Publications
Proposal for an Energy Efficiency Index for Green Hydrogen Production—An Integrated Approach
Jun 2025
Publication
In the context of mounting concerns over carbon emissions and the need to accelerate the energy transition green hydrogen has emerged as a strategic solution for decarbonizing hard-to-abate sectors. This paper introduces a methodological innovation by proposing the Green Hydrogen Efficiency Index (GHEI) a unified and quantitative framework that integrates multiple stages of the hydrogen value chain into a single comparative metric. The index encompasses six core criteria: electricity source water treatment electrolysis efficiency compression end-use conversion and associated greenhouse gas emissions. Each are normalized and weighted to reflect different performance priorities. Two weighting profiles are adopted: a first profile which assigns equal importance to all criteria referred to as the balanced profile and a second profile derived using the analytic hierarchy process (AHP) based on structured expert judgment named the AHP profile. The methodology was developed through a systematic literature review and was applied to four representative case studies sourced from the academic literature covering diverse configurations and geographies. The results demonstrate the GHEI’s capacity to distinguish the energy performance of different green hydrogen routes and support strategic decisions related to technology selection site planning and logistics optimization. The results highlight the potential of the index to contribute to more sustainable hydrogen value chains and advance decarbonization goals by identifying pathways that minimize energy losses and maximize system efficiency
Prioritization of the Critical Factors of Hydrogen Transportation in Canada Using the Intuitionistic Fuzzy AHP Method
Jun 2025
Publication
Hydrogen is a potential source of imminent clean energy in the future with its transportation playing a crucial role in allowing large-scale deployment. The challenge lies in selecting an effective sustainable and scalable transportation alternative. This study develops a multi-criteria decision-making (MCDM) framework based on the intuitionistic fuzzy analytic hierarchy process (IF-AHP) to evaluate land-based hydrogen transportation alternatives across Canada. The framework includes uncertainty and decision-maker hesitation through the application of triangular intuitionistic fuzzy numbers (TIFNs). Seven factors their subsequent thirty-three subfactors and three alternatives to hydrogen transportation were identified through a literature review. Pairwise comparison was aggregated among factors subfactors and alternatives from three decision makers using an intuitionistic fuzzy weighted average and priority weights were computed using entropy-based weight. The results show that safety and economic efficiency emerged as the most influential factors in the evaluation of hydrogen transportation alternatives followed by environmental impact security and social impact and public health in ascending order. Among the alternatives tube truck transport obtained the highest overall weight (0.3551) followed by pipelines (0.3272) and rail lines (0.3251). The findings suggest that the tube ruck is currently the most feasible transport option for land-based hydrogen distribution that aims to provide a transition of Canada’s energy mix.
Accident Analysis Modeling and Case Study of Hydrogen Refueling Station Using Root Cause Analysis (RCA)
Jun 2025
Publication
As the global transition to carbon neutrality accelerates hydrogen energy has emerged as a key alternative to fossil fuels due to its potential to reduce carbon emissions. Many countries including Korea are constructing hydrogen refueling stations; however safety concerns persist due to accidents caused by equipment failures and human errors. While various accident analysis models exist the application of the root cause analysis (RCA) technique to hydrogen refueling station accidents remains largely unexplored. This study develops an RCA modeling map specifically for hydrogen refueling stations to identify not only direct and indirect causes of accidents but also root causes and applies it to actual accident cases to provide basic data for identifying the root causes of future hydrogen refueling station accidents. The RCA modeling map developed in this study uses accident cause investigation data from accident investigation reports over the past five years which include information on the organizational structure and operational status of hydrogen refueling stations as well as the RCA handbook. The primary defect sources identified were equipment defect personal defect and other defects. The problem categories which were the substructures of the primary defect source “equipment defect” consisted of four categories: the equipment design problem the equipment installation/fabrication problem the equipment reliability program problem and the equipment misuse problem. Additionally the problem categories which were the substructures of the primary defect source “personal defect” consisted of two categories: the company employee problem and the contract employee problem. The problem categories which were the substructures of the primary defect source “other defects” consisted of three categories: sabotage/horseplay natural phenomena and other. Compared to existing accident investigation reports which identified only three primary causes the RCA modeling map revealed nine distinct causes demonstrating its superior analytical capability. In conclusion the proposed RCA modeling map provides a more systematic and comprehensive approach for investigating accident causes at hydrogen refueling stations which could significantly improve safety practices and assist in quickly identifying root causes more efficiently in future incidents.
Examining Dynamics of Hydrogen Supply Chains
Mar 2025
Publication
Hydrogen is poised to play a pivotal role in achieving net-zero targets and advancing green economies. However a range of complex operational challenges hinders its planning production delivery and adoption. At the same time numerous drivers within the hydrogen value chain present significant opportunities. This paper investigates the intricate relationships between these drivers and barriers associated with hydrogen supply chain (HSC). Utilising expert judgment in combination Grey-DEMATEL technique we propose a framework to assess the interplay of HSC drivers and barriers. Gaining insight into these relationships not only improves access to hydrogen but also foster innovation in its development as a low-carbon resource. The use of prominence scores and net influence rankings for each driver and barrier in the framework provides a comprehensive understanding of their relative significance and impact. Our findings demonstrate that by identifying and accurately mapping these attributes clear cause-and-effect relationships can be established contributing to a more nuanced understanding of the HSC. These insights have broad implications across operational policy scholarly and social domains. For instance this framework can aid stakeholders in recognizing the range of opportunities available by addressing key barriers to hydrogen adoption.
Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review
Mar 2025
Publication
The integration of Variable Renewable Energy (VRE) sources in power systems is increased for a sustainable environment. However due to the intermittent nature of VRE sources formulating efficient economic dispatching strategies becomes challenging. This systematic review aims to elucidate the economic value creation of Artificial Intelligence (AI) in supporting the integration of VRE sources into power systems by reviewing the role of AI in mitigating costs related to balancing profile and grid with a focus on its applications for generation and demand forecasting market design demand response storage solutions power quality enhancement and predictive maintenance. The proposed study evaluates the AI potential in economic efficiency and operational reliability improvement by analyzing the use cases with various Renewable Energy Resources (RERs) including wind solar geothermal hydro ocean bioenergy hydrogen and hybrid systems. Furthermore the study also highlights the development and limitations of AI-driven approaches in renewable energy sector. The findings of this review aim to highlight AI’s critical role in optimizing VRE integration ultimately informing policymakers researchers and industry stakeholders about the potential of AI for an economically sustainable and resilient energy infrastructure.
Optimization Control of Flexible Power Supply System Applied to Offshore Wind–Solar Coupled Hydrogen Production
Jun 2025
Publication
The inherent randomness and intermittency of offshore renewable energy sources such as wind and solar power pose significant challenges to the stable and secure operation of the power grid. These fluctuations directly affect the performance of grid-connected systems particularly in terms of harmonic distortion and load response. This paper addresses these challenges by proposing a novel harmonic control strategy and load response optimization approach. An integrated three-winding transformer filter is designed to mitigate high-frequency harmonics and a control strategy based on converter-side current feedback is implemented to enhance system stability. Furthermore a hybrid PI-VPI control scheme combined with feedback filtering is employed to improve the system’s transient recovery capability under fluctuating load and generation conditions. Experimental results demonstrate that the proposed control algorithm based on a transformer-oriented model effectively suppresses low-order harmonic currents. In addition the system exhibits strong anti-interference performance during sudden voltage and power variations providing a reliable foundation for the modulation and optimization of offshore wind–solar coupled hydrogen production power supply systems.
Medium Speed Lean Hydrogen Engine Modelling and Validation
Sep 2025
Publication
Hydrogen spark-ignition direct-injection engines result in no carbon emissions at use but NOX remains a challenge. This study demonstrates that with lean combustion (ϕ < 0.38) in-cylinder NOX can be reduced to a quarter of the current maritime regulatory limit. An original contribution of this work is the use of speciesresolved emissions formation across multiple engine load conditions. A novel chemically detailed combustion modelling framework was developed in CHEMKIN-Pro incorporating the evolution of the CRECK C1–C3 NOX mechanism for improved high-pressure accuracy. The framework was extensively validated using crank-angleresolved data across 9–18 bar loads. The model accurately reproduced pressure traces heat release angles and NOX. Mechanistic analysis revealed a shift from thermal Zeldovich NOX to intermediate-species (notably N2Odriven) as equivalence ratio and pressure varied. The findings highlighted the use of a high-fidelity chemical kinetic modelling framework not only to match experimental results but to gain physically grounded insight into actionable near-zero emission strategies.
Environmental Implications of Alternative Production, Distribution, Storage, and Leakage Rates of Hydrogen from Offshore Wind in Norway
Jun 2025
Publication
Renewable hydrogen offers compelling climate mitigation prospects with Norway possessing the opportunity to become a main global producer given its unique combination of wind energy potential available infrastructure and political motivation. However comprehensive environmental impact assessments of hydrogen from offshore wind are lacking and hydrogen leakage rates remain uncertain. A life-cycle assessment of hydrogen production from offshore wind farms in Norway is presented where different combinations of turbines (floating or bottomfixed) storage options (tank or salt cavern) and distribution methods (trucks or pipelines) are considered. Climate change impacts are assessed across the supply chain using global warming potential 100 (GWP100) and 20 (GWP20) and include hydrogen leakage contributions. The results range from 1.56 ± 0.14–2.28 ± 0.14 kg CO2-eq/kg H2 for GWP100 and 2.96 ± 0.76 and 3.75 ± 0.76 kg CO2-eq/kg H2 for GWP20 and are on average 55 % and 45 % lower than those of blue hydrogen respectively. At a default rate of 5 % hydrogen leakage contributes 50–63 % of the total impact for GWP20 and 25–37 % for GWP100. If higher-end leakage rates from literature are considered the impacts increase to 3.46 kg CO2-eq/kg H2 for GWP100 which is still lower than that of blue hydrogen. The scenario combining bottom-fixed turbines salt cavern storage and pipeline distribution presents the lowest environmental impacts. However while bottom-fixed turbines generally offer lower impacts floating turbines pose lesser risk to marine biodiversity. Overall infrastructure represents the main driver of environmental impacts. Mitigation in this area will improve potential benefits.
Thermo-Catalytic Decomposition of Natural Gas: Connections Between Deposited Carbon Nanostructure, Active Sites and Kinetic Rates
Oct 2025
Publication
Thermo-catalytic decomposition (TCD) presents a promising pathway for producing hydrogen from natural gas without emitting CO2. This process represents a form of fossil fuel decarbonization where the byproduct rather than being a greenhouse gas is a solid carbon material with potential for commercial value. This study examines the dynamic behavior of TCD showing that carbon formed during the reaction first enhances and later dominates methane decomposition. Three types of carbon materials were employed as starting catalysts. Methane decomposition was continuously monitored using on-line Fourier transform infrared (FT-IR) spectroscopy. The concentration and nature of surface-active sites were determined using a two-step approach: oxygen chemisorption followed by elemental analysis through X-ray photoelectron spectroscopy (XPS). Changes in the morphology and nanostructure of the carbon catalysts both before and after TCD were examined using high-resolution transmission electron microscopy (HRTEM). Thermogravimetric analysis (TGA) was used to study the reactivity of the TCD deposits in relation to the initial catalysts. Partial oxidation altered the structural and surface chemistry of the initial carbon catalysts resulting in activation energies of 69.7–136.7 kJ/mol for methane. The presence of C2 and C3 species doubled methane decomposition (12% → 24%). TCD carbon displayed higher reactivity than the nascent catalysts and sustained long-term activity.
A Capacity Expansion Model of Hydrogen Energy Storage for Urban-Scale Power Systems: A Case Study in Shanghai
Sep 2025
Publication
With the increasing maturity of renewable energy technologies and the pressing need to address climate change urban power systems are striving to integrate a higher proportion of low-carbon renewable energy sources. However the inherent variability and intermittency of wind and solar power pose significant challenges to the stability and reliability of urban power grids. Existing research has primarily focused on short-term energy storage solutions or small-scale integrated energy systems which are insufficient to address the long-term large-scale energy storage needs of urban areas with high renewable energy penetration. This paper proposes a mid-to-long-term capacity expansion model for hydrogen energy storage in urban-scale power systems using Shanghai as a case study. The model employs mixed-integer linear programming (MILP) to optimize the generation portfolios from the present to 2060 under two scenarios: with and without hydrogen storage. The results demonstrate that by 2060 the installed capacity of hydrogen electrolyzers could reach 21.5 GW and the installed capacity of hydrogen power generators could reach 27.5 GW accounting for 30% of the total installed capacity excluding their own. Compared to the base scenario the electricity–hydrogen collaborative energy supply system increases renewable penetration by 11.6% and utilization by 12.9% while reducing the levelized cost of urban comprehensive electricity (LCOUCE) by 2.514 cents/kWh. These findings highlight the technical feasibility and economic advantages of deploying long-term hydrogen storage in urban grids providing a scalable solution to enhance the stability and efficiency of high-renewable urban power systems.
A Multi-Stage Resilience Enhancement Method for Distribution Networks Employing Transportation and Hydrogen Energy Systems
Sep 2025
Publication
The resilience and sustainable development of modern power distribution systems faces escalating challenges due to increasing renewable integration and extreme events. Traditional single-system approaches often overlook the spatiotemporal coordination of cross-domain restoration resources. In this paper we propose a multi-stage resilience enhancement method that employs transportation and hydrogen energy systems. This approach coordinates the pre-event preventive allocation and multi-stage collaborative scheduling of diverse restoration resources including remote-controlled switches (RCSs) mobile hydrogen emergency resources (MHERs) and hydrogen production and refueling stations (HPRSs). The proposed framework supports cross-stage dynamic optimization scheduling enabling the development of adaptive resource dispatch strategies tailored to the characteristics of different stages including prevention fault isolation and service restoration. The model is applicable to complex scenarios involving dynamically changing network topologies and is formulated as a mixed-integer linear programming (MILP) problem. Case studies based on the IEEE 33-bus system show that the proposed method can restore a distribution system’s resilience to approximately 87% of its normal level following extreme events.
Towards Inclusive Path Transplanation: Local Agency for Green Hydrogen Linkage Creation in Namibia
Aug 2025
Publication
Many countries of the Global South struggle to achieve inclusive growth paths despite investment in the exploitation of rich resources. Resource-based industrialization literature stresses the potential for achieving broader development effects via the development of production linkages with local enterprises. The focus lies on market-driven outsourcing dynamics that foster linkage development such as efficiency location-specific knowledge and technology and scale complexity. However little is known about the opportunity space for both policy making and local firms to create these linkages. To address this issue we incorporate the concept of change agency stemming from the path development literature into the discussion on production linkages to show how both (local) firm agency and system-level agency can achieve linkage creation for inclusive path transplantation. We illustrate the framework by scrutinizing the potential inclusion of solar energy companies in Namibia’s emerging green hydrogen economy. The study finds that while the potential for renewable energy companies in Namibia to participate in the value chain is limited an integrated bundle of measures relying on firm- and system-level agency could address peripheral contextual factors overcome entry barriers and leverage further potential for linkage creation in the solar energy sector: mobilizing the local workforce fostering inter-firm cooperation leveraging local advantages creating knowledge institutions enhancing the regulatory framework upgrading infrastructure and enforcing local content regulations.
The European Hydrogen Policy Landscape - Extensive Update of the April 2024 Report
Jan 2025
Publication
This report aims to summarise the status of the European hydrogen policy landscape. It is based on the information available at the European Hydrogen Observatory (EHO) website the leading source of data on hydrogen in Europe. The data presented in this report is based on research conducted by Hydrogen Europe until the end of July 2024 but also goes beyond this timeline for major policies legislations or standards implemented recently. This report builds upon the previous version published in April 2024 which reflected data as of August 2023 providing updated insights on European policies and legislation national strategies national policies and legislation and codes and standards. Interactive data dashboards can be accessed on the website: https://observatory.cleanhydrogen.europa.eu/ The EU policies and legislation section provides insights into the main European policies and legislation relevant to the hydrogen sector which are briefly summarized on content and their potential impact to the sector. The national hydrogen strategies chapter offers a comprehensive examination of the hydrogen strategies adopted in Europe. It summarizes the quantitative indicators that have been published (targets and estimates) and provides brief summaries of the different national strategies that have been adopted. The section referring to national policies and legislation focuses on the policy framework measures incentives and targets in place that have an impact on the development of the respective national hydrogen markets within Europe. The codes and standards section provides information on current European standards and initiatives developed by the standardisation bodies including CEN CENELEC ISO IEC OIML The standards are categorised according to the different stages of the hydrogen value chain: production distribution and storage and end-use applications.
Transient-state Behaviours of Blast Furnace Ironmaking: The Role of Shaft-injected Hydrogen
Aug 2025
Publication
Hydrogen shaft injection into blast furnaces (BFs) has a large potential to eliminate carbon dioxide emissions yet the temporal evolution of thermal and chemical states following shaft-injected hydrogen utilisation has not been reported in the open literature. In this research a recently developed transient-state multifluid BF model is applied to elucidate the temporal evolution of in-furnace phenomena. Besides a domain-average method is adopted to analyse the extensive simulation data to determine the time required to attain the next steady-like state. The results show that the evolution of thermal and chemical conditions varies across different regions with distinct characteristics near the furnace wall. The shifts in iron oxide reduction behaviour are completed within 10 to 20 h after the new operation and the transition time points to the next steady-like states of thermal and chemical conditions are different. As the hydrogen flow rate increases the average transition time decreases. However 2 to 4 days are required for the studied BF to reach a new steady-like state in the considered scenarios. The model offers a cost-effective approach to investigating the transient smelting characteristics of an ironmaking BF with hydrogen injection.
Hydrogen Energy Resource: Overview of Production Techniques, Economy and Application in Microgrid Systems Operation
Sep 2025
Publication
Hydrogen (H2) fuel is one of eco-friendly resources for delivering de-carbonized and sustainable electricity supply in line with the UN’s Sustainable Development Goals 7 and 13 for affordable and clean energy and climate change action respectively. This paper presents a state-of-the art review of the H2 energy resource in terms of its history and evolution production techniques global economy market perspective and application to microgrid systems. It also introduces a systematic classification of the fuel. The production techniques examined include: the thermal approach such as the reforming gasification and thermochemical processes; the photocatalytic approach otherwise called artificial photosynthesis; the biological and photonic approach that involves the photolysis photo-fermentation dark fermentation CO gas fermentation and biomass valorization processes to produce H2 while the electrical approach is based on the chemical dissociation of electrolytes into their constituent ions by the passage of electric current. A particular attention is paid to the potential of the H2 resource in running some energy generators in microgrid systems such as the internal combustion engines microturbines and the fuel cells that are useful for combined heat and power application. The paper introduces different technical configurations topologies and processes that involve the use of green H2 fuel in generating systems and the connection of bus bars power converters battery bank and the electrical and thermal loads. The paper also presents hybrid fuel cell (FC) and PV system simulation using System Advisor Model (SAM) to showcase the use of H2 fuel in a micogrid. The paper provides insightful directions into the H2 economy smart electrical grid and the future prospects.
Altering Carbonate Wettability for Hydrogen Storage: The Role of Surfactant and CO2 Floods
Oct 2025
Publication
Underground hydrogen storage (UHS) in depleted oil and gas fields is pivotal for balancing large-scale renewable-energy systems yet the wettability of reservoir rocks in contact with hydrogen after decades of Enhanced Oil Recovery (EOR) operations remains poorly quantified. This work experimentally investigates how two common EOR legacies cationic surfactant (city-trimethyl-ammonium bromide CTAB) and supercritical carbon dioxide (SC–CO2) flooding alter rock–water–Hydrogen (H2) wettability in carbonate formations. Contact angles were measured on dolomite and limestone rock slabs at 30–75 ◦C and 3.4–17.2 MPa using a high-pressure captive-bubble cell. Crude-oil aging shifted clean dolomite from strongly water-wet (θ ~ 28–29◦) to intermediate-wet (θ ≈ 84◦). Subsequent immersion in dilute CTAB solutions (0.5–2 wt %) fully reversed this effect restoring or surpassing the original water-wetness (θ ≈ 21–28◦). Limestone samples exposed to SC-CO2 at 60–80 ◦C became more hydrophilic (θ ≈ 18–30◦) relative to untreated controls; moderate carbonate dissolution (≤6 × 103 ppm Ca2+) produced the most significant improvement in water-wetness whereas severe dissolution yielded diminishing returns. These findings show that many mature reservoirs are already water-wet (post-CO2) or can be easily re-wetted (via residual CTAB). Across all scenarios sample wettability showed little sensitivity to pressure but higher temperature consistently promoted stronger water-wetness. Future work should include dynamic core-flooding experiments with realistic reservoir.
Unified Case Study Analysis of Techno-Economic Tools to Study the Viability of Off-Grid Hydrogen Production Plants
Sep 2025
Publication
The increasing interest in off-grid green hydrogen production has elevated the importance of reliable techno-economic assessment (TEA) tools to support investment and planning decisions. However limited operational data and inconsistent modeling approaches across existing tools introduce significant uncertainty in cost estimations. This study presents a comprehensive review and comparative analysis of seven TEA tools—ranging from simplified calculators to advanced hourly based simulation platforms—used to estimate the Levelized Cost of Hydrogen (LCOH) in off-grid Hydrogen Production Plants (HPPs). A standardized simulation framework was developed to input consistent technical economic and financial parameters across all tools allowing for a horizontal comparison. Results revealed a substantial spread in LCOH values from EUR 5.86/kg to EUR 8.71/kg representing a 49% variation. This discrepancy is attributed to differences in modeling depth treatment of critical parameters (e.g. electrolyzer efficiency capacity factor storage and inflation) and the tools’ temporal resolution. Tools that included higher input granularity hourly data and broader system components tended to produce more conservative (higher) LCOH values highlighting the cost impact of increased modeling realism. Additionally the total project cost—more than hydrogen output—was identified as the key driver of LCOH variability across tools. This study provides the first multi-tool horizontal testing protocol a methodological benchmark for evaluating TEA tools and underscores the need for harmonized input structures and transparent modeling assumptions. These findings support the development of more consistent and reliable economic evaluations for off-grid green hydrogen projects especially as the sector moves toward commercial scale-up and policy integration.
Techno-Economic Assessment of Hydrogen-Based Power-to-Power Systems: Operational Strategies and Feasibility Within Energy Communities
Jun 2025
Publication
In the context of the evolving energy landscape the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework hydrogen emerges as a promising energy storage vector offering a viable solution to the flexibility challenges caused by the inherent variability of RESs. This work investigates the feasibility of integrating a hydrogen-based energy storage system within an energy community in Barcelona using surplus electricity from photovoltaic (PV) panels. A power-to-power configuration is modelled through a comprehensive methodology that determines optimal component sizing based on high-resolution real-world data. This analysis explores how different operational strategies influence the system’s cost-effectiveness. The methodology is thus intended to assist in the early-stage decision-making process offering a flexible approach that can be adapted to various market conditions and operational scenarios. The results show that under the current conditions the combination of PV generation energy storage and low-cost grid electricity purchases yield the most favourable outcomes. However in a long-term perspective considering projected cost reductions for hydrogen technologies strategies including energy sales back to the grid become more profitable. This case study offers a practical example of balancing engineering and economic considerations providing replicable insights for designing hydrogen storage systems in similar energy communities.
Recent Progress in Seawater Splitting Hydrogen Production Assisted by Value-Added Electrooxidation Reactions
Jun 2025
Publication
Electrolysis of abundant seawater resources is a promising approach for hydrogen production. However the high-concentration chloride ion in seawater readily induces the chlorine evolution reaction (CER) resulting in catalyst degradation and decreased electrolysis efficiency. In recent years the electrooxidation of small organic molecules (e.g. methanol) biomass-derived compounds (e.g. 5-hydroxymethylfurfural) and plastic monomers (e.g. ethylene glycol) has been seen to occur at lower potentials to substitute for the traditional oxygen evolution reaction (OER) and CER. This alternative approach not only significantly reduces energy consumption for hydrogen production but also generates value-added products at the anode. This review provides a comprehensive summary of research advancements in value-added electrooxidation reaction-assisted seawater hydrogen production technologies and emphasizes the underlying principles of various reactions and catalyst design methodologies. Finally the current challenges in this field and potential future research directions are systematically discussed.
Economic Viability of Hydrogen Production via Plasma Thermal Degradation of Natural Gas
Jun 2025
Publication
This study evaluated the economic feasibility of producing hydrogen from natural gas via thermal degradation in a plasma reactor. Plasma pyrolysis where natural gas passes through the space between electrodes and serves as the working medium enables high hydrogen yields without emitting carbon monoxide or carbon dioxide. Instead the primary products are hydrogen and solid carbon. Unlike conventional methods this approach requires no catalysts addressing a major technological limitation. A thermodynamic equilibrium model based on Gibbs free energy minimization was used to analyze the process over a temperature range of 500–2500 K. The results indicate an optimal temperature of approximately 1500 K which achieved a 99.5% methane conversion by mass. Considering the capital and operating costs and profit margins the hydrogen production cost was estimated at 3.49 EUR/kg. The sensitivity analysis revealed that the price of solid carbon had the most significant impact which potentially raised the hydrogen cost to 4.53 EUR/kg or reduced it to 1.70 EUR/kg.
No more items...