Publications
The Synergistic Effects of Alloying on the Performance and Stability of Co3Mo and Co7Mo6 for the Electrocatalytic Hydrogen Evolution Reaction
Oct 2020
Publication
Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes making the search for earth-abundant and cheaper alternatives important. Herein we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested they achieve competitively low overpotentials of 115 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 0.5 M H2SO4 and 120 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals which showed significantly higher overpotentials and lower current densities when tested under identical conditions confirming the synergistic effect of the alloying. However the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.
Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting
Jul 2017
Publication
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide formation is dramatically suppressed while the overall current through the cell correlating with the water splitting process is enhanced. Evidence for a strong spin-selection in the chiral semiconductors is presented by magnetic conducting (mc-)AFM measurements in which chiral and achiral Zn-porphyrins are compared. These findings contribute to our understanding of the underlying mechanism of spin selectivity in multiple electron-transfer reactions and pave the way toward better chiral dye-sensitized photoelectrochemical cells.
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Improvement in Hydrogen Production with Plasma Reformer System
Jun 2016
Publication
In our previous studies of a plasma reformer system the effects of temperature of the reactants and input voltage have not been considered. In the present investigation the plasma reformer system has been modified to study the influence of the reactants’ temperature and input voltage on hydrogen production experimentally. The plasma reformer system includes a supersonic atomizer a plasma generator and a controlling device. In the experiment the operating parameters include the temperature of the reactants and the input voltage. The temperature of the reactants varies from 25 °C to 50 °C and the input voltage ranges from 12.5 V to 14.5 V. Results show that the increase in temperature of the reactants and input voltage will improve the production of hydrogen. In addition the improvement of heating on the reactants shows significant influence on hydrogen production.
The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture
May 2021
Publication
The hydrogen economy has received resurging interest in recent years as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR) which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points both in terms of efficiency and CO2 avoidance.
Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach
Aug 2010
Publication
Due to energy and environmental issues hydrogen has become a more attractive clean fuel. Furthermore there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production i.e. gasification is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification methanation Boudouard methane reforming water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition at sorbent/biomass ratio of 1.52 purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.
The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society
Jun 2021
Publication
A radical decarbonization pathway for the Norwegian society towards 2050 is presented. The paper focuses on the role of hydrogen in the transition when present Norwegian petroleum export is gradually phased out. The study is in line with EU initiatives to secure cooperation opportunities with neighbouring countries to establish an international hydrogen market. Three analytical perspectives are combined. The first uses energy models to investigate the role of hydrogen in an energy and power market perspective without considering hydrogen export. The second uses an economic equilibrium model to examine the potential role of hydrogen export in value creation. The third analysis is a socio-technical case study on the drivers and barriers for hydrogen production in Norway. Main conclusions are that access to renewable power and hydrogen are prerequisites for decarbonization of transport and industrial sectors in Norway and that hydrogen is a key to maintain a high level of economic activity. Structural changes in the economy impacts of new technologies and key enablers and barriers in this transition are discussed.
Current Research and Development Activities on Fission Products and Hydrogen Risk after the Accident at Fukushima Daiiichi Nuclear Power Station
Jan 2015
Publication
After the Fukushima Daiichi nuclear power plant (NPP) accident new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues the activities focus on wet well venting pool scrubbing iodine chemistry (in-vessel and ex-vessel) containment failure mode and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore the activities in evaluation methods focus on hydrogen generation hydrogen distribution and hydrogen combustion.
Emerging, Hydrogen-driven Electrochemical Water Purification
Jan 2022
Publication
Energy-efficient technologies for the remediation of water and generation of drinking water is a key towards sustainable technologies. Electrochemical desalination technologies are promising alternatives towards established methods such as reverse osmosis or ultrafiltration. In the last few years hydrogen-driven electrochemical water purification has emerged. This review article explores the concept of desalination fuel cells and capacitive-Faradaic fuel cells for ion separation.
Innovating Transport Across Australia: Inquiry into Automated Mass Transit
Mar 2019
Publication
Automated and electric mass transit will play a significant role in the connectivity of our cities and regions. But automated mass transit must be placed within the wider context of the optimum transport needs of those cities and regions— transport networks based on shared and multi-modal mobility. Realising the full potential of these networks will require sustained policy development and investment.<br/>This report examines current and future developments in the use of automation and new energy sources in land-based mass transit including rail and road mass transit point-to-point transport using automated vehicles and the role and responsibilities of the Commonwealth in the development of these technologies. It will analyse the opportunities and challenges presented by automation and new energy sources and the role the Australian Government has to play in managing this transport revolution.
Industrial Energy Use and Carbon Emissions Reduction in the Chemicals Sector: A UK Perspective
Aug 2017
Publication
The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2 ) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK) although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials cleaning fluids composites dyes paints pharmaceuticals plastics and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions has been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further short-term energy and CO2 emissions savings in chemicals processing but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g. carbon capture and storage (CCS) energy efficiency techniques and bioenergy] alongside a decarbonisation of the electricity supply.
Is a 100% Renewable European Power System Feasible by 2050?
Nov 2018
Publication
In this study we model seven scenarios for the European power system in 2050 based on 100% renewable energy sources assuming different levels of future demand and technology availability and compare them with a scenario which includes low-carbon non-renewable technologies. We find that a 100% renewable European power system could operate with the same level of system adequacy as today when relying on European resources alone even in the most challenging weather year observed in the period from 1979 to 2015. However based on our scenario results realising such a system by 2050 would require: (i) a 90% increase in generation capacity to at least 1.9 TW (compared with 1 TW installed today) (ii) reliable cross-border transmission capacity at least 140GW higher than current levels (60 GW) (iii) the well-managed integration of heat pumps and electric vehicles into the power system to reduce demand peaks and biogas requirements (iv) the implementation of energy efficiency measures to avoid even larger increases in required biomass demand generation and transmission capacity (v) wind deployment levels of 7.5GWy−1 (currently 10.6GWy−1) to be maintained while solar photovoltaic deployment to increase to at least 15GWy−1 (currently 10.5GWy−1) (vi) large-scale mobilisation of Europe’s biomass resources with power sector biomass consumption reaching at least 8.5 EJ in the most challenging year (compared with 1.9 EJ today) and (vii) increasing solid biomass and biogas capacity deployment to at least 4GWy−1 and 6 GWy−1 respectively. We find that even when wind and solar photovoltaic capacity is installed in optimum locations the total cost of a 100% renewable power system (∼530 €bn y−1) would be approximately 30% higher than a power system which includes other low-carbon technologies such as nuclear or carbon capture and storage (∼410 €bn y−1). Furthermore a 100% renewable system may not deliver the level of emission reductions necessary to achieve Europe’s climate goals by 2050 as negative emissions from biomass with carbon capture and storage may still be required to offset an increase in indirect emissions or to realise more ambitious decarbonisation pathways.
The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas
May 2020
Publication
Presently there is a paradoxical situation in the global energy market related to a gap between the image of hydrocarbon resources (HCR) and their real value for the economy. On the one hand we face an increase in expected HCR production and consumption volumes both in the short and long term. On the other hand we see the formation of the image of HCR and associated technologies as an unacceptable option without enough attention to the differences in fuels and the ways of their usage. Due to this it seems necessary to take a step back to review the vitality of such a political line. This article highlights an alternative point of view with regard to energy development prospects. The purpose of this article is to analyse the consistency of criticism towards HCR based on exploration of scientific literature analytical documents of international corporations and energy companies as well as critical assessment of technologies offered for the HCR substitution. The analysis showed that: (1) it is impossible to substitute the majority of HCR with alternative power resources in the near term (2) it is essential that the criticism of energy companies with regard to their responsibility for climate change should lead not to destruction of the industry but to the search of sustainable means for its development (3) the strategic benchmarks of oil and coal industries should shift towards chemical production but their significance should not be downgraded for the energy sector (4) liquified natural gas (LNG) is an independent industry with the highest expansion potential in global markets in the coming years as compared to alternative energy options and (5) Russia possesses a huge potential for the development of the gas industry and particularly LNG that will be unlocked if timely measures on higher efficiency of the state regulation system are implemented.
An Integrated Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM
Oct 2021
Publication
The electric power industry sector has become increasingly aware of how counterproductive voltage sag affects distribution network systems (DNS). The voltage sag backfires disastrously at the demand load side and affects equipment in DNS. To settle the voltage sag issue this paper achieved its primary purpose to mitigate the voltage sag based on integrating a hydrogen fuel cell (HFC) with the DNS using a distribution static synchronous compensator (D-STATCOM) system. Besides this paper discusses the challenges and opportunities of D-STATCOM in DNS. In this paper using HFC is well-designed modeled and simulated to mitigate the voltage sag in DNS with a positive impact on the environment and an immediate response to the issue of the injection of voltage. Furthermore this modeling and controller are particularly suitable in terms of cost-effectiveness as well as reliability based on the adaptive network fuzzy inference system (ANFIS) fuzzy logic system (FLC) and proportional–integral (P-I). The effectiveness of the MATLAB simulation is confirmed by implementing the system and carrying out a DNS connection obtaining efficiencies over 94.5% at three-phase fault for values of injection voltage in HFC D-STATCOM using a P-I controller. Moreover the HFC D-STATCOM using FLC proved capable of supporting the network by 97.00%. The HFC D-STATCOM based ANFIS proved capable of supporting the network by 98.00% in the DNS.
Selected Aspects of Hydrogen Production via Catalytic Decomposition of Hydrocarbons
Feb 2021
Publication
Owing to the high hydrogen content hydrocarbons are considered as an alternative source for hydrogen energy purposes. Complete decomposition of hydrocarbons results in the formation of gaseous hydrogen and solid carbonaceous by-product. The process is complicated by the methane formation reaction when the released hydrogen interacts with the formed carbon deposits. The present study is focused on the effects of the reaction mixture composition. Variations in the inlet hydrogen and methane concentrations were found to influence the carbon product’s morphology and the hydrogen production efficiency. The catalyst containing NiO (82 wt%) CuO (13 wt%) and Al2O3 (5 wt%) was prepared via a mechanochemical activating procedure. Kinetics of the catalytic process of hydrocarbons decomposition was studied using a reactor equipped with McBain balances. The effects of the process parameters were explored in a tubular quartz reactor with chromatographic analysis of the outlet gaseous products. In the latter case the catalyst was loaded piecemeal. The texture and morphology of the produced carbon deposits were investigated by nitrogen adsorption and electron microscopy techniques.
Decarbonization of Australia’s Energy System: Integrated Modelling of the Transformation of Electricity, Transportation, and Industrial Sectors
Jul 2020
Publication
To achieve the Paris Agreement’s long-term temperature goal current energy systems must be transformed. Australia represents an interesting case for energy system transformation modelling: with a power system dominated by fossil fuels and specifically with a heavy coal component there is at the same time a vast potential for expansion and use of renewables. We used the multi-sectoral Australian Energy Modelling System (AUSeMOSYS) to perform an integrated analysis of implications for the electricity transport and selected industry sectors to the mid-century. The state-level resolution allows representation of regional discrepancies in renewable supply and the quantification of inter-regional grid extensions necessary for the physical integration of variable renewables. We investigated the impacts of different CO2 budgets and selected key factors on energy system transformation. Results indicate that coal-fired generation has to be phased out completely by 2030 and a fully renewable electricity supply achieved in the 2030s according to the cost-optimal pathway implied by the 1.5 °C Paris Agreement-compatible carbon budget. Wind and solar PV can play a dominant role in decarbonizing Australia’s energy system with continuous growth of demand due to the strong electrification of linked energy sectors.
Future Hydrogen Markets for Transportation and Industry: The Impact of CO2 Taxes
Dec 2019
Publication
The technological lock-in of the transportation and industrial sector can be largely attributed to the limited availability of alternative fuel infrastructures. Herein a countrywide supply chain analysis of Germany spanning until 2050 is applied to investigate promising infrastructure development pathways and associated hydrogen distribution costs for each analyzed hydrogen market. Analyzed supply chain pathways include seasonal storage to balance fluctuating renewable power generation with necessary purification as well as trailer- and pipeline-based hydrogen delivery. The analysis encompasses green hydrogen feedstock in the chemical industry and fuel cell-based mobility applications such as local buses non-electrified regional trains material handling vehicles and trucks as well as passenger cars. Our results indicate that the utilization of low-cost long-term storage and improved refueling station utilization have the highest impact during the market introduction phase. We find that public transport and captive fleets offer a cost-efficient countrywide renewable hydrogen supply roll-out option. Furthermore we show that at comparable effective carbon tax resulting from the current energy tax rates in Germany hydrogen is cost-competitive in the transportation sector by the year 2025. Moreover we show that sector-specific CO2 taxes are required to provide a cost-competitive green hydrogen supply in both the transportation and industrial sectors.
Autonomous Hydrogen Production for Proton Exchange Membrane Fuel Cells PEMFC
Apr 2020
Publication
This paper focuses on hydrogen production for green mobility applications (other applications are currently under investigation). Firstly a brief state of the art of hydrogen generation by hydrolysis with magnesium is shown. The hydrolysis performance of Magnesium powder ball–milled along with different additives (graphite and transition metals TM = Ni Fe and Al) is taken for comparison. The best performance was observed with Mg–10 wt.% g mixtures (95% of theoretical hydrogen generation yield in about 3 min). An efficient solution to control this hydrolysis reaction is proposed to produce hydrogen on demand and to feed a PEM fuel cell. Tests on a bench fitted with a 100 W Proton Exchange Membrane (PEM) fuel cell have demonstrated the technological potential of this solution for electric assistance applications in the field of light mobility.
Engineering a Sustainable Gas Future
Nov 2021
Publication
The Institution of Gas Engineers & Managers (IGEM) is the UK’s Professional Engineering Institution supporting individuals and businesses working in the global gas industry. IGEM was founded in 1863 with the purpose of advancing the science and relevant knowledge of gas engineering for the benefit of the public.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
- Helping our members achieve and uphold the highest standards of professional competence to ensure the safety of the public
- Supporting our members in achieving their career goals by providing high quality products services and personal and professional development opportunities
- Acting as the voice of the gas industry when working with stakeholders to develop and improve gas policy.
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
Oxford Energy Podcast – Hydrogen in Europe
Apr 2021
Publication
The EU and a number of its member states have now published hydrogen strategies and Europe continues to lead the way in the decarbonisation of its gas sector. In this latest OIES Energy Podcast James Henderson talks with Martin Lambert and Simon Schulte about their latest paper entitled “Contrasting European Hydrogen Pathways” which examines the plans in six major EU countries. They discuss the outlook for various forms of hydrogen supply contrasting the potential for green hydrogen from renewable energy with the outlook for blue hydrogen using steam-reforming of methane as well as hydrogen generated from surplus nuclear energy. They also examine the potential sources of demand considering existing use of hydrogen in industrial processes as well as the potential for hydrogen to displace hydrocarbons in the steel and cement industries. Finally the podcast also looks at the potential for imports of hydrogen and its distribution within Europe while also considering some key milestones that can provide indicators of how the region’s hydrogen plans are playing out.
The podcast can be found on their website
The podcast can be found on their website
Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides
Sep 2015
Publication
This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space naval military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design modeling and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis mostly sodium aluminum hydride containing tanks were developed and only a few examples with nitrides ammonia borane and alane. For hydrolysis sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.
How Green is Blue Hydrogen?
Jul 2021
Publication
Hydrogen is often viewed as an important energy carrier in a future decarbonized world. Currently most hydrogen is produced by steam reforming of methane in natural gas (“gray hydrogen”) with high carbon dioxide emissions. Increasingly many propose using carbon capture and storage to reduce these emissions producing so-called “blue hydrogen” frequently promoted as low emissions. We undertake the first effort in a peer-reviewed paper to examine the lifecycle greenhouse gas emissions of blue hydrogen accounting for emissions of both carbon dioxide and unburned fugitive methane. Far from being low carbon greenhouse gas emissions from the production of blue hydrogen are quite high particularly due to the release of fugitive methane. For our default assumptions (3.5% emission rate of methane from natural gas and a 20-year global warming potential) total carbon dioxide equivalent emissions for blue hydrogen are only 9%-12% less than for gray hydrogen. While carbon dioxide emissions are lower fugitive methane emissions for blue hydrogen are higher than for gray hydrogen because of an increased use of natural gas to power the carbon capture. Perhaps surprisingly the greenhouse gas footprint of blue hydrogen is more than 20% greater than burning natural gas or coal for heat and some 60% greater than burning diesel oil for heat again with our default assumptions. In a sensitivity analysis in which the methane emission rate from natural gas is reduced to a low value of 1.54% greenhouse gas emissions from blue hydrogen are still greater than from simply burning natural gas and are only 18%-25% less than for gray hydrogen. Our analysis assumes that captured carbon dioxide can be stored indefinitely an optimistic and unproven assumption. Even if true though the use of blue hydrogen appears difficult to justify on climate ground
Onshore, Offshore or In-turbine Electrolysis? Techno-economic Overview of Alternative Integration Designs for Green Hydrogen Production into Offshore Wind Power Hubs
Aug 2021
Publication
Massive investments in offshore wind power generate significant challenges on how this electricity will be integrated into the incumbent energy systems. In this context green hydrogen produced by offshore wind emerges as a promising solution to remove barriers towards a carbon-free economy in Europe and beyond. Motivated by the recent developments in Denmark with the decision to construct the world’s first artificial Offshore Energy Hub this paper investigates how the lowest cost for green hydrogen can be achieved. A model proposing an integrated design of the hydrogen and offshore electric power infrastructure determining the levelised costs of both hydrogen and electricity is proposed. The economic feasibility of hydrogen production from 2 Offshore Wind Power Hubs is evaluated considering the combination of different electrolyser placements technologies and modes of operations. The results show that costs down to 2.4 €/kg can be achieved for green hydrogen production offshore competitive with the hydrogen costs currently produced by natural gas. Moreover a reduction of up to 13% of the cost of wind electricity is registered when an electrolyser is installed offshore shaving the peak loads.
Mg-based Materials for Hydrogen Storage
Aug 2021
Publication
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities. This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties. Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
Safety Planning for Hydrogen and Fuel Cell Projects
Jul 2019
Publication
The document provides information on safety planning monitoring and reporting for the concerned hydrogen and fuel cell projects and programmes in Europe. It does not replace or contradict existing regulations which prevails under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist in identifying minimum safety requirements hazards and associated risks and in generating a quality safety plan that will serve as an assisting guide for the inherently safer conduct of all work related to the development and operation of hydrogen and fuel cell systems and infrastructure. A safety plan should be revisited periodically as part of an overall effort to pay continuous and priority attention to the associated safety aspects and to account for all modifications of the considered system and its operations. Potential hazards failure mechanisms and related incidents associated with any work process or system should always be identified analysed reported (recorded in relevant knowledge databases e.g. HIAD 2.0 or HELLEN handbooks papers etc.) and eliminated or mitigated as part of sound safety planning and comprehensive hydrogen safety engineering which extends beyond the recommendations of this document. All relevant objects or aspects that may be adversely affected by a failure should be considered including low frequency high consequences events. So the general protection objective is to exclude or at least minimise potential hazards and associated risks to prevent impacts on the following:
- People. Hazards that pose a risk of injury or loss of life to people must be identified and eliminated or mitigated. A complete safety assessment considers not only those personnel who are directly involved in the work but also others who are at risk due to these hazards.
- Property. Damage to or loss of equipment or facilities must be prevented or minimised. Damage to equipment can be both the cause of incidents and the result of incidents. An equipment failure can result in collateral damage to nearby equipment and property which can then trigger additional equipment failures or even lead to additional hazards and risks e.g. through the domino effect. Effective safety planning monitoring and reporting considers and minimises serious risk of equipment and property damage.
- Environment. Damage to the environment must be prevented. Any aspect of a natural or the built environment which can be harmed due to a hydrogen system or infrastructure failure should be identified and analysed. A qualification of the failure modes resulting in environmental damage must be considered.
The Use of Metal Hydrides in Fuel Cell Applications
Feb 2017
Publication
This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.
Reliable Off-grid Power Supply Utilizing Green Hydrogen
Jun 2021
Publication
Green hydrogen produced from wind solar or hydro power is a suitable electricity storage medium. Hydrogen is typically employed as mid- to long-term energy storage whereas batteries cover short-term energy storage. Green hydrogen can be produced by any available electrolyser technology [alkaline electrolysis cell (AEC) polymer electrolyte membrane (PEM) anion exchange membrane (AEM) solid oxide electrolysis cell (SOEC)] if the electrolysis is fed by renewable electricity. If the electrolysis operates under elevated pressure the simplest way to store the gaseous hydrogen is to feed it directly into an ordinary pressure vessel without any external compression. The most efficient way to generate electricity from hydrogen is by utilizing a fuel cell. PEM fuel cells seem to be the most favourable way to do so. To increase the capacity factor of fuel cells and electrolysers both functionalities can be integrated into one device by using the same stack. Within this article different reversible technologies as well as their advantages and readiness levels are presented and their potential limitations are also discussed.
Fuel Cells and Hydrogen Observatory Hydrogen Molecule Market Report
Sep 2021
Publication
The purpose of the hydrogen molecule market analysis is to track changes in the structure of hydrogen supply and demand in Europe. This report is mainly focused on presenting the current landscape - that will allow for future year-on-year comparisons in order to assess the progress Europe is making with regards to deployment of clean hydrogen production capacities as well as development of demand for clean hydrogen from emerging new hydrogen applications in the mobility sector or in industry. The following report summarizes the hydrogen molecule market landscape and contains data about hydrogen production and consumption in the EEA countries (EU countries together with Switzerland Norway Iceland and Liechtenstein). Hydrogen production capacity is presented by country and by technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data available at the end of 2019. Hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half hydrogen consumption. Today hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are insignificant with blue hydrogen capacities at below 1% and green hydrogen production capacity below 0.1% of total.
Coordinated Control Scheme of a Hybrid Renewable Power System Based on Hydrogen Energy Storage
Aug 2021
Publication
An all-weather energy management scheme for island DC microgrid based on hydrogen energy storage is proposed. A dynamic model of a large-scale wind–solar hybrid hydrogen-generation power generation system was established using a quasi-proportional resonance (QPR). We used the distributed Nautilus vertical axis wind power generation system as the main output of the system and it used the photovoltaic and hydrogen energy storage systems as alternative energy sources. Based on meeting the load power requirements and controlling the bus voltage stability we can convert the excess energy of the microgrid to hydrogen energy. With a shortage of load power we can convert the stored hydrogen into electrical energy for the load. Based on the ANSYS FLUENT software platform the feasibility and superiority over large-scale distributed Nautilus vertical axis wind power generation systems are verified. Through the MATLAB/Simulink software platform the effectiveness of the energy management method is verified. The results show that the large-scale distributed Nautilus vertical axis wind power generation system runs well in the energy system produces stable torque produces energy better than other types of wind turbines and has less impact on the power grid. The energy management method can ensure the normal operation of the system 24 h a day under the premise of maintaining the stable operation of the electric hydrogen system without providing external energy.
Assessment and Lessons Learnt from HIAD 2.0 – Hydrogen Incidents and Accidents Database
Sep 2019
Publication
The Hydrogen Incidents and Accidents Database (HIAD) is an international open communication platform collecting systematic data on hydrogen-related undesired events (incidents or accidents). It was initially developed in the frame of the project HySafe an EC co-funded NoE of the 6th Frame Work Programme by the Joint Research Centre of the European Commission (EC-JRC) and populated by many HySafe partners. After the end of the project the database has been maintained and populated by JRC with publicly available events.<br/>Starting from June 2016 JRC has been developing a new version of the database (HIAD 2.01). With the support of the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) the structure of the database and the web-interface have been redefined and simplified resulting in a streamlined user interface compared to the previous version of HIAD. The new version is mainly focused to facilitate the sharing of lessons learnt and other relevant information related to hydrogen technology; the database is publicly released and the events are anonymized. The database currently contains over 250 events. It aims to contribute to improve the safety awareness fostering the users to benefit from the experiences of others as well as to share information from their own experiences.<br/>The FCH 2 JU launched the European Hydrogen Safety Panel (EHSP2) initiative in 2017. The mission of the EHSP is to assist the FCH 2 JU at both programme and project level in assuring that hydrogen safety is adequately managed and to promote and disseminate hydrogen safety culture within and outside of the FCH 2 JU programme. Composed of a multidisciplinary pool of experts – 16 experts in 2018 - the EHSP is grouped in small ad-hoc working groups (task forces) according to the tasks to be performed and the expertise required. In 2018 Task Force 3 (TF3) of the ESHP has encompassed the analysis of safety data and events contained in HIAD 2.0 operated by JRC and supported by the FCH 2 JU. In close collaboration with JRC the EHSP members have systematically reviewed more than 250 events.<br/>This report summarizes the lessons learnt stemmed from this assessment. The report is self-explanatory and hence includes brief introduction about HIAD 2.0 the assessment carried out by the EHSP and the results stemmed from the joint assessment to enable new readers without prior knowledge of HIAD 2.0 to understand the rationale of the overall exercise and the lessons learnt from this effort. Some materials have also been lifted from the joint paper between JRC and EHSP which will also be presented at the International Conference on Hydrogen Safety (ICHS 2019) to provide some general and specific information about HIAD 2.0.
Research Efforts for the Resolution of Hydrogen Risk
Jan 2015
Publication
During the past 10 years the Korea Atomic Energy Research Institute (KAERI) has performed a study to control hydrogen gas in the containment of the nuclear power plants. Before the Fukushima accident analytical activities for gas distribution analysis in experiments and plants were primarily conducted using a multidimensional code: the GASFLOW. After the Fukushima accident the COM3D code which can simulate a multi-dimensional hydrogen explosion was introduced in 2013 to complete the multidimensional hydrogen analysis system. The code validation efforts of the multidimensional codes of the GASFLOW and the COM3D have continued to increase confidence in the use of codes using several international experimental data. The OpenFOAM has been preliminarily evaluated for APR1400 containment based on experience from coded validation and the analysis of hydrogen distribution and explosion using the multidimensional codes the GASFLOW and the COM3D. Hydrogen safety in nuclear power has become a much more important issue after the Fukushima event in which hydrogen explosions occurred. The KAERI is preparing a large-scale test that can be used to validate the performance of domestic passive autocatalytic recombiners (PARs) and can provide data for the validation of the severe accident code being developed in Korea
HyDeploy Report: Keele Information
Jun 2018
Publication
Keele University was chosen as the site for the HyDeploy project as it was seen as the site offered a high degree of control regarding safety functions high availability of operational data and minimal supply chain interfaces given that Keele University is the supplier transporter and distributer of natural gas at the site. The site was offered to the project as a living laboratory in line with the university's ambition to be at the forefront of energy innovation through the Smart Energy Network Demonstrator (SEND). Evidenced within this report is the supporting data that confirms the rationale for selecting Keele University and the necessary data to profile the section of the gas network which hydrogen will be injected into. The gas network at Keele University is segregated via the governor stations which regulate pressure within the network. The section of network which has been chosen for the HyDeploy project is the G3 network which is regulated by the G3 governor.
Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe
Sep 2021
Publication
The power-to-methane technology is promising for long-term high-capacity energy storage. Currently there are two different industrial-scale methanation methods: the chemical one (based on the Sabatier reaction) and the biological one (using microorganisms for the conversion). The second method can be used not only to methanize the mixture of pure hydrogen and carbon dioxide but also to methanize the hydrogen and carbon dioxide content of low-quality gases such as biogas or deponia gas enriching them to natural gas quality; therefore the applicability of biomethanation is very wide. In this paper we present an overview of the existing and planned industrial-scale biomethanation facilities in Europe as well as review the facilities closed in recent years after successful operation in the light of the scientific and socioeconomic context. To outline key directions for further developments this paper interconnects biomethanation projects with the competitiveness of the energy sector in Europe for the first time in the literature. The results show that future projects should have an integrative view of electrolysis and biomethanation as well as hydrogen storage and utilization with carbon capture and utilization (HSU&CCU) to increase sectoral competitiveness by enhanced decarbonization.
A Financial Model for Lithium-ion Storage in a Photovoltaic and Biogas Energy System
May 2019
Publication
Electrical energy storage (EES) such as lithium-ion (Li-ion) batteries can reduce curtailment of renewables maximizing renewable utilization by storing surplus electricity. Several techno-economic analyses have been performed on EES but few have investigated the financial performance. This paper presents a state-of-the-art financial model obtaining novel and significative financial and economics results when applied to Li-ion EES. This work is a significant step forward since traditional analysis on EES are based on oversimplified and unrealistic economic models. A discounted cash flow model for the Li-ion EES is introduced and applied to examine the financial performance of three EES operating scenarios. Real-life solar irradiance load and retail electricity price data from Kenya are used to develop a set of case studies. The EES is coupled with photovoltaics and an anaerobic digestion biogas power plant. The results show the impact of capital cost: the Li-ion project is unprofitable in Kenya with a capital cost of 1500 $/kWh but is profitable at 200 $/kWh. The study shows that the EES will generate a higher profit if it is cycled more frequently (hence a higher lifetime electricity output) although the lifetime is reduced due to degradation.
A Review of Synthetic Fuels for Passenger Vehicles
May 2019
Publication
Synthetic fuels produced with renewable surplus electricity depict an interesting solution for the decarbonization of mobility and transportation applications which are not suited for electrification. With the objective to compare various synthetic fuels an analysis of all the energy conversion steps is conducted from the electricity source i.e. wind- solar- or hydro-power to the final application i.e. a vehicle driving a certain number of miles. The investigated fuels are hydrogen methane methanol dimethyl ether and Diesel. While their production process is analyzed based on literature the usage of these fuels is analyzed based on chassis dynanometer measurement data of various EURO-6b passenger vehicles. Conventional and hybrid power-trains as well as various carbon dioxide sources are investigated in two scenarios. The first reference scenario considers market-ready technology only while the second future scenario considers technology which is currently being developed in industry and assumed to be market-ready in near future. With the results derived in this study and with consideration of boundary conditions i.e. availability of infrastructure storage technology of gaseous fuels energy density requirements etc. the most energy efficient of the corresponding suitable synthetic fuels can be chosen.
Modeling of a High Temperature Heat Exchanger to Supply Hydrogen Required by Fuel Cells Through Reforming Process
Sep 2021
Publication
Hydrogen as a clean fuel and a new energy source can be produced by various methods. One of these common and economical methods of hydrogen production is hydrocarbon vapor modification. This research studies hydrogen production using a propane steam reforming process inside a high temperature heat exchanger. The application of this high temperature heat exchanger in the path of the power supply line is a fuel cell stack unit to supply the required hydrogen of the device. The heat exchanger consists of a set of cylindrical tubes housed inside a packed-bed called a reformer. The energy required to perform the reaction is supplied through these tubes in which high temperature gas is injected and the heat exchanger is insulated to prevent energy loss. The results show that at maximum temperature and velocity of hot gases (900 K and 1.5 m s−1 ) complete consumption of propane can be observed before the outlet of the reformer. Also in the mentioned conditions the maximum hydrogen production (above 92%) is obtained. The best permeability under which the system can perform best is 1×10−9 m2.
A General Vision for Reduction of Energy Consumption and CO2 Emissions from the Steel Industry
Aug 2020
Publication
The 2018 IPCC (The Intergovernmental Panel on Climate Change’s) report defined the goal to limit global warming to 1.5 ◦C by 2050. This will require “rapid and far-reaching transitions in land energy industry buildings transport and cities”. The challenge falls on all sectors especially energy production and industry. In this regard the recent progress and future challenges of greenhouse gas emissions and energy supply are first briefly introduced. Then the current situation of the steel industry is presented. Steel production is predicted to grow by 25–30% by 2050. The dominant iron-making route blast furnace (BF) especially is an energy-intensive process based on fossil fuel consumption; the steel sector is thus responsible for about 7% of all anthropogenic CO2 emissions. In order to take up the 2050 challenge emissions should see significant cuts. Correspondingly specific emissions (t CO2/t steel) should be radically decreased. Several large research programs in big steelmaking countries and the EU have been carried out over the last 10–15 years or are ongoing. All plausible measures to decrease CO2 emissions were explored here based on the published literature. The essential results are discussed and concluded. The specific emissions of “world steel” are currently at 1.8 t CO2/t steel. Improved energy efficiency by modernizing plants and adopting best available technologies in all process stages could decrease the emissions by 15–20%. Further reductions towards 1.0 t CO2/t steel level are achievable via novel technologies like top gas recycling in BF oxygen BF and maximal replacement of coke by biomass. These processes are however waiting for substantive industrialization. Generally substituting hydrogen for carbon in reductants and fuels like natural gas and coke gas can decrease CO2 emissions remarkably. The same holds for direct reduction processes (DR) which have spread recently exceeding 100 Mt annual capacity. More radical cut is possible via CO2 capture and storage (CCS). The technology is well-known in the oil industry; and potential applications in other sectors including the steel industry are being explored. While this might be a real solution in propitious circumstances it is hardly universally applicable in the long run. More auspicious is the concept that aims at utilizing captured carbon in the production of chemicals food or fuels e.g. methanol (CCU CCUS). The basic idea is smart but in the early phase of its application the high energy-consumption and costs are disincentives. The potential of hydrogen as a fuel and reductant is well-known but it has a supporting role in iron metallurgy. In the current fight against climate warming H2 has come into the “limelight” as a reductant fuel and energy storage. The hydrogen economy concept contains both production storage distribution and uses. In ironmaking several research programs have been launched for hydrogen production and reduction of iron oxides. Another global trend is the transfer from fossil fuel to electricity. “Green” electricity generation and hydrogen will be firmly linked together. The electrification of steel production is emphasized upon in this paper as the recycled scrap is estimated to grow from the 30% level to 50% by 2050. Finally in this review all means to reduce specific CO2 emissions have been summarized. By thorough modernization of production facilities and energy systems and by adopting new pioneering methods “world steel” could reach the level of 0.4–0.5 t CO2/t steel and thus reduce two-thirds of current annual emissions.
Computational Intelligence Approach for Modeling Hydrogen Production: A Review
Mar 2018
Publication
Hydrogen is a clean energy source with a relatively low pollution footprint. However hydrogen does not exist in nature as a separate element but only in compound forms. Hydrogen is produced through a process that dissociates it from its compounds. Several methods are used for hydrogen production which first of all differ in the energy used in this process. Investigating the viability and exact applicability of a method in a specific context requires accurate knowledge of the parameters involved in the method and the interaction between these parameters. This can be done using top-down models relying on complex mathematically driven equations. However with the raise of computational intelligence (CI) and machine learning techniques researchers in hydrology have increasingly been using these methods for this complex task and report promising results. The contribution of this study is to investigate the state of the art CI methods employed in hydrogen production and to identify the CI method(s) that perform better in the prediction assessment and optimization tasks related to different types of Hydrogen production methods. The resulting analysis provides in-depth insight into the different hydrogen production methods modeling technique and the obtained results from various scenarios integrating them within the framework of a common discussion and evaluation paper. The identified methods were benchmarked by a qualitative analysis of the accuracy of CI in modeling hydrogen production providing extensive overview of its usage to empower renewable energy utilization.
Addressing the Low-carbon Million-gigawatt-hour Energy Storage Challenge
Nov 2021
Publication
The energy system of the United States requires several million gigawatt hours of energy storage to meet variable demand for energy driven by (1) weather (heating and cooling) (2) social patterns (daily and weekday/weekend) of work play and sleep (3) weather-dependent energy production (wind and solar) and (4) industrial requirements. In a low-carbon world four storage options can meet this massive requirement at affordable costs: nuclear fuels heat storage hydrocarbon liquids made from biomass and hydrogen. Because of the different energy sector characteristics (electrical supply transportation commercial and industrial) each of these options must be developed. Capital costs associated with electricity storage at this scale using for example batteries and hydroelectric technologies are measured in hundreds of trillions of dollars for the United States alone and thus are not viable.
An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications
Sep 2021
Publication
Biofuel a cost-effective safe and environmentally benign fuel produced from renewable sources has been accepted as a sustainable replacement and a panacea for the damaging effects of the exploration for and consumption of fossil-based fuels. The current work examines the classification generation and utilization of biofuels particularly in internal combustion engine (ICE) applications. Biofuels are classified according to their physical state technology maturity the generation of feedstock and the generation of products. The methods of production and the advantages of the application of biogas bioalcohol and hydrogen in spark ignition engines as well as biodiesel Fischer– Tropsch fuel and dimethyl ether in compression ignition engines in terms of engine performance and emission are highlighted. The generation of biofuels from waste helps in waste minimization proper waste disposal and sanitation. The utilization of biofuels in ICEs improves engine performance and mitigates the emission of poisonous gases. There is a need for appropriate policy frameworks to promote commercial production and seamless deployment of these biofuels for transportation applications with a view to guaranteeing energy security.
Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas
Nov 2021
Publication
Due to the increasing share of renewable energy sources in the electrical network the focus on decarbonization has extended into other energy sectors. The gas sector is of special interest because it can offer seasonal storage capacity and additional flexibility to the electricity sector. In this paper we present a new simulation method designed for hydrogen-enriched natural gas network simulation. It can handle different gas compositions and is thus able to accurately analyze the impact of hydrogen injections into natural gas pipelines. After describing the newly defined simulation method we demonstrate how the simulation tool can be used to analyze a hydrogen-enriched gas pipeline network. An exemplary co-simulation of coupled power and gas networks shows that hydrogen injections are severely constrained by the gas pipeline network highlighting the importance and necessity of considering different gas compositions in the simulation.
Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review
Nov 2020
Publication
Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells which are bipolar plates current collector and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel fuel/oxygen ratio pressure temperature humidity cell potential and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol cell temperature catalyst loading membrane thickness and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
Operation of Metal Hydride Hydrogen Storage Systems for Hydrogen Compression Using Solar Thermal Energy
Mar 2016
Publication
By using a newly constructed bench-scale hydrogen energy system with renewable energy ‘Pure Hydrogen Energy System’ the present study demonstrates the operations of a metal hydride (MH) tank for hydrogen compression as implemented through the use solar thermal energy. Solar thermal energy is used to generate hot water as a heat source of the MH tank. Thus 70 kg of LaNi5 one of the most typical alloys used for hydrogen storage was placed in the MH tank. We present low and high hydrogen flow rate operations. Then the operations under winter conditions are discussed along with numerical simulations conducted from the thermal point of view. Results show that a large amount of heat (>100 MJ) is generated and the MH hydrogen compression is available.
Hydrogen Gas Quality for Gas Network Injection: State of the Art of Three Hydrogen Production Methods
Jun 2021
Publication
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat industry and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming proton exchange membrane water electrolysis and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis and water carbon dioxide and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Durability of Anion Exchange Membrane Water Electrolyzers
Apr 2021
Publication
Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their ability to split water using platinum group metal-free catalysts less expensive anode flow fields and bipolar plates. Critical to the realization of AEMWEs is understanding the durability-limiting factors that restrict the long-term use of these devices. This article presents both durability-limiting factors and mitigation strategies for AEMWEs under three operation modes i.e. pure water-fed (no liquid electrolyte) concentrated KOH-fed and 1 wt% K2CO3-fed operating at a differential pressure of 100 psi. We examine extended-term behaviors of AEMWEs at the single-cell level and connect their behavior with the electrochemical chemical and mechanical instability of single-cell components. Finally we discuss the pros and cons of AEMWEs under these operation modes and provide direction for long-lasting AEMWEs with highly efficient hydrogen production capabilities.
HyDeploy: Demonstrating Non-destructive Carbon Savings Through Hydrogen Blending
Aug 2021
Publication
The project has successfully developed the safety case and delivered a hydrogen blend via the gas network into customers’ homes. The demonstration of safety for the specific network was based on robust evidence and clear operational procedures. Alongside the enabling safety case the HyDeploy project has demonstrated the first steps of hydrogen deployment are safe technically feasible and non-disruptive both for the network and domestic users.
The key outcomes of the HyDeploy project were:
The key outcomes of the HyDeploy project were:
- Successful achievement of the first regulatory approval from the HSE to operate a live gas network above the current hydrogen limit of 0.1 vol%. The approval allowed blending up to 20 vol%.
- Development of the technical and procedural precedents to generate evidence for review by the HSE which have informed subsequent safety case submissions through HyDeploy2 and the wider hydrogen safety case industry.
- The design fabrication installation and operation of the UK’s first hydrogen grid entry unit.
- Integration of novel hydrogen production and blending technologies to create the first hydrogen delivery system based on electrolytic generation into a live gas grid.
- Safe delivery of the UK’s first hydrogen blend trial to 100 homes and 30 faculty buildings. The trial delivered over 42000 cubic metres of hydrogen and abated over 27 tonnes of CO2.
- Collaboration with appliance and equipment providers to build a robust evidence base to demonstrate equipment suitability.
- Evidencing the suitability of hydrogen blends with domestic appliances as well as larger commercial appliances including catering equipment and boilers up to 600 kW.
- Evidencing the suitability of hydrogen blends with medium and low-pressure distribution systems relating to key performance metrics such as: pressure control; odour intensity and uniform gas compositions.
- Promotion of supply chain innovation through facilitating trials to develop gas detection and analysis technologies.
- Establishing a robust social science evidence base to understand the attitudes and experience of consumers actually using hydrogen blends.
An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies
Dec 2020
Publication
This study presents an overview of the economic analysis and environmental impact of natural gas conversion technologies. Published articles related to economic analysis and environmental impact of natural gas conversion technologies were reviewed and discussed. The economic analysis revealed that the capital and the operating expenditure of each of the conversion process is strongly dependent on the sophistication of the technical designs. The emerging technologies are yet to be economically viable compared to the well-established steam reforming process. However appropriate design modifications could significantly reduce the operating expenditure and enhance the economic feasibility of the process. The environmental analysis revealed that emerging technologies such as carbon dioxide (CO2) reforming and the thermal decomposition of natural gas offer advantages of lower CO2 emissions and total environmental impact compared to the well-established steam reforming process. Appropriate design modifications such as steam reforming with carbon capture storage and utilization the use of an optimized catalyst in thermal decomposition and the use of solar concentrators for heating instead of fossil fuel were found to significantly reduced the CO2 emissions of the processes. There was a dearth of literature on the economic analysis and environmental impact of photocatalytic and biochemical conversion processes which calls for increased research attention that could facilitate a comparative analysis with the thermochemical processes.
In Situ Formed Ultrafine Metallic Ni from Nickel (II) Acetylacetonate Precursor to Realize an Exceptional Hydrogen Storage Performance of MgH2–Ni-EG Nanocomposite
Dec 2021
Publication
It has been well known that doping nano-scale catalysts can significantly improve both the kinetics and reversible hydrogen storage capacity of MgH2. However so far it is still a challenge to directly synthesize ultrafine catalysts (e.g. < 5 nm) mainly because of the complicated chemical reaction processes. Here a facile one-step high-energy ball milling process is developed to in situ form ultrafine Ni nanoparticles from the nickel acetylacetonate precursor in the MgH2 matrix. With the combined action of ultrafine metallic Ni and expanded graphite (EG) the formed MgH2–Ni-EG nanocomposite with the optimized doping amounts of Ni and EG can still release 7.03 wt.% H2 within 8.5 min at 300 °C after 10 cycles. At a temperature close to room temperature (50 °C) it can also absorb 2.42 wt.% H2 within 1 h It can be confirmed from the microstructural characterization analysis that the in situ formed ultrafine metallic Ni is transformed into Mg2Ni/Mg2NiH4 in the subsequent hydrogen absorption and desorption cycles. It is calculated that the dehydrogenation activation energy of the MgH2–Ni-EG nanocomposite is also reduced obviously in comparison with the pure MgH2. Our work provides a methodology to significantly improve the hydrogen storage performance of MgH2 by combining the in situ formed and uniformly dispersed ultrafine metallic catalyst from the precursor and EG.
Potential of Power-to-Methane in the EU Energy Transition to a Low Carbon System Using Cost Optimization
Oct 2018
Publication
Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM which include limited biomass potential low Power-to-Liquid performance use of PtM waste heat among others can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale.
No more items...