Publications
Experimental Investigation of Hydrogen Production Performance of PEM Electrolyze
Jul 2025
Publication
As global awareness of environmental protection increases hydrogen is seen as a promising solution due to its high energy density and zero-emission combustion. The PEM electrolyze combined with renewable energy power generation is an effective method to solve the problem of hydrogen production. The market competitiveness of PEM electrolyte will be enhanced in the future and the equipment cost can be reduced by 35.8%. The fast dynamic response performance of PEM electrolyzes especially during start-up and shutdown affects system flexibility and stability. The 190 Nm3/h test platform is established to study the fast dynamic response performance considering the cold startup thermal start-up and shutdown behaviors. The results shown that the 190 Nm³/h PEM electrolyze required 6340 s to achieve cold start-up 1100 s to achieve thermal start-up and 855 s to complete shutdown. When operating stably the temperature fluctuation of the PEM remains below 5 °C demonstrating the excellent temperature control performance. However during cold start-up and shutdown the concentrations of hydrogen and oxygen fluctuate significantly which can easily lead to a decrease in system performance. These findings provide guidance for optimizing the design and operating parameters of PEM Electrolyze systems.
Learning in Green Hydrogen Production: Insights from a Novel European Dataset
Jun 2025
Publication
The cost reduction of electrolysers is critical for scaling up green hydrogen production and achieving decarbonization targets. This study presents a novel and comprehensive dataset of electrolyser projects in Europe. It includes full cost and capacity details for each project and capturing project-specific characteristics such as technology type location and project type for the period 2005–2030. We apply the learning curve methodology to assess cost reductions across different electrolyser technologies and project sizes. Our findings indicate a significant learning effect for PEM and AEL electrolysers in the last 20 years with learning rates of 32.1% and 22.9% respectively. While AEL cost reductions are primarily driven by scaling effects PEM electrolysers benefit from both technological advancements and economies of scale. Small-scale electrolysers exhibit a stronger learning effect (25%) whereas large-scale projects show no clear cost reductions due to their early stage of deployment. Projections based on our learning rates suggest that reaching Europe’s 2030 target of 40 GW electrolyser capacity would require an estimated total investment of 14 billion EUR. These results align closely with previous studies and such predictions are closed to estimates from other organization. The dataset is publicly available allowing for further analysis and periodic updates to track cost trends.
Artificial Intelligence-based Multi-objective Optimization of a Solar-driven System for Hydrogen Production with Integrated Oxygen and Power Co-generation Across Different Climates
Oct 2025
Publication
This study develops and optimizes a solar-powered system for hydrogen generation with oxygen and power coproducts addressing the need for efficient scalable carbon-free energy solutions. The system combines a linear parabolic collector a Steam Rankine cycle and a Proton Exchange Membrane Electrolyzer (PEME) to produce electricity for electrolysis. Thermodynamic modeling was accomplished in Engineering Equation Solver while a hybrid Artificial Intelligence (AI) framework combining Artificial Neural Networks and Genetic Algorithms in Statistica coupled with Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) decision support optimized technical and economic performance. Optimization considered seven key decision variables covering collector design thermodynamic inputs and component efficiencies. The optimization achieved energy and exergy efficiencies of 30.83 % and 26.32 % costing 47.02 USD/h and avoiding CO2 emissions equivalent to 190 USD/ton. Economic and exergy analyses showed the solar and hydrogen units had the highest costs (38.17 USD/h and 9.61 USD/h) with 4503 kWh of exergy destruction to generate 575 kWh of electricity. A case study across six cities suggested that Perth Bunbury and Adelaide with higher solar irradiance delivered the highest annual power and hydrogen outputs consistent with irradiance–electrolyzer correlation. Unlike conventional single-site studies this work delivers a climate-responsive multi-city analysis integrating solar thermal and PEME within an AI-driven framework. By linking techno-economic performance with quantified environmental value and co-production synergies of hydrogen oxygen and electricity the study highlights a novel pathway for scalable clean hydrogen measurable CO2 reductions and global decarbonization with future work focused on digital twins and dynamic uncertainty-aware optimization.
The Concept of an Infrastructure Location to Supply Buses with Hydrogen: A Case Study of the West Pomeranian Voivodeship in Poland
Jun 2025
Publication
The growing energy crisis and increasing threat of climate change are driving the need to take action regarding the use of alternative fuels in transport including public transport. Hydrogen is undoubtedly a fuel which is environmentally friendly and constitutes an alternative to fossil fuels. The wider deployment of hydrogen-powered vehicles involves the need to adapt infrastructure to support the operation of these vehicles. Such infrastructure includes refuelling stations for hydrogen-powered vehicles. The widespread use of hydrogen-powered vehicles is dependent on the development of a network of hydrogen refuelling stations. The aim of this article is to propose the conceptual location of infrastructure for fuelling public transport vehicles with hydrogen in selected cities of the West Pomeranian Voivodeship in particular the cities of Szczecin and Koszalin. The methodology used to determine the number of refuelling stations is described and the concept of the location for the refuelling stations has been proposed. Based on a set assumptions it was stated that two stations may be located in the Voivodeship in 2025 and seven stations in 2040. The research results will be of interest to infrastructure developers public transport companies and municipalities involved in making decisions related to the purchase and operation of hydrogen-powered buses.
Prospective Life Cycle Assessment of Future Swedish Hydrogen-powered Aviation Pathways
Jun 2025
Publication
Hydrogen-powered aviation is promoted as a low-carbon alternative for future long-distance air travel but its broader environmental impacts remain unclear. This study evaluates the potential environmental impacts of six future air travel pathways in Sweden including e-kerosene liquid hydrogen and fossil kerosene using prospective life cycle assessment. Results show that hydrogen-powered aviation has lower global warming potential than fossil kerosene but higher impacts on other environmental issues such as toxicity and land use. Key hotspots include resources in energy infrastructure and energy use in fuel production and airport operations however resource substitutions and energy efficiency improvements have limits. This study highlights the potential environmental benefits and tradeoffs of hydrogen-powered aviation and also the dependency of aviation on other sectors. Further research should integrate technological innovations in long-distance air travel pathways with scenarios that account for demand-side measures as well as regulatory political and economic barriers.
Technoeconomic analysis of Hydrogen Versus Natural Gas Considering Safety Hazards and Energy Efficiency Indicators
Aug 2025
Publication
Hydrogen (H2) is emerging as a key alternative to fossil fuels in the global energy transition. This study presents a comparative techno-economic analysis of H2 and natural gas (NG) focusing on safety hazards energy output CO2 emissions and cost-effectiveness aspects. Our analysis showed that compared to NG and other highly flammable gases like acetylene (C2 H2) and propane (C3 H8) H2 has a higher hazard potential due to factors such as its wide flammability range low ignition energy and high flame speed. In terms of energy output 1 kg of NG produces 48.60 MJ while conversion to liquefied natural gas (LNG) grey H2 and blue H2 reduces energy output to 45.96 MJ 35.45 MJ and 31.21 MJ respectively. Similarly while unconverted NG emits 2.72 kg of CO2 per kg emissions increase to 3.12 kg for LNG and 3.32 kg for grey H2. However blue H2 significantly reduces CO2 emissions to 1.05 kg per kg due to carbon capture and storage. From an economic perspective producing 1 kg of NG yields a profit of $0.011. Converting NG to grey H2 is most profitable yielding a net profit of $0.609 per kg of NG while blue H2 despite higher production costs remains viable with a profit of $0.390 per kg of NG. LNG conversion also shows profitability with $0.061 per kg of NG. This analysis highlights the trade-offs between energy efficiency environmental impact and economic viability providing valuable insights for stakeholders formulating hydrogen and LNG implementation strategies.
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
Jun 2025
Publication
The chemical industry faces major challenges worldwide. Since 1950 production has increased 50-fold and is projected to continue growing particularly in Asia. It is one of the most energy- and resource-intensive industries contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality oil gas and coal must be replaced by recycling plastics renewable biomaterials or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis biotechnology microreactors and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD) meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity reducing overall material flows is essential to stay within planetary boundaries. This shift requires political economic and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry governments and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation but international agreements are necessary to establish a binding framework for action.
Energy Storage in the Energy Transition and Blue Economy: Challenges, Innovations, Future Perspectives, and Educational Pathways
Sep 2025
Publication
Transitioning to renewable energy is vital to achieving decarbonization at the global level but energy storage is still a major challenge. This review discusses the role of energy storage in the energy transition and the blue economy focusing on technological development challenges and directions. Effective storage is vital for balancing intermittent renewable energy sources like wind solar and marine energy with the power grid. The development of battery technologies hydrogen storage pumped hydro storage and emerging technologies like sodium-ion and metal-air batteries is discussed for their potential for large-scale deployment. Shortages in critical raw materials environmental impact energy loss and costs are some of the challenges to large-scale deployment. The blue economy promises opportunities for offshore energy storage notably through ocean thermal energy conversion (OTEC) and compressed air energy storage (CAES). Moreover the capacity of datadriven optimization and artificial intelligence to enhance storage efficiency is discussed. Policy interventions and economic incentives are necessary to spur the development and deployment of sustainable energy storage technology. Education and workforce training are also important in cultivating future researchers engineers and policymakers with the ability to drive energy innovation. Merging sustainability training with an interdisciplinary approach can potentially establish an efficient workforce that is capable of addressing energy issues. Future work needs to focus on higher energy density efficiency recyclability and cost-effectiveness of the storage technologies without sacrificing their environmental sustainability. The study underlines the need for converging technological economic and educational approaches to enable a sustainable and resilient energy future.
Day-Ahead Dispatch Optimization of an Integrated Hydrogen–Electric System Considering PEMEL/PEMFC Lifespan Degradation and Fuzzy-Weighted Dynamic Pricing
Sep 2025
Publication
Integrated Hydrogen–Energy Systems (IHES) have attracted widespread attention; however distributed energy sources such as photovoltaics (PV) and wind turbines (WT) within these systems exhibit significant uncertainty and intermittency posing key challenges to scheduling complexity and system instability. As a core mechanism for the integrated operation of IHES electricity price regulation can promote the absorption of renewable energy optimize resource allocation and enhance operational economy. Nevertheless uncertainties in IHES hinder the formulation of accurate electricity prices which easily lead to delays in scheduling responses and an increase in cumulative operating costs. To address these issues this study develops lifespan models for Proton Exchange Membrane Electrolyzers (PEMELs) and Proton Exchange Membrane Fuel Cells (PEMFCs) constructs dynamic equations for the demand side and response side and proposes a fuzzy-weighted dynamic pricing strategy. Simulation results show that compared with fixed pricing the proposed dynamic pricing strategy reduces economic indicators by an average of 15.3% effectively alleviates energy imbalance and optimizes the energy supply of components. Additionally it reduces the lifespan degradation of PEMELs by 21.59% and increases the utilization rate of PEMFCs by 54.8%.
Overcoming Hurdles and Harnessing the Potential of the Hydrogen Transition in Germany
Jun 2025
Publication
Green hydrogen has become a core element of Europe’s energy transition to assist in lowering carbon emissions. However the transition to green hydrogen faces challenges including the cost of production availability of renewable energy sources public opposition and the need for supportive government policies and financial initiatives. While there are other alternatives for producing low-carbon hydrogen for example blue hydrogen German funding favours projects that involve hydrogen production via electrolysis. Beyond climate goals it is anticipated that a green hydrogen industry will create economic benefits and a wide-range of collaborative opportunities with key international partnerships increasing energy security if done appropriately. Germany a leader in green hydrogen technology will need to rely on imports to meet long-term demand due to limited renewable energy capacity. Despite the current obstacles to transitioning to green hydrogen it is felt that ultimately the benefits of this industry and reducing emissions will outweigh the associated costs of production. This study analyses the hydrogen transition in Germany by interviewing 37 European experts guided by the research question: What are the key perceived barriers and opportunities influencing the successful adoption and integration of hydrogen technologies in Germany’s hydrogen transition?
Renewables, Electrification and Flexibility for a Competitive EU Energy System Transformation by 2030
Jun 2025
Publication
The European Union is on a pathway to achieve climate neutrality by 2050. This report explores the historic and necessary efforts to align Europe′s electricity heating and transport systems with transformative EU benchmarks for 2030 to meet that longer-term goal. CO2 emissions have declined significantly in the EU electricity subsystem over the past few decades. This presents an important opportunity to decarbonise rapidly in the near future and to roll out electrification to other sectors while strengthening energy independence security and competitiveness for all EU countries. Through accelerated gains in energy and resource efficiency and the alignment of Member States′ efforts within a more coherent EU energy system the rapid electrification of buildings transport and industry can greatly reduce Europe′s reliance on foreign fossil fuels and unlock critical progress in heating and transport. Over the past five years EU policy frameworks for climate mitigation and energy system transformation have become far more coherent and complete. Infrastructure security and resilience have been bolstered through integrated climate and energy planning in tandem with national and cross-border efforts to ensure sound policy implementation. It is now critical that decision-makers translate objectives and priorities for the energy system transition into actionable measures. This includes crafting fiscal strategies to finance key upfront infrastructure investments; distributing the cost of capital proportionally to not overburden taxpayers; aligning taxation pricing and information signals across the whole energy system; and regularly monitoring and evaluating performance to recalibrate policies when needed.
Effect of Injection Timing on Gas Jet Developments in a Hydrogen Low-pressure Direct-injection Spark-ignition Engine
Sep 2025
Publication
Injection timing in low-pressure hydrogen direct injection (H2LPDI) engines plays a critical role in optimising gas jet structure and mixture formation due to the complex and transient nature of ambient air flow and density inside the cylinder. This study systematically investigates the macroscopic characteristics of gas jet development at five distinct injection timings from 210 to 120 ◦CA bTDC with the intake valve closure (IVC) as a reference point in a motored inline four-cylinder spark-ignition engine at 2000 rpm and 160 Nm load using low-pressure injection of 3.5 MPa. Optical access was made with two endoscopes: one for high-speed imaging and the other for laser insertion to realise laser shadowgraph imaging of the gas jet delivered using a side-mounted outwardopening pintle nozzle injector. The experimental results reveal spatial and temporal variations in jet morphology penetration spreading angle and mixture dispersion as a function of injection timing. Pre-IVC injection (210 ◦CA bTDC) produced a narrow mean cone angle of ~40◦ and the highest penetration-rate proxy (0.49) whereas postIVC injection (120 ◦CA bTDC) retained a wider ~53◦ cone yet reduced the penetration rate to 0.28 while increasing the sheet-based mixing index from − 0.084 to − 0.106. Pre-IVC injection occurring under low ambient pressure and with active intake airflow was found to produce elongated jets with enhanced penetration and mixing rates though accompanied by substantial cyclic variations. Conversely post-IVC injection was strongly influenced by a fully developed tumble flow which redirected the jet trajectory towards the pent-roof and facilitated mixing through increased turbulence. However the elevated air density constrained the jet penetration. At-IVC injection resulted in a more uniform and stable jet structure. However the lack of convective flow constrained the overall mixing effectiveness. Quantitative analysis of jet spreading angle pixel intensity gradient and centroid movement using 100 consecutive cycles confirms the critical role of injection timing in shaping the gas jet development as suggested by the images.
Harnessing Wind for Hydrogen: Comparative MCDM-GIS Assessment of Optimal Plant Locations
Jul 2025
Publication
This research aimed to perform an in-depth comparative analysis of MCDM methods utilizing ArcGIS Pro 3.0.2 to identify the most suitable sites for wind-powered hydrogen production plants in Erbil Governorate Iraq. VIKOR TOPSIS SAW and Weighted Overlay techniques were implemented and applied to evaluate various criteria. A comparative analysis determined that VIKOR had the highest consistency and robustness making it the most suitable approach for selecting a site for windpowered hydrogen facilities. Spatial analysis showed that the southern and southwestern regions of Erbil Governorate were the most favourable areas for hydrogen generation. Wind turbine technical feasibility assessments identified the E112/4500 and V126e3.45 turbine models as the most efficient for these regions with high annual hydrogen production. The spatial configuration including the optimal turbine spacing had a significant effect on the capacity and production potential. ArcPro integration with MCDM significantly enhanced spatial analysis providing high-resolution data processing and advanced visualization capabilities.
Flexible Economic Energy Management Including Environmental Indices in Heat and Electrical Microgrids Considering Heat Pump with Renewable and Storage Systems
Oct 2025
Publication
This study discusses energy management in thermal and electrical microgrids while taking heat pumps renewable sources thermal and hydrogen storages into account. The weighted total of the operating cost grid emissions level voltage and temperature deviation function and other factors makes up the objective function of the suggested method. The restrictions include the operationflexibility model of resources and storages micro-grid flexibility limits and optimum power flow equations. Point Estimation Method is used in this work to simulate load energy price and renewable phenomenon uncertainty. A fuzzy decision-making methodology is used to arrive at a compromise solution that satisfies network operators’ operational environmental and financial goals. The innovations of this paper include energy management of various smart microgrids simultaneous modeling of several indicators especially flexibility investigation of optimal performance of resources and storage devices and modeling of uncertainty considering low computational time and an accurate flexibility model. Numerical findings indicate that the fuzzy decision-making approach has the capability to reach a compromise point in which the objective functions approach their minimum values. The integration of the proposed uncertainty modeling with precise flexibility modeling results in a reduction in computational time when compared to stochastic optimization based on scenarios. For the compromise point and uncertainty modeling with PEM by efficiently managing resources and thermal and hydrogen storages scheme is capable of attaining high flexibility conditions. Compared to load flow studies the approach can enhance the operational environmental and economic conditions of smart microgrids by approximately 33–57% 68% and 33–68% respectively under these circumstances.
Research on Hydrogen Leakage Risk Control Methods in Deck Compartments of Hydrogen Fuel Cell-Powered Ships Based on CFD Simulation and Ventilation Optimization
Oct 2025
Publication
Hydrogen fuel cell vessels represent a vital direction for green shipping but the risk of large-scale hydrogen leakage and diffusion in their enclosed compartments is particularly prominent. To enhance safety a simplified three-dimensional model of the deck-level cabins of the “Water-Go-Round” passenger ship was established using SolidWorks (2023) software. Based on a hydrogen leakage and diffusion model the effects of leakage location leakage aperture and initial ambient temperature on the diffusion patterns and distribution of hydrogen within the cabins were investigated using FLUENT software. The results show that leak location significantly affects diffusion direction with hydrogen leaking from the compartment ceiling diffusing horizontally much faster than from the floor. When leakage occurs at the compartment ceiling hydrogen can reach a maximum horizontal diffusion distance of up to 5.04 m within 540 s; the larger the leak aperture the faster the diffusion with a 10 mm aperture exhibiting a 40% larger diffusion range than a 6 mm aperture at 720 s. The study provides a theoretical basis for the safety design and risk prevention of hydrogen fuel cell vessels.
Preliminary Design of Regional Aircraft—Integration of a Fuel Cell-Electric Energy Network in SUAVE
Mar 2025
Publication
To enable climate-neutral aviation improving the energy efficiency of aircraft is essential. The research project Synergies of Highly Integrated Transport Aircraft investigates cross-disciplinary synergies in aircraft and propulsion technologies to achieve energy savings. This study examines a fuel cell electric powered configuration with distributed electric propulsion. For this a reverse-engineered ATR 72-500 serves as a reference model for calibrating the methods and ensuring accurate performance modeling. A baseline configuration featuring a state-of-the-art turboprop engine with the same entry-into-service is also introduced for a meaningful performance comparison. The analysis uses an enhanced version of the Stanford University Aerospace Vehicle Environment (SUAVE) a Python-based aircraft design environment that allows for novel energy network architectures. This paper details the preliminary aircraft design process including calibration presents the resulting aircraft configurations and examines the integration of a fuel cell-electric energy network. The results provide a foundation for higher fidelity studies and performance comparisons offering insights into the trade-offs associated with hydrogen-based propulsion systems. All fundamental equations and methodologies are explicitly presented ensuring transparency clarity and reproducibility. This comprehensive disclosure allows the broader scientific community to utilize and refine these findings facilitating further progress in hydrogen-powered aviation technologies.
Case Study of a Greenfield Blue Hydrogen Plant: A Comparative Analysis of Production Methods
Jun 2025
Publication
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan Canada integrating both SMR and ATR technologies. Unlike previous studies that focus mainly on production units this research includes all process and utility systems such as H2 and CO2 compression air separation refrigeration co-generation and gas dehydration. Aspen HYSYS simulations revealed ATR’s energy demand is 10% lower than that of SMR. The hydrogen production cost was USD 3.28/kg for ATR and USD 3.33/kg for SMR while a separate study estimated a USD 2.2/kg cost for design without utilities highlighting the impact of indirect costs. Environmental analysis showed ATR’s lower Global Warming Potential (GWP) compared to SMR reducing its carbon footprint. The results signified the role of utility integration site conditions and process selection in optimizing energy efficiency costs and sustainability.
A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa
Sep 2025
Publication
Electricity access deficits remain acute in Sub-Saharan Africa (SSA) where more than 600 million people lack reliable supply. Green hydrogen produced through renewablepowered electrolysis is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage sector coupling and near-zero carbon emissions. This review adheres strictly to the PRISMA 2020 methodology examining 190 records and synthesizing 80 peer-reviewed articles and industry reports released from 2010 to 2025. The review covers hydrogen production processes hybrid renewable integration techno-economic analysis environmental compromises global feasibility and enabling policy incentives. The findings show that Alkaline (AEL) and PEM electrolyzers are immediately suitable for off-grid scenarios whereas Solid Oxide (SOEC) and Anion Exchange Membrane (AEM) electrolyzers present high potential for future deployment. For Sub-Saharan Africa (SSA) the levelized costs of hydrogen (LCOH) are in the range of EUR5.0–7.7/kg. Nonetheless estimates from the learning curve indicate that these costs could fall to between EUR1.0 and EUR1.5 per kg by 2050 assuming there is (i) continued public support for the technology innovation (ii) appropriate flexible and predictable regulation (iii) increased demand for hydrogen and (iv) a stable and long-term policy framework. Environmental life-cycle assessments indicate that emissions are nearly zero but they also highlight serious concerns regarding freshwater usage land occupation and dependence on platinum group metals. Namibia South Africa and Kenya exhibit considerable promise in the early stages of development while Niger demonstrates the feasibility of deploying modular community-scale systems in challenging conditions. The study concludes that green hydrogen cannot be treated as an integrated solution but needs to be regarded as part of blended off-grid systems. To improve its role targeted material innovation blended finance and policies bridging export-oriented applications to community-scale access must be established. It will then be feasible to ensure that hydrogen
Operational Optimization of Electricity–Hydrogen Coupling Systems Based on Reversible Solid Oxide Cells
Sep 2025
Publication
To effectively address the issues of curtailed wind and photovoltaic (PV) power caused by the high proportion of renewable energy integration and to promote the clean and lowcarbon transformation of the energy system this paper proposes a “chemical–mechanical” dual-pathway synergistic mechanism for the reversible solid oxide cell (RSOC) and flywheel energy storage system (FESS) electricity–hydrogen hybrid system. This mechanism aims to address both short-term and long-term energy storage fluctuations thereby minimizing economic costs and curtailed wind and PV power. This synergistic mechanism is applied to regulate system operations under varying wind and PV power output and electricity–hydrogen load fluctuations across different seasons thereby enhancing the power generation system’s ability to integrate wind and PV energy. An economic operation model is then established with the objective of minimizing the economic costs of the electricity–hydrogen hybrid system incorporating RSOC and FESS. Finally taking a large-scale new energy industrial park in the northwest region as an example case studies of different schemes were conducted on the MATLAB platform. Simulation results demonstrate that the reversible solid oxide cell (RSOC) system—integrated with a FESS and operating under the dual-path coordination mechanism—achieves a 14.32% reduction in wind and solar curtailment costs and a 1.16% decrease in total system costs. Furthermore this hybrid system exhibits excellent adaptability to the dynamic fluctuations in electricity– hydrogen energy demand which is accompanied by a 5.41% reduction in the output of gas turbine units. Notably it also maintains strong adaptability under extreme weather conditions with particular effectiveness in scenarios characterized by PV power shortage.
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
Jun 2025
Publication
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source process and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage precision smelting is realized through intelligent control systems; and at the end-of-pipe stage a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies economic viability and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives technological innovation and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies contributing to the industry’s decarbonization efforts.
No more items...