Publications
Hydrogen Storage Potential of Salado Formation in the Permian Basin of West Texas, United States
Jun 2025
Publication
Hydrogen (H2) has the potential to become a cleaner fuel alternative to increase energy mix versatility as part of a low-carbon economy. Geological H2 storage represents a key component of the emerging H2 value chain since large-scale energy generation linked to energy generation and large-scale industrial applications will require significant upscaling of geological storage. Geological H2 storage can take place in both salt domes and bedded salt formations. Bedded salt formations offer a significant advantage for H2 storage over salt domes because of their widespread availability. This research focuses on evaluating the H2 storage potential of the Salado Formation a bedded salt deposit in the Permian Basin of West Texas in the United States. Using data from 3268 well logs this study analyzes an area of 136100 km2 to identify suitable depth and net halite thickness for H2 storage in salt caverns. In addition this work applies a novel geostatistical workflow to quantify the uncertainty in the formation’s storage potential. The H2 working gas potential of the Salado Formation ranges from 0.62 to 17.53 Tsm3 (1.75–49.68 PWh of stored energy) across low-risk to high-risk scenarios with a median potential of 1.19 Tsm3 (3.37 PWh). The counties with the largest storage potential are: Lea in New Mexico and Gaines and Andrews in Texas. These three counties account for more than 75 % of the formation’s total storage potential. This is the first study to quantify uncertainty in H2 storage estimates for a bedded salt formation while providing a detailed breakdown of results by county and 1 km2 grid sections. The findings of this work offer critical insights for developing H2 infrastructure in the Permian Basin. The Permian Basin of West Texas has the potential to become an important hub for H2 production from both natural gas and/or renewable energy. Estimating H2 storage potential is an important contribution to assess the feasibility of the entire H2 value chain in Texas. An interactive map accompanies this work allowing the readers to explore the results visually.
A Review of Integrated Carbon Capture and Hydrogen Storage: AI-Driven Optimization for Efficiency and Scalability
Jun 2025
Publication
Achieving global net-zero emissions by 2050 demands integrated and scalable strategies that unite decarbonization technologies across sectors. This review provides a forwardlooking synthesis of carbon capture and storage and hydrogen systems emphasizing their integration through artificial intelligence to enhance operational efficiency reduce system costs and accelerate large-scale deployment. While CCS can mitigate up to 95% of industrial CO2 emissions and hydrogen particularly blue hydrogen offers a versatile low-carbon energy carrier their co-deployment unlocks synergies in infrastructure storage and operational management. Artificial intelligence plays a transformative role in this integration enabling predictive modeling anomaly detection and intelligent control across capture transport and storage networks. Drawing on global case studies (e.g. Petra Nova Northern Lights Fukushima FH2R and H21 North of England) and emerging policy frameworks this study identifies key benefits technical and regulatory challenges and innovation trends. A novel contribution of this review lies in its AI-focused roadmap for integrating CCS and hydrogen systems supported by a detailed analysis of implementation barriers and policy-enabling strategies. By reimagining energy systems through digital optimization and infrastructure synergy this review outlines a resilient blueprint for the transition to a sustainable low-carbon future.
Above-ground Hydrogen Storage: A State-of-the-art Review
Oct 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Hydrogen-based Technologies towards Energy-resilient Low-carbon Buildings: Opportunities and Challenges Review
Oct 2025
Publication
Towards low-carbon buildings with resilient energy performance renewable energy resources and flexible energy assets play key roles in managing the electrical and heat demands. Hydrogen-based systems represent a promising solution through renewable hydrogen production and long-term storage. This paper systematically reviews 35 peer-reviewed studies (1990–2024) on hydrogen integration in buildings focusing on demand-side management (DSM) optimization methods and system performance. The review covers the environmental impacts feasibility and economic viability of integrating different hydrogen systems for supplying energy. Across critical reviews case studies hydrogen supplementary systems achieved CO2 reductions between 12 % and 87 % operational cost decreases of up to 40 % and efficiency gains exceeding 80 %. Payback periods varied widely between 9 and 20 years demonstrating high investment costs. Key gaps include limited field validation economic feasibility and public acceptance of hydrogen homes. One key area for future investigation is optimizing energy flows across production storage and demand particularly in Vehicle-to-Building (V2B) applications. This review paper highlights opportunities especially the potential of hydrogen system in decarbonization of buildings by long-term energy storage barriers and policy needs for implementing hydrogen technologies in grid-connected and remote areas to enhance sustainable and resilient buildings.
Hydrogen Production from Winery Wastewater Through a Dual-Chamber Microbial Electrolysis Cell
Jun 2025
Publication
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development the MEC system was progressively adapted to winery wastewater enabling long-term electrochemical stability and high organic matter degradation. Upon winery wastewater addition (5% v/v) the system achieved a sustained hydrogen production rate of (0.7 ± 0.3) L H2 L −1 d −1 with an average current density of (60 ± 4) A m−3 and COD removal efficiency exceeding 55% highlighting the system’s resilience despite the presence of inhibitory compounds. Coulombic efficiency and cathodic hydrogen recovery reached (75 ± 4)% and (87 ± 5)% respectively. Electrochemical impedance spectroscopy provided mechanistic insight into charge transfer and biofilm development correlating resistive parameters with biological adaptation. These findings demonstrate the potential of MECs to simultaneously treat agro-industrial wastewaters and recover energy in the form of hydrogen supporting circular resource management strategies.
e-REFORMER for Sustainable Hydrogen Production: Enhancing Efficiency in the Steam Methane Reforming Process
Aug 2025
Publication
Electrifying heat supply in chemical processes offers a strategic pathway to reduce CO2 emissions associated with fossil fuel combustion. This study investigates the retrofit of an existing terrace-wall Steam Methane Reformer (SMR) in an ammonia plant by replacing fuel-fired burners with electric resistance heaters in the radiant section. The proposed e-REFORMER concept is applied to a real-world case producing hydrogen-rich syngas at 29000 Nm3 /h with simulation and energy analysis performed using Aspen HYSYS®. The results show that electric heating reduces total thermal input by 3.78 % lowers direct flue gas CO2 emissions by 91.56 % and improves furnace thermal efficiency from 85.6 % to 88.9 % (+3.3 %). The existing furnace design and convection heat recovery system are largely preserved maintaining process integration and plant operability. While the case study reflects a medium-scale plant the methodology applies to larger facilities and supports integration with decarbonised power grids and Carbon Capture Utilisation and Storage (CCUS) technologies. This work advances current literature by addressing full-system integration of electrification within hydrogen and ammonia production chains offering a viable pathway to improve energy efficiency and reduce industrial emissions.
Novel Sustainability Assessment Methodology with Alternative Use Impact Accounting: Application on Use of Hydrogen in Transportation Sector
Sep 2025
Publication
This study presents the application of a new sustainability assessment methodology. It aims to improve the information that can be obtained from a sustainability assessment including the concept of alternative usage impact. To prove the effectiveness of this methodology three different hydrogen production methodologies considering its consumption in transportation sector is the case of study. The methodologies considered are Steam Methane Reform using natural gas Proton Exchange Membrane electrolysis one using grid electricity and the other study case using central tower solar power plant electricity from the PS10 facility. While separately green hydrogen is the technology with less environmental impact when considering the full system and the impact of the green hydrogen on the rest of the resources the integration of green hydrogen technology is not the most environmentally sustainable. Similar behavior is observed in the economic and technical fields. The different accounting of combinations of technologies and the impact on the resource which is not used provides the sustainability performance of the overall system. These results show that in order to account the all impacts taking place in a energy technology integration its impact on the rest of resources and uses provide more valuable information.
Analysis of the Main Hydrogen Production Technologies
Sep 2025
Publication
Hydrogen as a clean energy source has enormous potential in addressing global climate change and energy security challenges. This paper discusses different hydrogen production methodologies (steam methane reforming and water electrolysis) focusing on the electrolysis process as the most promising method for industrial-scale hydrogen generation. The review delved into three main electrolysis methods including alkaline water electrolysis proton exchange membrane electrolysis and anion exchange membrane electrolysis cells. Also the production of hydrogen as a by-product by means of membrane cells and mercury cells. The process of reforming natural gas (mainly methane) using steam is currently the predominant technique comprising approximately 96% of the world’s hydrogen synthesis. However it is carbon intensive and therefore not sustainable over time. Water as a renewable resource carbon-free and rich in hydrogen (11.11%) offers one of the best solutions to replace hydrogen production from fossil fuels by decomposing water. This article highlights the fundamental principles of electrolysis recent membrane studies and operating parameters for hydrogen production. The study also shows the amount of pollutant emissions (g of CO2/g of H2) associated with a hydrogen color attribute. The integration of water electrolysis with renewable energy sources constitutes an efficient and sustainable strategy in the production of green hydrogen minimizing environmental impact and optimizing the use of clean energy resources.
Spatial Planning Policies for Export-oriented Green-hydrogen Projects in Chile, Namibia, and South Africa
Jun 2025
Publication
Export-oriented green-hydrogen projects (EOGH2P) are being developed in regions with optimal renewableenergy resources. Their reliance on economies of scale makes them land-intensive and object of spatial planning policies. However the impact of spatial planning on the development of EOGH2P remains underexplored. Drawing on the spatial planning and megaproject literatures the analysis of planning documents and expert interviews this paper analyzes how spatial planning influences the development of EOGH2P in Chile Namibia and South Africa. The three countries have developed different spatial planning approaches for EOGH2Ps and are analyzed by employing a comparative case-study design. Our findings reveal that Namibia pursues a restrictive approach South Africa a facilitative approach whereas Chile is shifting from a market-based to a restrictive approach. The respective approaches reflect different political priorities and stakeholder interests and imply diverse effects on the development of EOGH2Ps in terms of their number size shared infrastructure socioenvironmental impact and acceptance. This study underscores the need for well-designed spatial planning frameworks and provides insights for planners and stakeholders on their potential effects.
Determining the Hydrogen Conversion Rates of a Passive Catalytic Recombiner for Hydrogen Risk Mitigation
May 2025
Publication
Hydrogen can play a key role as short- and long-term energy storage solution in an energy grid with fluctuating renewable sources. In technologies using hydrogen there is always the risk of unintended leakages due to the low density of gaseous hydrogen. The risk becomes specifically high in confined areas where leaking hydrogen could easily mix with air and form flammable gas mixtures. In the maritime transportation large and congested geometries can be subject to accumulation of hydrogen. A mitigation measure for areas where venting is insufficient or even impossible is the installation of catalytic recombiners. The operational behavior can be described with numerical models which are required to optimize the location and to assess the efficiency of the mitigation solution. In the present study we established an experimental procedure in the REKO-4 facility a 5.5 m³ vessel to determine the recombination rate obtained from a recombiner. Based on the experimental data an engineering correlation was developed to be used for simulations in safety assessments.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
Numerical Simulation Study of Gas Stratification in Hydrogen-Enriched Natural Gas Pipelines
Jun 2025
Publication
Hydrogen blending in natural gas pipelines facilitates renewable energy integration and cost-effective hydrogen transport. Due to hydrogen’s lower density and higher leakage potential compared to natural gas understanding hydrogen concentration distribution is critical. This study employs ANSYS Fluent 2022 R1 with a realizable k-ε model to analyze flow dynamics of hydrogen–methane mixtures in horizontal and undulating pipelines. The effects of hydrogen blending ratios pressure (3–8 MPa) and pipeline geometry were systematically investigated. Results indicate that in horizontal pipelines hydrogen concentrations stabilize near initial values across pressure variations with minimal deviation (maximum increase: 1.6%). In undulating pipelines increased span length of elevated sections reduces maximum hydrogen concentration while maintaining proximity (maximum increase: 0.65%) to initial levels under constant pressure. Monitoring points exhibit concentration fluctuations with changing pipeline parameters though no persistent stratification occurs. However increasing the undulating height elevation difference leads to an increase in the maximum hydrogen concentration at the top of the pipeline rising from 3.74% to 9.98%. The findings provide theoretical insights for safety assessments of hydrogen–natural gas co-transport and practical guidance for pipeline design optimization.
Europe's Environment 2025 - Main Report, Europe's Environment and Climate: Knowledge for Resilience, Prosperity and Sustainability
Jan 2025
Publication
Every five years as mandated in its founding regulation the European Environment Agency (EEA) publishes a state of the environment report. Europe's environment 2025 provides decision makers at European and national levels as well as the general public with a comprehensive and cross-cutting assessment on environment climate and sustainability in Europe. Europe's environment 2025 is the 7th state of the environment report published by the EEA since 1995. Europe's environment 2025 has been prepared in close collaboration with the EEA’s European Environment Information and Observation Network (Eionet). The report draws on the Eionet’s vast expertise of leading experts and scientists in the environmental field across the EEA’s 32 member countries and six cooperating countries.
Multi-time Scaling Optimization for Electric Station Considering Uncertainties of Renewable Energy and EVs
Oct 2025
Publication
The development of new energy vehicles particularly electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) represents a strategic initiative to address climate change and foster sustainable development. Integrating PV with hydrogen production into hybrid electricity-hydrogen energy stations enhances land and energy efficiency but introduces scheduling challenges due to uncertainties. A multi-time scale scheduling framework which includes day-ahead and intraday optimization is established using fuzzy chance-constrained programming to minimize costs while considering the uncertainties of PV generation and charging/refueling demand. Correspondingly trapezoidal membership function and triangular membership function are used for the fuzzy quantification of day-ahead and intraday predictions of photovoltaic power generation and load demands. The system achieves 29.37% lower carbon emissions and 17.73% reduced annualized costs compared to day-ahead-only scheduling. This is enabled by real-time tracking of PV/load fluctuations and optimized electrolyzer/fuel cell operations maximizing renewable energy utilization. The proposed multi-time scale framework dynamically addresses short-term fluctuations in PV generation and load demand induced by weather variability and temporal dynamics. By characterizing PV/load uncertainties through fuzzy methods it enables formulation of chance-constrained programming models for operational risk quantification. The confidence level – reflecting decision-makers’ reliability expectations – progressively increases with refined temporal resolution balancing economic efficiency and operational reliability.
Development and Validation of an All-metal Scroll Pump for PEM Fuel Cell Hydrogen Recirculation
Oct 2025
Publication
Hydrogen recirculation is essential for maintaining fuel efficiency and durability in Proton Exchange Membrane Fuel Cell (PEMFC) systems particularly in automotive range extender applications. This study presents the design simulation and experimental validation of a dry all-metal scroll pump developed for hydrogen recirculation in a 5 kW PEMFC system. The pump operates without oil or polymer seals offering long-term compatibility with dry hydrogen. Two prototypes were fabricated: SP1 incorporating PTFE-bronze tip seals and SP2 a fully metallic seal-free design. A fully deterministic one-dimensional (1D) model was developed to predict thermodynamic performance including leakage and heat transfer effects and validated against experimental results. SP1 achieved higher flow rates due to reduced axial leakage but experienced elevated friction and temperature. In contrast SP2 provided improved thermal stability and lower friction with slightly reduced flow performance. The pump demonstrated a maximum flow rate of 50 l/min and an isentropic efficiency of 82.2 % at 2.5 bara outlet pressure. Simulated performance showed strong agreement with experimental results with deviations under 5 %. The findings highlight the critical role of thermal management and manufacturing tolerances in dry scroll pump design. The seal-free liquid-cooled scroll architecture presents a promising solution for compact oil-free hydrogen recirculation in low-power fuel cell systems.
Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production
Sep 2025
Publication
According to the international standard ISO 14687:2019 for hydrogen fuel quality the maximum allowable concentration of water in hydrogen for use in refueling stations and storage systems must not exceed 5 µmol/mol. Therefore an adsorption purification process following the electrolyzer is necessary. This study numerically investigates the adsorption of water and the corresponding water loading on zeolite 13X BFK based on the mass flows entering the adsorption column from three 5 MW electrolyzers coupled to a 15 MW offshore wind turbine. As the mass flow is influenced by wind speed a direct comparison between realistic wind speeds and adsorption loading is presented. The presented numerical discretization of the model also accounts for perturbations in wind speed and consequently mass flows. In addition adsorption isobars were measured for water on zeolite 13X BFK within the required pressure and temperature range. The measured data was utilized to fit parameters to the Langmuir–Freundlich isotherm.
Providing the Transport Sector in Europe with Fossil Free Energy - A Model-based Analysis under Consideration of the MENA Region
Mar 2025
Publication
For reaching the European greenhouse gas emission targets the phase-in of alternative technologies and energy carriers is crucial for all sectors. For the transport sector synthetic fuels are–next to electromobility–a promising option especially for long-distance shipping and air transport. Within this context the import of synthetic fuels from the Middle East and Northern Africa (MENA) region seems attractive due to low costs for renewable electricity in this region and low transport costs of synthetic fuels at the same time. Against this background this paper analyzes the role of the MENA region in meeting the future synthetic fuel demand in Europe using a cost-optimizing energy supply model. In this model the production storage and transport of electricity hydrogen and synthetic fuels by various technologies in both European and MENA countries in the period up to 2050 are explicitly modeled. Thereby different scenarios are analyzed to depict regional differences in investment risks: a base scenario that does not take into account regional differences in investments risks and three risk scenarios with different developments of regional investment risks. Sensitivity analyses are also carried out to derive conclusions about the robustness of results. Results show that meeting the future synthetic fuel demand in Europe to a large extent by imports from the MENA region can be an attractive option from an economic point of view. If investment risks are incorporated however lower import quotas of synthetic fuels are economically attractive for Europe: the higher generation costs are outweighed by the lower investments risks in Europe to a certain extent. Thereby investment risks outweigh other factors such as transport distance or renewable electricity generation costs in terms of exporting MENA regions and a synthetic fuel import is especially attractive from MENA countries with low investment risks. Concluding within this paper detailed export relations between MENA and EU considering investment risks were modeled for the first time. These model results should be complemented by a more in-depth analysis of the MENA countries including evaluating opportunities for local value chain development sustainability concerns (including social factors) and optimal site selection.
Hydrogen Cargo Bikes as a Data-driven Solution for Last-mile Decarbonization
Oct 2025
Publication
The growing demand for low-emission urban freight has intensified efficiency challenges in lastmile delivery especially in dense city centres. This study assesses hydrogen-powered cargo bikes as a scalable zero-emission alternative to fossil fuel vans and battery-electric cargo bikes. Using real-world logistics data from Rome we apply simulation models including Monte Carlo cost analysis Artificial Intelligence driven routing K-means station placement and fleet scaling. Results show hydrogen bikes deliver 15% more parcels daily than electric counterparts reduce refuelling detours by 31.4% and lower per-trip fuel use by 32%. They can cut up to 120 metric tons of CO2 annually per 100-bike fleet. While battery-electric cargo bikes remain optimal for short trips hydrogen bikes offer superior uptime range and rapid refuelling—ideal for highfrequency mid-distance logistics. Under supportive pricing and infrastructure hydrogen cargo bikes represent a resilient and sustainable solution for decarbonizing last-mile delivery in city areas.
Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines
Jun 2025
Publication
The urgent need to mitigate climate change and reduce greenhouse gas emissions has accelerated the search for sustainable and scalable energy carriers. Among the different alternatives ammonia stands out as a promising carbon-free fuel thanks to its high energy density efficient storage and compatibility with existing infrastructure. Moreover it can be produced through sustainable green processes. However its application in internal combustion engines is limited by several challenges including low reactivity narrow flammability limits and high ignition energy. These factors can compromise combustion efficiency and contribute to increased unburned ammonia emissions. To address these limitations hydrogen has emerged as a complementary fuel in dual-fuel configurations with ammonia. Hydrogen’s high reactivity enhances flame stability ignition characteristics and combustion efficiency while reducing emissions of unburned ammonia. This review examines the current status of dual-fuel ammonia and hydrogen combustion strategies in internal combustion engines and summarizes the experimental results. It highlights the potential of dual-fuel systems to optimize engine performance and minimize emissions. It identifies key challenges knowledge gaps and future research directions to support the development and widespread adoption of ammonia–hydrogen dual-fuel technologies.
Dynamic Life cycle Assessment of Climate Change Impacts of Hydrogen Production from Energy Crops
Oct 2025
Publication
Life Cycle Assessments (LCAs) are predominantly conducted using a static approach which aggregates emissions over time without considering emissions timing. Additionally LCAs often assume biogenic carbon neutrality neglecting site-specific forest carbon fluxes and temporal trade-offs. This study applies both static and dynamic LCA and incorporates biogenic carbon to evaluate the climate change impact of hydrogen production. It focuses on gasification of eucalyptus woodchips cultivated on former marginal grasslands (BIO system) which avoids competition with land used for food production. A case study is presented in western Andalusia (Spain) with the aim to replace hydrogen produced via the conventional steam methane reforming (SMR) pathway (BAU system) at La Rabida ´ refinery. The CO2FIX model was used to simulate biogenic carbon fluxes providing insights into carbon sequestration dynamics and it was found that the inclusion of biogenic carbon flows from eucalyptus plantations dramatically reduced CO₂ equivalent emissions (176 % in the static approach and 369 % in the dynamic approach) primarily due to soil and belowground biomass carbon sequestration. The dynamic LCA showed significantly lower CO₂ emissions than the static LCA (106 % reduction) shifting emissions from − 1.79 kg CO₂/kg H₂ in the static approach to − 3.69 kg CO₂/kg H₂ in the dynamic approach. These findings highlight the need to integrate emission dynamics and biogenic carbon flows into LCA methodologies to support informed decision-making and the development of more effective environmental policies.
No more items...