistribution at various loading rates. Considering 316L stainless steel and nickel a direct comparison of model predictions against experimental hydrogen embrittlement data reveals that the reported sensitivity to loading rate may be strongly linked with rate-dependent grain scale diffusion. These findings highlight the need to incorporate microstructural characteristics in hydrogen embrittlement models.
Sustainable Hydrogen Production from Waste Plastics via Staged Chemical Looping Gasification with Iron-based Oxygen Carrier
Aug 2025
Publication
Thermo-chemical conversion of waste plastics offers a sustainable strategy for integrated waste management and clean energy generation. To address the challenges of low gas yield and rapid catalyst deactivation due to coking in conventional gasification processes an innovative three-stage chemical looping gasification (CLG) system specifically designed for enhanced hydrogen-rich syngas production was proposed in this work. A comparative analysis between conventional gasification and the staged CLG system were firstly conducted coupled with online gas analysis for mechanistic elucidation. The influence of Fe/Al molar ratios in oxygen carriers and their cyclic stability were systematically examined through multicycle experiments. Results showed that the three-stage CLG in the presence of Fe1Al2 demonstrated exceptional performance achieving 95.23 mmol/gplastic of H2 and 129.89 mmol/gplastic of syngas respectively representing 1.32-fold enhancement over conventional method. And the increased H2/CO ratio (2.68-2.75) reflected better syngas quality via water-gas shift. Remarkably the oxygen carrier maintained nearly 100% of its initial activity after 7 redox cycles attributed to the incorporation of Al2O3 effectively mitigating sintering and phase segregation through metal-support interactions. These findings establish a three-stage CLG configuration with Fe-Al oxygen carriers as an efficient platform for efficient hydrogen production from waste plastics contributing to sustainable waste valorisation and carbon-neutral energy systems.
Multi-scale Modeling of the Multi-phase Flow in Water Electrolyzers for Green Hydrogen Production
May 2025
Publication
Water electrolyzers play a crucial role in green hydrogen production. However their efficiency and scalability are often compromised by bubble dynamics across various scales from nanoscale to macroscale components. This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers. At the nanoscale molecular dynamics (MD) simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability. Moving to the mesoscale models such as volume of fluid (VOF) and lattice Boltzmann method (LBM) shed light on bubble transport in porous transport layers (PTLs). These insights inform innovative designs including gradient porosity and hydrophilic-hydrophobic patterning aimed at minimizing gas saturation. At the macroscale VOF simulations elucidate two-phase flow regimes within channels showing how flow field geometry and wettability affect bubble discharging. Moreover artificial intelligence (AI)-driven surrogate models expedite the optimization process allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs. By integrating these approaches we can bridge theoretical insights with experimental validation ultimately enhancing water electrolyzer performance reducing costs and advancing affordable highefficiency hydrogen production.
From Natural Gas to Hydrogen: Climate Impacts of Current and Future Gas Transmission Networks in Germany
May 2025
Publication
Hydrogen emissions arise from leakage during its production transport storage and use leading to an increase in atmospheric hydrogen concentrations. These emissions also cause an indirect climate effect which has been quantified in the literature with a global warming potential over 100 years (GWP100) of about 11.6 placing hydrogen between carbon dioxide (1) and methane (29.8). There is increasing debate about the climate impact of an energy transition based on hydrogen. As a case study we have therefore evaluated the expected climate impact of switching from the long-distance natural gas transmission network to the outlined future “hydrogen core network” in Germany. Our analysis focuses on the relevant sources and network components of emissions. Our results show that the emissions from the network itself represent only about 1.8% of total emissions from the transmission of hydrogen with 98% attributed to energy-related compressor emissions and only 2% to fugitive and operational hydrogen leakage. Compared to the current natural gas transmission network we calculate a 99% reduction in total network emissions and a 97% reduction in specific emissions per transported unit of energy. In the discussion we show that when considering the entire life cycle which also includes emissions from the upstream and end-use phases the switch to hydrogen reduces the overall climate impact by almost 90%. However while our results show a significantly lower climate impact of hydrogen compared to natural gas minimising any remaining emissions remains crucial to achieve carbon neutrality by 2045 as set in Germany’s Federal Climate Action Act. Hence we recommend further reducing the emissions intensity of hydrogen supply and minimising the indirect emissions associated with the energy supply of compressors.
Hydrogen-powered Vessels in Green Maritime Decarbonization: Policy Drivers, Technological Frontiers and Challenges
May 2025
Publication
The global shipping industry is transitioning toward decarbonization with hydrogen-powered vessels emerging as a key solution to meet international emission reduction targets particularly the IMO’s goal of reducing emissions by 50% by 2050. As a zero-emission fuel hydrogen aligns with international regulations such as the IMO’s greenhouse gas reduction strategy the MARPOL Convention and regional policies like the EU’s Emissions Trading System. Despite regulatory support and advancements in hydrogen fuel cell technology challenges remain in hydrogen storage fuel cell integration and operational safety. Currently high-pressure gaseous hydrogen storage is the most viable option but its spatial and safety limitations must be addressed. Alternative storage methods including cryogenic liquid hydrogen organic liquid hydrogen carriers and metal hydride storage hold potential for application but still face technical and integration barriers. Overcoming these challenges requires continued innovation in vessel design fuel cell technology and storage systems supported by comprehensive safety standards and regulations. The successful commercialization of hydrogen-powered vessels will be instrumental in decarbonizing global shipping and achieving climate goals.
The Impact of Temporal Hydrogen Regulation on Hydrogen Exporters and their Domestic Energy Transition
Aug 2025
Publication
As global demand for green hydrogen rises potential hydrogen exporters move into the spotlight. While exports can bring countries revenue large-scale on-grid hydrogen electrolysis for export can profoundly impact domestic energy prices and energy-related emissions. Our investigation explores the interplay of hydrogen exports domestic energy transition and temporal hydrogen regulation employing a sector-coupled energy model in Morocco. We find substantial co-benefits of domestic carbon dioxide mitigation and hydrogen exports whereby exports can reduce market-based costs for domestic electricity consumers while mitigation reduces costs for hydrogen exporters. However increasing hydrogen exports in a fossil-dominated system can substantially raise market-based costs for domestic electricity consumers but surprisingly temporal matching of hydrogen production can lower these costs by up to 31% with minimal impact on exporters. Here we show that this policy instrument can steer the welfare (re-)distribution between hydrogen exporting firms hydrogen importers and domestic electricity consumers and hereby increases acceptance among actors.
Efficient and Stable N-type Sulfide Overall Water Splitting with Separated Hydrogen Production
Aug 2025
Publication
N-type sulfide semiconductors are promising photocatalysts due to their broad visible-light absorption facile synthesis and chemical diversity. However photocorrosion and limited electron transport in one-step excitation and solid-state Z-scheme systems hinder efficient overall water splitting. Liquidphase Z-schemes offer a viable alternative but sluggish mediator kinetics and interfacial side reactions impede their construction. Here we report a stable Z-scheme system integrating n-type CdS and BiVO₄ with a [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ mediator achieving 10.2% apparent quantum yield at 450 nm with stoichiometric H₂/O₂ evolution. High activity reflects synergies between Pt@CrOx and Co3O4 cocatalysts on CdS and cobalt-directed facet asymmetry in BiVO₄ resulting in matched kinetics for hydrogen and oxygen evolution in a reversible mediator solution. Stability is dramatically improved through coating CdS and BiVO4 with different oxides to inhibit Fe4[Fe(CN)6]3 precipitation and deactivation by a hitherto unrecognized mechanism. Separate hydrogen and oxygen production is also demonstrated in a twocompartment reactor under visible light and ambient conditions. This work unlocks the long-sought potential of n-type sulfides for efficient durable and safe solar-driven hydrogen production.
Assessment of Carbon-abatement Pricing to Maximize the Value of Electrolytic Hydrogen in Emissions-intensive Power Sectors
Aug 2025
Publication
Electrolytic hydrogen can support the decarbonization of the power sector. Achieving cost-effective power-to-gas-to-power (PGP) integration through targeted emissions pricing can accelerate the adoption of electrolytic hydrogen in greenhouse gas-intensive power sectors. This study develops a framework for assessing the economic viability of electrolytic hydrogen-based PGP systems in fossil fuel-dependent grids while considering the competing objectives of the electricity system operator a risk-averse investor and the government. Here we show that given the risk-averse investor’s inherent pursuit of profit maximization a break-even carbon abatement cost of at least 57 Canadian Dollars per tonne of CO₂ by 2030 from the government with a shift in electricity market dispatch rules from sole system marginal pricereduction to system-wide emissions reduction is essential to stimulate price discovery for low-cost hydrogen production and contingency reserve provision by the PGP system. This work can help policymakers capture and incentivize the role of electrolytic hydrogen in low-carbon power sector planning.
Country Risk Impacts on Export Costs of Green Hydrogen and its Synthetic Downstream Products from the Middle East and North Africa
May 2025
Publication
Green hydrogen produced from renewable energy sources such as wind and solar is increasingly recognized as a critical enabler of the global energy transition and the decarbonization of industrial and transport sectors. The successful adoption of green hydrogen and its derivatives is closely linked to production costs which can vary substantially between countries depending not only on resource potential but also on country-specific financing conditions. These differences arise from country-specific risk factors that affect the costs of capital ultimately influencing investment decisions. However comprehensive assessments that integrate these risks with future cost projections for renewable energy green hydrogen and its synthetic downstream products are lacking. Using the Middle East and North Africa (MENA) as an example this study introduces a novel approach that allows to incorporate mainly qualitative country-specific investment risks into quantitative analyses such as costpotential and energy modelling. Our methodology calculates weighted average costs of capital (WACC) for 17 MENA countries under different risk scenarios providing a more nuanced assessment compared to traditional models that use uniform cost of capital assumptions. The results indicate significant variations in WACC such as between 4.67% in the United Arab Emirates and 24.84% in Yemen or Syria in the business-as-usual scenario. The incorporation of country-specific capital cost scenarios in quantitative analysis is demonstrated by modelling the cost-potential of Fischer-Tropsch (FT) fuels. The results show that countryspecific investment risks significantly impact costs. For instance by 2050 the starting LCOFs in high-risk scenarios can be up to 180% higher than in lowerrisk contexts. This underlines that while renewable energy potential and its cost are important it are the country-specific risk factors—captured through WACC—that have a greater influence in determining the competitiveness of exports and consequently the overall development of the renewable energy green hydrogen and synthetic fuel sectors.
A Configuration and Scheduling Optimization Method for Integrated Energy Systems Considering Massive Flexible Load Resources
Mar 2025
Publication
Introduction: With the increasing demand for energy utilization efficiency and minimization of environmental carbon emissions in industrial parks optimizing the configuration and scheduling of integrated energy systems has become crucial. This study focuses on integrated energy systems with massive flexible load resources aiming to maximize energy utilization efficiency while reducing environmental impact. Methods: To model the uncertainties in wind and solar power outputs we employed three-parameter Weibull distribution models and Beta distribution models. Flexible loads were categorized into three types to match different electricity consumption patterns. Additionally an enhanced Kepler Optimization Algorithm (EKOA) was proposed incorporating chaos mapping and adaptive learning rate strategies to improve search scope convergence speed and solution efficiency. The effectiveness of the proposed optimization scheduling and configuration methods was validated through a case study of an industrial park located in a coastal area of southeastern China. Results: The results show that using three-parameter Weibull distribution models and Beta distribution models more accurately reflects the variations in actual wind speeds and solar irradiance levels achieving peak shaving and valley filling effects and enhancing renewable energy utilization. The EKOA algorithm significantly reduced curtailment rates of wind and solar power generation while achieving substantial economic benefits. Compared with other operation modes of hydrogen the daily average cost is reduced by 12.92% and external electricity purchases are reduced by an average of 20.2 MW h/day. Discussion: Although our approach shows potential in improving energy utilization efficiency and economic gains this paper only considered hydrogen energy for single-use pathways and did not account for the economic benefits from selling hydrogen in the market. Future research will further incorporate hydrogen demand response mechanisms and optimize the output of integrated energy systems from the perspective of spot markets. These findings provide valuable references for relevant engineering applications.
Hydrogen Storage Potential in Underground Coal Gasification Cavities: A MD Simulation of Hydrogen Adsorption and Desorption Behavior in Coal Nanopores
May 2025
Publication
Underground hydrogen storage (UHS) in geological formations presents a viable option for long-term large-scale H2 storage. A physical coal model was constructed based on experimental tests and a MD simulation was used to investigate the potential of UHS in underground coal gasification (UCG) cavities. We investigated H2 behavior under various conditions including temperatures ranging from 278.15 to 348.15 K pressures in the range of 5–20 MPa pore sizes ranging from 1 to 20 nm and varying water content. We also examined the competitive adsorption dynamics of H2 in the presence of CH4 and CO2 . The findings indicate that the optimal UHS conditions for pure H2 involve low temperatures and high pressures. We found that coal nanopores larger than 7.5 nm optimize H2 diffusion. Additionally higher water content creates barriers to hydrogen diffusion due to water molecule clusters on coal surfaces. The preferential adsorption of CO2 and CH4 over H2 reduces H2 -coal interactions. This work provides a significant understanding of the microscopic behaviors of hydrogen in coal nanopores at UCG cavity boundaries under various environmental factors. It also confirms the feasibility of underground hydrogen storage (UHS) in UCG cavities.
Photoelectrochemical Water Splitting under Concentrated Sunlight: Best Practices and Protocols
Mar 2025
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production by harnessing solar energy. Traditionally this sustainable approach is studied under light intensity of 100 mW/cm2 mimicking the natural solar irradiation at the Earth’s surface. Sunlight can be easily concentrated using simple optical systems like Fresnel lens to enhance charge carrier generation and hydrogen production in PEC water splitting. Despite the great potentials this strategy has not been extensively studied and faces challenges related to the stability of photoelectrodes. To prompt the investigations and applications this work outlines the best practices and protocols for conducting PEC solar water splitting under concentrated sunlight illumination incorporating our recent advancements and providing some experimental guidelines. The key factors such as light source calibration photoelectrode preparation PEC cell configuration and long-term stability test are discussed to ensure reproducible and high performance. Additionally the challenges of the expected photothermal effect and the heat energy utilization strategy are discussed.
Efficiently Coupling Water Electrolysis with Solar PV for Green Hydrogen Production
Aug 2025
Publication
Solar-driven water electrolysis has emerged as a prominent technology for the production of green hydrogen facilitated by advancements in both water electrolyzers and solar cells. Nevertheless the majority of integrated solar-to-hydrogen systems still struggle to exceed 20% efficiency particularly in large-scale applications. This limitation arises from suboptimal coupling methodologies and system-level inefficiencies that have rarely been analyzed. To address these challenges this study investigates the fundamental principles of solar hydrogen production and examines key energy losses in photovoltaic-electrolyzer systems. Subsequently it systematically discusses optimization strategies across three dimensions: (1) enhancing photovoltaic (PV) system output under variable irradiance (2) tailoring electrocatalysts and electrolyzer architectures for high-performance operation and (3) minimizing coupling losses through voltage-matching technologies and energy storage devices. Finally we review existing large-scale solar hydrogen infrastructure and propose strategies to overcome barriers related to cost durability and scalability. By integrating material innovation with system engineering this work offers insights to advance solar-powered electrolysis toward industrial applications.
No more items...