Publications
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Polymer Electrolyte Membrane Electrolyzer and Fuel Cell System Characterization for Power System Frequency Control
Mar 2022
Publication
This work focuses on tests for control reserve of a novel Power-to-Gas-to-Power platform based on proton exchange membrane technologies and on pure oxygen instead of air in the re-electrification process. The technologies are intended as a further option to stabilize the power system therefore helping integrating renewable energy into the power system. The tests are based on the pre-qualification tests used by Swissgrid but are not identical in order to capture the maximum dynamics by the plants. The main characteristics identified are the ramping capabilities of ±8% per unit per second for the electrolyzer system and ±33% per unit per second for the fuel cell system. The ramping capabilities are mainly limited by the underlying processes of polymer electrolyte membrane technologies. Additionally the current and projected round-trip efficiencies for Power-to-Gas-to-Power of 39% in 2025 and 48% in 2040 are derived. Furthermore during the successful tests the usage of oxygen in the present Power-to-Gas and Gas-to-Power processes and its influence on the dynamics and the round-trip efficiency was assessed. In consequence fundamental data on the efficiency and the dynamics of the Power-to-Gas-to-Power technologies is presented. This data can serve as basis for prospective assessments on the suitability of the technologies investigated for frequency control in power systems.
Comparative Sustainability Study of Energy Storage Technologies Using Data Envelopment Analysis
Mar 2022
Publication
The transition to energy systems with a high share of renewable energy depends on the availability of technologies that can connect the physical distances or bridge the time differences between the energy supply and demand points. This study focuses on energy storage technologies due to their expected role in liberating the energy sector from fossil fuels and facilitating the penetration of intermittent renewable sources. The performance of 27 energy storage alternatives is compared considering sustainability aspects by means of data envelopment analysis. To this end storage alternatives are first classified into two clusters: fast-response and long-term. The levelized cost of energy energy and water consumption global warming potential and employment are common indicators considered for both clusters while energy density is used only for fast-response technologies where it plays a key role in technology selection. Flywheel reveals the highest efficiency between all the fast-response technologies while green ammonia powered with solar energy ranks first for long-term energy storage. An uncertainty analysis is incorporated to discuss the reliability of the results. Overall results obtained and guidelines provided can be helpful for both decision-making and research and development purposes. For the former we identify the most appealing energy storage options to be promoted while for the latter we report quantitative improvement targets that would make inefficient technologies competitive if attained. This contribution paves the way for more comprehensive studies in the context of energy storage by presenting a powerful framework for comparing options according to multiple sustainability indicators.
Modeling of Unintended Hydrogen Releases from a Fuel Cell Tram
Sep 2021
Publication
Hydrogen is a promising alternative energy carrier that has been increasingly used in industry especially the transportation sector to fuel vehicles through fuel cells. Hydrogen fuel cell vehicles usually have high pressure on-board storage tanks which take up large spaces to provide comparable ranges as current fossil fuel vehicles because of the low volumetric energy density of hydrogen. Therefore hydrogen is also appropriate for large heavy-duty vehicles that have more space than passenger vehicles.
Hydrogen Production from Water Electrolysis: Role of Catalysts
Feb 2021
Publication
As a promising substitute for fossil fuels hydrogen has emerged as a clean and renewable energy. A key challenge is the efcient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efcient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active stable and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity stability and efciency. This will be followed by outlining current knowledge on the two half-cell reactions hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be dis‑ cussed. New strategies and insights in exploring the synergistic structure morphology composition and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efcient production of hydrogen from water splitting electrolysis will also be outlined.
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel
Dec 2022
Publication
The gasification of Polish coal to produce hydrogen could help to make the country independent of oil and gas imports and assist in the rational energy transition from gray to green hydrogen. When taking strategic economic or legislative decisions one should be guided not only by the level of CO2 emissions from the production process but also by other environmental impact factors obtained from comprehensive environmental analyses. This paper presents an analysis of the life cycle of hydrogen by coal gasification and its application in a vehicle powered by FCEV cells. All the main stages of hydrogen fuel production by Shell technology as well as hydrogen compression and transport to the distribution point are included in the analyses. In total two fuel production scenarios were considered: with and without sequestration of the carbon dioxide captured in the process. Life cycle analysis was performed according to the procedures and assumptions proposed in the FC-Hy Guide Guidance Document for performing LCAs on Fuel Cells and H2 Technologies by the CML baseline method. By applying the CO2 sequestration operation the GHG emissions rate for the assumed functional unit can be reduced by approximately 44% from 34.8 kg CO2-eq to 19.5 kg CO2-eq but this involves a concomitant increase in the acidification rate from 3.64·10−2 kg SO2-eq to 3.78·10−2 kg SO2-eq in the eutrophication index from 5.18·10−2 kg PO3− 4-eq to 5.57·10−2 kg PO3− 4-eq and in the abiotic depletion index from 405 MJ to 414 MJ and from 1.54·10−5 kg Sbeq to 1.61·10−5 kg Sbeq.
An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan
Dec 2022
Publication
Hydrogen energy is considered one of the main measures of zero carbonization in energy systems but high equipment and hydrogen costs hinder the development of hydrogen energy technology. The objectives of this study are to quantify the environmental advantages of hydrogen energy through a carbon tax and study the application potential of hydrogen energy technology in a regional distributed energy system (RDES). In this study various building types in the smart community covered by Japan’s first hydrogen energy pipeline are used as an example. First ten buildings of five types are selected as the research objectives. Subsequently two comparative system models of a regional distributed hydrogen energy system (RDHES) and an RDES were established. Then by studying the optimal RDHES and RDES configuration and combining the prediction of future downward trends of fuel cell (FC) costs and energy carbon emissions the application effect of FC and hydrogen storage (HS) technologies on the demand side was analyzed. Finally the adaptability of the demand-side hydrogen energy system was studied by analyzing the load characteristics of different types of buildings. The results show that when the FC price is reduced to 1.5 times that of the internal combustion engine (ICE) the existing carbon tax system can sufficiently support the RDHES in gaining economic advantages in some regions. Notably when the carbon emissions of the urban energy system are reduced the RDHES demonstrates stronger anti-risk ability and has greater suitability for promotion in museums and shopping malls. The conclusions obtained in this study provide quantitative support for hydrogen energy promotion policies on the regional demand side and serve as a theoretical reference for the design and adaptability research of RDHESs.
A Study into Proton Exchange Membrane Fuel Cell Power and Voltage Prediction using Artificial Neural Network
Sep 2022
Publication
Polymer Electrolyte Membrane fuel cell (PEMFC) uses hydrogen as fuel to generate electricity and by-product water at relatively low operating temperatures which is environmentally friendly. Since PEMFC performance characteristics are inherently nonlinear and related predicting the best performance for the different operating conditions is essential to improve the system’s efficiency. Thus modeling using artificial neural networks (ANN) to predict its performance can significantly improve the capabilities of handling multi-variable nonlinear performance of the PEMFC. This paper predicts the electrical performance of a PEMFC stack under various operating conditions. The four input terms for the 5 W PEMFC include anode and cathode pressures and flow rates. The model performances are based on ANN using two different learning algorithms to estimate the stack voltage and power. The models have shown consistently to be comparable to the experimental data. All models with at least five hidden neurons have coefficients of determination of 0.95 or higher. Meanwhile the PEMFC voltage and power models have mean squared errors of less than 1 × 10−3 V and 1 × 10−3 W respectively. Therefore the model results demonstrate the potential use of ANN into the implementation of such models to predict the steady state behavior of the PEMFC system (not limited to polarization curves) for different operating conditions and help in the optimization process for achieving the best performance of the system.
Alternative and Innovative Solid Oxide Electrolysis Cell Materials: A Short Review
Jun 2021
Publication
Solid oxide electrolysis cell is the leading technology for production of green hydrogen by high temperature electrolysis. However optimization of existing reference materials constituting the cell and development of innovative materials remain critical for solid oxide electrolysis cell. In particular they are key to reach performance and durability targets compatible with a commercialization for the three main markets identified as follows: large-scale H2 production Power-to-X and Power-to-Power. This short review summarizes the latest progress in research and development of alternative and innovative materials for solid oxide electrolysis cells with a main focus on cathode-supported cell materials. A brief description of the layers constituting the solid oxide electrolysis cell is provided with the associated current state-of-the-art materials. A further emphasis on the most promising alternative and innovative materials for each layer follows based on the major aspects from an industrial perspective to reach a competitive hydrogen production cost for the main targeted markets: performance durability scaling up/manufacturing ability and operational flexibility.
Dynamic Process Modeling of Topside Systems for Evaluating Power Consumption and Possibilities of Using Wind Power
Dec 2022
Publication
Norwegian offshore wind farms may be able to supply power to offshore oil and gas platforms in the near future thanks to the expeditious development of offshore wind technology. This would result in a reduction in CO2 emissions from oil and gas offshore installations which are currently powered predominantly by gas turbines. The challenge with using wind power is that offshore oil and gas installations require a fairly constant and stable source of power whereas wind power typically exhibits significant fluctuations over time. The purpose of this study is to perform a technical feasibility evaluation of using wind power to supply an offshore oil and gas installation on the basis of dynamic process simulations. Throughout the study only the topside processing system is considered since it is the most energy-intensive part of an oil and gas facility. An offshore field on the Norwegian Continental Shelf is used as a case study. The results indicate that when the processing system operates in steady-state conditions it cannot be powered solely by wind energy and another power source is required to compensate for low wind power generation intervals. An alternative would be to store wind energy during periods of high generation (e.g. by producing hydrogen or ammonia) and use it during periods of low generation. Utilizing energy storage methods wind energy can be continuously used for longer periods of time and provide a suitable constant power source for the studied case. Higher constant power can also be provided by increasing the efficiency of energy recovery and storage processes. Alternatively these two technologies may be integrated with gas turbines if the required storage cannot be provided or higher power is required. It was estimated that the integration of wind energy could result in noticeable reductions in CO2 emissions for the case study. Additionally according to the results the production storage and reuse of hydrogen and ammonia on-site may be viable options for supplying power.
Green Hydrogen-Based Direct Reduction for Low-Carbon Steelmaking
May 2020
Publication
The European steel industry aims at a CO2 reduction of 80–95% by 2050 ensuring that Europe will meet the requirements of the Paris Agreement. As the reduction potentials of the current steelmaking routes are low the transfer toward breakthrough-technologies is essential to reach these goals. Hydrogen-based steelmaking is one approach to realize CO2-lean steelmaking. Therefore the natural gas (NG)-based direct reduction (DR) acts as a basis for the first step of this transition. The high flexibility of this route allows the gradual addition of hydrogen and in a long-term view runs the process with pure hydrogen. Model-based calculations are performed to assess the possibilities for injecting hydrogen. Therefore NG- and hydrogen-based DR models are developed to create new process know-how and enable an evaluation of these processes in terms of energy demand CO2-reduction potentials and so on. The examinations show that the hydrogen-based route offers a huge potential for green steelmaking which is strongly depending on the carbon footprint of the electricity used for the production of hydrogen. Only if the carbon intensity is less than about 120 g CO2 kWh1 the hydrogen-based process emits less CO2 than the NG-based DR process.
CFD Simulation of a Hybrid Solar/Electric Reactor for Hydrogen and Carbon Production from Methane Cracking
Jan 2023
Publication
Methane pyrolysis is a transitional technology for environmentally benign hydrogen production with zero greenhouse gas emissions especially when concentrated solar energy is the heating source for supplying high-temperature process heat. This study is focused on solar methane pyrolysis as an attractive decarbonization process to produce both hydrogen gas and solid carbon with zero CO2 emissions. Direct normal irradiance (DNI) variations arising from inherent solar resource variability (clouds fog day-night cycle etc.) generally hinder continuity and stability of the solar process. Therefore a novel hybrid solar/electric reactor was designed at PROMES-CNRS laboratory to cope with DNI variations. Such a design features electric heating when the DNI is low and can potentially boost the thermochemical performance of the process when coupled solar/electric heating is applied thanks to an enlarged heated zone. Computational fluid dynamics (CFD) simulations through ANSYS Fluent were performed to investigate the performance of this reactor under different operating conditions. More particularly the influence of various process parameters including temperature gas residence time methane dilution and hybridization on the methane conversion was assessed. The model combined fluid flow hydrodynamics and heat and mass transfer coupled with gas-phase pyrolysis reactions. Increasing the heating temperature was found to boost methane conversion (91% at 1473 K against ~100% at 1573 K for a coupled solar-electric heating). The increase of inlet gas flow rate Q0 lowered methane conversion since it affected the gas space-time (91% at Q0 = 0.42 NL/min vs. 67% at Q0 = 0.84 NL/min). A coupled heating also resulted in significantly better performance than with only electric heating because it broadened the hot zone (91% vs. 75% methane conversion for coupled heating and only electric heating respectively). The model was further validated with experimental results of methane pyrolysis. This study demonstrates the potential of the hybrid reactor for solar-driven methane pyrolysis as a promising route toward clean hydrogen and carbon production and further highlights the role of key parameters to improve the process performance.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
Brief Review on High-Temperature Electrochemical Hydrogen Sensors
Dec 2022
Publication
Hydrogen sensors especially those operating at high temperatures are essential tools for the emerging hydrogen economy. Monitoring hydrogen under process conditions to control the reactions for detecting confined species is crucial to the safe widespread use and public acceptance of hydrogen as fuel. Hydrogen sensors must have a sensitivity ranging from traces of hydrogen (parts per million (ppm)) up to levels near the lower explosive limit (LEL = 4% H2 in the air) for safety reasons. Furthermore they need to operate in cryogenic ambient and high-temperature environments. Herein emphasis is given to hydrogen sensors based on solid oxide electrolytes (operating at high temperatures) in particular oxygen ion and proton conductors. The review is devoted to potentiometric amperometric and combined amperometric-potentiometric hydrogen sensors. Experimental results already reported in the international literature are presented and analyzed to reveal the configuration principle of operation and the applied solid electrolytes and electrodes of the high-temperature hydrogen sensors. Additionally an amperometric sensor able to detect hydrogen and steam in atmospheric air through a two-stage procedure is presented and thoroughly discussed. The discussion reveals that high-temperature hydrogen sensors face different challenges in terms of the electrodes and solid electrolytes to be used depending on the operating principle of each sensor type.
Carbon-free Green Hydrogen Production Process with Induction Heating-based Ammonia Decomposition Reactor
Dec 2022
Publication
This study presents an induction heating-based reactor for ammonia decomposition and to achieve a 150 Nm3 /h carbon-free green hydrogen production process. The developed metallic monolith reactor acts by increasing the reactor temperature through an electromagnetic induction method using renewable-based electricity. As a result hydrogen is produced without the generation of air pollutants such as CO2 which are formed via the conventional production pathway. Furthermore techno-economic analysis was conducted based on exergy and economic analysis to evaluate the feasibility of the developed process. Experimentally the proposed reactor showed an ammonia conversion of 90.0 % at 600 ℃ and 7 barg. Exergy analysis indicated that the total unused exergy accounted for 45.79 % of the total exergy input giving an exergy efficiency of 54.21 % for the overall process. Furthermore the CAPEX and OPEX values are calculated as 1599567 USD and 644719 USD/y respectively; therefore the levelized cost of hydrogen (LCOH) was calculated to be 6.98 USD/kgH2. This study also demonstrated that the LCOH varies with the ammonia feed price and the process capacity and so it would be expected to decrease from 6.98 to 5.33 USD/kgH2 as the hydrogen production capacity is increased from 150 to 500 Nm3 / h. Overall our results confirm the feasibility of carbon-free green hydrogen production on on-site hydrogen refueling stations and they will be expected to advance the development of an environmental hydrogen economy.
Numerical Simulation of Hydrogen Deflagration Using CFD
Sep 2021
Publication
Hydrogen is seen as an important future energy carrier as part of the move away from traditional hydrocarbon sources. Delayed ignition of a hydrogen-air mixture formed from an accidental release of hydrogen in either a confined or congested environment can lead to the generation of overpressure impacting both people and assets. An understanding of the possible overpressures generated is critical in designing facilities and effective mitigation systems against hydrogen explosion hazards. This paper describes the numerical modelling of hydrogen deflagrations using a new application PDRFOAM-R that is part of the wider OpenFOAM open-source CFD package of routines for the solution of systems of partial differential equations. The PDRFOAM-R code solves momentum and continuity equations the combustion model is based on flame area transport and the turbulent burning velocity correlation is based on Markstein and Karlovitz numbers. PDRFOAM-R is derived from publicly available PDRFOAM tool and it resolves small and large obstacles unlike PDRFOAM which is based on the Porosity Distributed Resistance approach. The PDRFOAM-R code is validated against various unconfined-uncongested and semi-confined congested explosion experiments. The flame dynamics and pressure history predicted from the simulation show a reasonable comparison with the experiments.
Numerical Study of the Effects of Tunnel Inclination and Ventilation on the Dispersion of Hydrogen Released from a Car
Sep 2021
Publication
Hydrogen cars are expected to play an important role in a decarbonised clean-transport future. Safety issues arise though in tunnels due to the possibility of accidental release and accumulation of hydrogen. This Computational Fluid Dynamics (CFD) study focuses on the effect of tunnel inclination and ventilation on hydrogen dispersion. A horseshoe shaped tunnel of 200 m length is considered in all seventeen cases examined. In most cases hydrogen is released from the bottom of a car placed at the center of the tunnel. Various inclinations in-tunnel wind speeds and fuel tank Pressure Relief Device (PRD) diameters were considered in order to assess their influence on safety. It was found that even if the long-term influence of the inclination is positive there is no systematic effect at initial stages nor at the most dangerous ‘nearly-stoichiometric’ cloud volumes (25% - 35% v/v). Adverse effects may also exist like the occasionally higher flammable cloud (4% - 75% v/v). Regarding ventilation it was found that even low wind speeds (e.g. 1 m/s) can reduce the flammable cloud by several times. However no significant effect on the total nearly-stoichiometric volumes was found for most of the cases examined. Ventilation can also cause adverse effects as for example at mid-term of the release duration in some cases. Concerning the PRD diameter a reduction from 4 mm to 2 mm resulted in about five times smaller maximum of the nearly-stoichiometric cloud volume. In addition the effect of release orientation on hydrogen cloud was examined and it was found that the downwards direction presents drawbacks compared to the backwards and upwards release directions.
The Potential Role of Flying Vehicles in Progressing the Energy Transition
Oct 2022
Publication
An energy transition is in progress around the globe notably led by an increase in the deployment of renewable energy and a shift toward less emissions-intense options notably in the transportation sector. This research investigates the potential role that new transportation options namely flying vehicles may play toward progressing the energy transition. As flying vehicles are a relatively new technology yet to penetrate the market it is also prudent to consider the ethical legal and social issues (ELSI) associated with their implementation alongside the potential energy and environmental impacts. Through a review of ELSI and energy and environmental literature we identify research gaps and identify how flying vehicles may impact upon the energy transition over time. Our research identifies several critical aspects of both ELSI and energy and environmental academia relevant to the future deployment of flying vehicles and describes a deployment timeline and the resultant societal outcomes. We find that flying vehicles could drive the energy transition and the hydrogen economy and that their widespread adoption could engender shared socio-environmental benefits. Our findings are relevant to transportation and environmental policymakers and identify critical considerations for the planned introduction of new shared transportation options to the market conducive to a sustainable energy transition.
Design and Development of a Catalytic Fixed-Bed Reactor for Gasification of Banana Biomass in Hydrogen Production
Apr 2022
Publication
Hydrogen produced from biomass is an alternative energy source to fossil fuels. In this study hydrogen production by gasification of the banana plant is proposed. A fixed-bed catalytic reactor was designed considering fluidization conditions and a height/diameter ratio of 3/1. Experimentation was carried out under the following conditions: 368 ◦C atmospheric pressure 11.75 g of residual mass of the banana (pseudo-stem) an average particle diameter of 1.84 mm and superheated water vapor as a gasifying agent. Gasification reactions were performed using a catalyzed and uncatalyzed medium to compare the effectiveness of each case. The catalyst was Ni/Al2O3 synthesized by coprecipitation. The gas mixture produced from the reaction was continuously condensed to form a two-phase liquid–gas system. The synthesis gas was passed through a silica gel filter and analyzed online by gas chromatography. To conclude the results of this study show production of 178 mg of synthesis gas for every 1 g of biomass and the selectivity of hydrogen to be 51.8 mol% when a Ni 2.5% w/w catalyst was used. The amount of CO2 was halved and CO was reduced from 3.87% to 0% in molar percentage. Lastly a simulation of the distribution of temperatures inside the furnace was developed; the modeled behavior is in agreement with experimental observations.
Three-dimensional Simulations of Lean H2-air Flames Propagating in a Narrow Gap: n the Validity of the Quasi-two-dimensional Appoximation
Sep 2021
Publication
The premixed propagation of lean isobaric H2-air flames (φ = 0.3) in Hele-Shaw cells (i.e. two parallel plates separated by a small distance h on the order of the thickness of the planar adiabatic flame δf ∼ 3 mm) is investigated numerically. Three-dimensional (3D) simulations with detailed chemistry and transport are used to examine the effect of h on the flame dynamics and its overall normalized propagation speed (S T /S L) for a semi-closed system of size 25δf × 25δf × h. To determine the validity of an existing quasi-two-dimensional (quasi-2D) formulation (derived in the limit of h → 0) to capture the 3D dynamics results for h = 0.1δf h = 0.5δf and h = δf are reported. For h = 0.1δf strong cell splitting/merging is observed with associated low frequency/high amplitude oscillations in the temporal evolution of S T /S L (10-17Hz; 6 ≤ S T /S L ≤ 10). Larger values of h exhibit a much smoother evolution. For h = 0.5δf the cell splitting/merging is milder relaxing to a steady propagating speed of S T /S L ∼ 6 after an initial transient; for h = 1δf the flame dynamics along the h direction starts to play an important role showing two distinct phases: (i) initial symmetric propagation with a linear increase in S T /S L (from 5.3 to 6.8) as early signs of asymmetry are visible (ii) followed by a fully non-symmetric propagation resulting in an abrupt increase in S T /S L that quickly relaxes to a constant value thereafter (S T /S L ∼ 10). Our preliminary results suggest that for the lean H2-air mixture considered the quasi-2D approximation breaks down for h > 0.1δf .
Demonstration of Green Hydrogen Production Using Solar Energy at 28% Efficiency and Evaluation of its Economic Viability
Jan 2021
Publication
The solar to hydrogen (STH) efficiency of photovoltaic-electrolysis (PV-E) setups is a key parameter to lower the cost of green hydrogen produced. Commercial c-Si solar cells have neared saturation with respect to their efficiency which warrants the need to look at alternative technologies. In this work we report a concentrator photovoltaic-electrolysis (CPV-E) setup with a STH efficiency of 28% at 41 suns (without the use of Fresnel lenses) the highest reported efficiency using an alkaline system to date. Using this as a base case we carried out a detailed techno-economic (TEA) analysis which showed that despite the high cost associated with CPV cells the levelized cost of hydrogen (LCOH) is at $5.9 kg1 close to that from c-Si solar farms ($4.9 kg1 ) primarily due to the high STH efficiency. We also report sensitivity analysis of factors affecting both CPV and alkaline electrolyser systems such as the CPV module efficiency and installed capacity electrolyser stack lifetime operating current density and working hours. Our results indicate that in a scenario where the installed capacity of CPV technology matches that of silicon and with an electrolyser operating current density of 0.7 A cm2 the LCOH from CPV electrolysis systems can be.
Expert Perceptions of Game-changing Innovations towards Net Zero
Dec 2022
Publication
Current technological improvements are yet to put the world on track to net-zero which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation but their limitations availability and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts’ perspective aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey 260 climate and energy experts assessed transformative innovations against their mitigation potential at-scale availability and/or widescale adoption and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations with next generation energy storage alternative building materials iron-ore electrolysis and hydrogen in steelmaking emerging as top priorities. Instead technologies highly represented in well-below-2◦C scenarios seemingly feature considerable and impactful delays hinting at the need to re-evaluate their role in future pathways. Experts’ assessments appear to converge more on the potential role of other disruptive innovations including lifestyle shifts and alternative economic models indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes we finally note caveats related to the level of representativeness among the 260 engaged experts the level of their expertise that may have varied across the examined innovations and the potential for subjective interpretation to which the employed linguistic scales may be prone to.
Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification
Jun 2020
Publication
In this study the electrical electrochemical and thermodynamic performance of a PV/T electrolyzer system was investigated and the experimental results were verified with a numerical model. The annual amounts of electrical and thermal energy from the PV/T electrolyzer system were calculated as 556.8 kWh and 1912 kWh respectively. In addition the hydrogen production performance for the PV/T electrolyzer was compared with that of a PV electrolyzer system. The amount of hydrogen was calculated as 3.96 kg annually for the PV system while this value was calculated as 4.49 kg for the PV/T system. Furthermore the amount of hydrogen production was calculated as 4.59 kg for a 65 ◦C operation temperature. The electrical thermal and total energy efficiencies of the PV/T system which were obtained hourly on a daily basis were calculated and varied between 12–13.8% 36.1–45.2% and 49.1–58.4% respectively. The hourly exergy analyses were also carried out on a daily basis and the results showed that the exergy efficiencies changed between 13.8–14.32%. The change in the electrolysis voltage was investigated by changing the current and temperature in the ranges of 200–1600 mA/cm2 A and 30–65 ◦C respectively. While the current and the water temperature varied in the ranges of 400–2350 mA/cm2 and 28.1–45.8 ◦C respectively energy efficiency and exergy efficiency were in the ranges of 57.85–69.45% and 71.1–79.7% respectively.
Controlling the Pressure of Hydrogen-natural Gas Mixture in an Inclined Pipeline
Feb 2020
Publication
This paper discusses the optimal control of pressure using the zero-gradient control (ZGC) approach. It is applied for the first time in the study to control the optimal pressure of hydrogen natural gas mixture in an inclined pipeline. The solution to the flow problem is first validated with existing results using the Taylor series approximation regression analysis and the Runge-Kutta method combined. The optimal pressure is then determined using ZGC where the optimal set points are calculated without having to solve the non-linear system of equations associated with the standard optimization problem. It is shown that the mass ratio is the more effective parameter compared to the initial pressure in controlling the maximum variation of pressure in a gas pipeline.
Residual Tensile Properties of Carbon Fiber Reinforced Epoxy Resin Composites at Elevated Temperatures
Sep 2021
Publication
Carbon fiber reinforced epoxy resin composites have attracted great attention in high pressure hydrogen storage for its light weight and excellent mechanical properties. The degradation of residual mechanical properties at elevated temperature from 20 °C to 450 °C were studied experimentally. The effects of temperature on the tensile strength and failure mode of the composite specimens with stacking sequences of 0° 90° and ±45° (labeled as CF0 CF90 and CF 45) were systematically analyzed followed by the fracture surfaces examination. Results show that the tensile strength residual ratios of the three kinds of specimens decrease significantly with heating temperature increasing. In particular the decomposing temperature of the resin matrix exerts the largest effects on the degradation of tensile strength of CF0 specimen within 450 °C. While the loss of tensile strength of CF90 and CF45 specimens is dependent on the thermal softening of epoxy resin which has closely related to the glass transition temperature. Furthermore the debonding and fiber softening appeared in the CF0 specimens when the temperature reached 450 °C. For CF90 specimens the degradation of bonding strength of epoxy could be found at 150 °C and regarding CF45 specimens delamination cracking between plies occurred extensively when the temperature above 125 °C.
Risk Assessment and Mitigation Evaluation for Hydrogen Vehicles in Private Garages. Experiments and Modelling
Sep 2021
Publication
Governments and local authorities introduce new incentives and regulations for cleaner mobility as part of their environmental strategies to address energy challenges. Fuel cell electric vehicles (FCEVs) are becoming increasingly important and will extend beyond captive fleets reaching private users. Research on hydrogen safety issues is currently led in several projects in order to highlight and manage risks of FCEVs in confined spaces such as tunnels underground parkings repair garages etc. But what about private garages - that involve specific geometries volumes congestion ventilation? This study has been carried out in the framework of PRHyVATE JIP project which aims at better understanding hydrogen build-up and distribution in a private garage. The investigation went through different rates and modes of ventilation. As first step an HAZID (Hazard Identification) has been realized for a generic FCEV. This preliminary work allowed to select and prioritize accidental release scenarios to be explored experimentally with helium in a 40-m3 garage. Several configurations of release ventilation modes and congestion – in transient regime and at steady state – have been tested. Then analytical and numerical calculation approaches have been applied and adjusted to develop a simplified methodology. This methodology takes into account natural ventilation for assessment of hydrogen accumulation and mitigation means optimization. Finally a global risk evaluation – including ignition of a flammable hydrogen-air mixture – has been performed to account for the mostly feared events and to evaluate their consequences in a private garage. Thus preliminary recommendations good practices and safety features for safely parking FCEVs in private garages can be proposed.
An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design
Mar 2023
Publication
The environmental impact of CO2 emissions is widely acknowledged making the development of alternative propulsion systems a priority. Hydrogen is a potential candidate to replace fossil fuels for transport applications with three technologies considered for the onboard storage of hydrogen: storage in the form of a compressed gas storage as a cryogenic liquid and storage as a solid. These technologies are now competing to meet the requirements of vehicle manufacturers; each has its own unique challenges that must be understood to direct future research and development efforts. This paper reviews technological developments for Hydrogen Storage Vessel (HSV) designs including their technical performance manufacturing costs safety and environmental impact. More specifically an up-to-date review of fiber-reinforced polymer composite HSVs was explored including the end-of-life recycling options. A review of current numerical models for HSVs was conducted including the use of artificial intelligence techniques to assess the performance of composite HSVs leading to more sophisticated designs for achieving a more sustainable future.
A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers
Dec 2022
Publication
Hydrogen is one of the energy carriers that has started to play a significant role in the clean energy transition. In the hydrogen ecosystem storing hydrogen safely and with high volumetric density plays a key role. In this regard metal hydride storage seems to be superior to compressed gas storage which is the most common method used today. However thermal management is a challenge that needs to be considered. Temperature changes occur during charging and discharging processes due to the reactions between metal metal hydride and hydrogen which affect the inflow or outflow of hydrogen at the desired flow rate. There are different thermal management techniques to handle this challenge in the literature. When the metal hydride storage tanks are used in integrated systems together with a fuel cell and/or an electrolyzer the thermal interactions between these components can be used for this purpose. This study gives a comprehensive review of the heat transfer during the charging and discharging of metal hydride tanks the thermal management system techniques used for metal hydride tanks and the studies on the thermal management of metal hydride tanks with material streams from the fuel cell and/or electrolyzers.
China's Hydrogen Development Strategy in the Context of Double Carbon Targets
Dec 2022
Publication
As a clean low-carbon efficient and renewable energy source hydrogen has gradually become an important energy carrier to combat climate change and achieve sustainable development in the world. China is now facing the stress of realizing the carbon peak and carbon neutrality goals where hydrogen will play a significant role. Against this backdrop to develop China's hydrogen strategy under the carbon peak and carbon neutrality goals this paper explores the hydrogen resource endowment in China presents the concepts such as Hydrogen Ethics and the Hu's Hydrogen Line and discusses the status quo and existing advantages in hydrogen production storage transport and utilization in China. Six major obstacles and challenges that China's hydrogen energy industry is facing are pointed out i.e. cost problem inadequate hydrogen infrastructures low energy efficiency mismatching the development progress of renewable energy insufficient market demand shortcomings in technology and imperfect policy system. Finally five policy suggestions for the future development of China's hydrogen energy industry are proposed as follows: (1) make an action plan as a response to the national hydrogen development plan; (2) build an international and domestic double-cycle hydrogen economic system; (3) incorporate hydrogen into the establishment of a clean low-carbon safe and efficient energy system; (4) accelerate the technological innovation to form advanced hydrogen technologies; and (5) construct hydrogen-oriented industrial clusters/parks to expand the hydrogen utilization market. It is concluded that for meeting the carbon peak and carbon neutrality goals China should leverage the dual advantages of hydrogen as an energy carrier and an industrial raw material allowing the hydrogen industry to play a synergistic role in ensuring the country's energy security promoting the socio-economic transformation and upgrading and protecting the ecological environment thereby providing a technical option and support for China to achieve the ultimate goal of carbon neutrality.
Recent Advances in Hybrid Water Electrolysis for Energy-saving Hydrogen Production
Nov 2022
Publication
Electricity-driven water splitting to convert water into hydrogen (H2) has been widely regarded as an efficient approach for H2 production. Nevertheless the energy conversion efficiency of it is greatly limited due to the disadvantage of the sluggish kinetic of oxidation evolution reaction (OER). To effectively address the issue a novel concept of hybrid water electrolysis has been developed for energy– saving H2 production. This strategy aims to replace the sluggish kinetics of OER by utilizing thermodynamically favorable organics oxidation reaction to replace OER. Herein recent advances in such water splitting system for boosting H2 evolution under low cell voltage are systematically summarized. Some notable progress of different organics oxidation reactions coupled with hydrogen evolution reaction (HER) are discussed in detail. To facilitate the development of hybrid water electrolysis the major challenges and perspectives are also proposed.
Everything About Hydrogen Podcast: Using Hydrogen to Decarbonise Steel Manufacturing
Mar 2022
Publication
Hydrogen could be used in many hard-to-decarbonize sectors. Foremost amongst them is the steel manufacturing industry. On this episode of EAH we speak with Dr. Martin Pei Executive Vice President and CTO of SSAB and the first Chairman of the Board for Hybrit Development AB. SSAB is a global steel company with a leading position in high-strength steels and related services. Together with their partners LKAB and Vattenfall SSAB are making a unique joint effort to change the Swedish iron and steel industry fundamentally. With HYBRIT technology SSAB aims to be the first steel company in the world to bring fossil-free steel to the market already in 2026 and largely eliminate carbon dioxide emissions from the company's own operations as soon as 2030.
The podcast can be found on their website.
The podcast can be found on their website.
Levelized Cost of Hydrogen for Refueling Stations with Solar PV and Wind in Sweden: On-grid or Off-grid?
Dec 2021
Publication
The European Union expects that hydrogen will play a vital role in future energy systems. Fuel cell electric vehicles currently present a key development path for electrification of the transport sector which requires infrastructure investments of hydrogen refueling stations preferably powered by renewables such as solar and wind energy. The economic feasibility of refueling stations depends on geographical locations. This study introduces a model to identify the key cost components of renewable hydrogen for refueling stations and simulates the performance using solar radiation wind speed and electricity price data in a selection of Swedish cities. The study demonstrates the importance of integrating the electricity grid in green hydrogen production. Wind speed is crucial in reducing the cost whereas solar radiation has less influence. In addition a combination of solar and wind brings better performance in an off-grid scenario. The most encouraging finding is the cost of 35e72 SEK/kg (3.5e7.2 V/kg) which is competitive with reported costs in other EUcountries especially since this cost excludes any government support scheme. The study provides a reference for investors and policy makers foreseeing the industrial landscape for hydrogen energy development.
Optimized Configuration and Operating Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Mar 2022
Publication
Hydrogen refueling stations (HRSs) are critical for the popularity of hydrogen vehicles (fuel cell electric vehicles—FCEVs). However due to high installation investment and operating costs the proliferation of HRSs is difficult. This paper studies HRSs with on-site electrolytic production and hydrogen storage devices and proposes an optimization method to minimize the total costs including both installation investment and operating costs (OPT-ISL method). Moreover to acquire the optimization constraints of hydrogen demand this paper creatively develops a refueling behavior simulation method for different kinds of FCEVs and proposes a hydrogen-demand estimation model to forecast the demand with hourly intervals for HRS. The Jensen–Shannon divergence is applied to verify the accuracy of the hydrogen-demand estimation. The result: 0.029 is much smaller than that of the estimation method in reference. Based on the estimation results and peak-valley prices of electricity from the grid a daily hydrogen generation plan is obtained as well as the optimal capacities of electrolyzers and storage devices. As for the whole costs compared with previous configuration methods that only consider investment costs or operating costs the proposed OPT-ISL method has the least 8.1 and 10.5% less respectively. Moreover the proposed OPT-ISL method shortens the break-even time for HRS from 11.1 years to 7.8 years a decrease of 29.7% so that the HRS could recover its costs in less time.
Reliability Analysis of Pyrotechnic Igniter for Hydrogen-Oxygen Rocket Engine with Low Temperature Combustion Instability Failure Mode
Mar 2022
Publication
To evaluate the functional reliability of the pyrotechnic igniter in the failure mode of unstable combustion at low temperature a reliability and reliability sensitivity analysis method based on the combination of an interior ballistic model and Kriging reliability method is proposed. Through the deterministic interior ballistic simulation the failure mode of low temperature unstable combustion of the pyrotechnic igniter is examined while the random variables are introduced to establish the ignition nonlinear implicit function of the pyrotechnic igniter. The ignition display function of the pyrotechnic igniter is established by the Kriging model which avoids the repeated calculation of true limit state function values. This study provides an efficient approach to evaluate the ignition reliability of the pyrotechnic igniter and compared with the traditional Monte Carlo method to verify the accuracy of the results. Finally reliability-based sensitivity indices are presented to quantify the significance of random parameters. It is shown that the influence of the uncertainties can be precisely described and the diameter of the nozzle plays a dominant role in ignition reliability. Additionally ignition experiments of nozzles with different diameters were performed to verify the result of sensitivity. This can further support the detailed design of the pyrotechnic igniter
Coupling Combustion Simulation and Primary Evaluation of an Asymmetric Motion Diesel Pilot Hydrogen Engine
Jul 2022
Publication
The thermal efficiency and combustion of conventional hydrogen engines cannot be optimized and improved by its symmetric reciprocating. This article introduces an asymmetric motion hydrogen engine (AHE) and investigates its combustion characteristics using diesel pilot ignition. A dynamic model is firstly proposed to describe the asymmetric motion of the AHE and then it is coupled into a multidimensional model for combustion simulation. The effect of asymmetric motion on the AHE combustion is also analyzed by comparing with a corresponding conventional symmetric hydrogen engine (SHE). The results show that the AHE moves slower in compression and faster in expansion than the SHE which brings about higher hydrogen-air mixing level for combustion. The asymmetric motion delays diesel injection to ignite the AHE and its combustion appears later than the SHE which leads to lower pressure and temperature for reducing NO formation. However the AHE faster expansion has a more severe post-combustion effect to reduce isovolumetric heat release level and decrease the energy efficiency.
Open-source Project Feasibility Tools for Supporting Development of the Green Ammonia Value Chain
Nov 2022
Publication
Ammonia plays a vital role in feeding the world through fertilizer production as well as having other industrial uses. However current ammonia production processes rely heavily on fossil fuels mostly natural gas to generate hydrogen as a feedstock. There is an urgent need to re-design and decarbonise the production process to reduce greenhouse emissions and avoid dependence on volatile gas markets and a depleting resource base. Renewable energy driven electrolysis to generate hydrogen provides a viable pathway for producing carbon-free or green ammonia. However a key challenge associated with producing green ammonia is managing low cost but highly variable wind and solar renewable energy generation for hydrogen electrolysis while maintaining reliable operation of the less flexible ammonia synthesis unit. To date green ammonia production has only been demonstrated at pilot scale and optimising plant configurations and scaling up production facilities is an urgent task. Existing feasibility studies have demonstrated the ability to model and cost green ammonia production pathways that can overcome the technical and economic challenges. However these existing approaches are context specific demonstrating the ability to model and cost green ammonia production for defined locations with set configurations. In this paper we present a modelling framework that consolidates the array of configurations previously studied into a single framework that can be tailored to the location of interest. Our open-source green ammonia modelling and costing tool dynamically simulates the integration of renewable energy with a wide range of balancing power and storage options to meet the flexible demands of the green ammonia production process at hourly time resolution over a year or more. Unlike existing models the open-source implementation of our tool allows it to be used by a potentially wide range of stakeholders to explore their own projects and help guide the upscaling of green ammonia as a pathway for decarbonisation. Using Gladstone in Australia as a case study a 1 million tonne per annum (MMTPA) green ammonia plant is modelled and costed using price assumptions for major equipment in 2030 provided by the Australian Energy Market Operator (AEMO). Using a hybrid (solar PV and wind) renewable energy source and Battery Energy Storage System as balancing technology we estimate a levelized cost of ammonia (LCOA) between 0.69 and 0.92 USD kgNH3 -1 . While greater than historical ammonia production costs from natural gas falling renewables costs and emission reduction imperatives suggest a major future role for green ammonia.
Optimization of a Heavy-Duty Hydrogen-Fueled Internal Combustion Engine Injector for Optimum Performance and Emission Level
Jul 2025
Publication
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model with a surrogate-assisted multi-objective genetic algorithm (MOGA). The CFD model was validated using particle image velocimetry (PIV) data from non-reacting flow experiments conducted in an optically accessible research engine developed by Sandia National Laboratories ensuring accurate prediction of in-cylinder flow structures. The optimization focused on two critical geometric parameters: injector hole count and injection angle. Partial indicated mean effective pressure (pIMEP) and in-cylinder NOx emissions were selected as conflicting objectives to balance performance and emissions. Adaptive mesh refinement (AMR) was employed to resolve transient in-cylinder flow and combustion dynamics with high spatial accuracy. Among 22 evaluated configurations including both capped and uncapped designs the injector featuring three holes at a 15.24◦ injection angle outperformed the baseline delivering improved mixture uniformity reduced knock tendency and lower NOx emissions. These results demonstrate the potential of geometrybased optimization for advancing hydrogen-fueled LPDI engines toward cleaner and more efficient combustion strategies.
Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa
Dec 2022
Publication
The rising demand for energy and the aim of moving away from fossil fuels and to low-carbon power have led many countries to move to alternative sources including solar energy wind geothermal energy biomass and hydrogen. Hydrogen is often considered a “missing link” in guaranteeing the energy transition providing storage and covering the volatility and intermittency of renewable energy generation. However due to potential injustice with regard to the distribution of risks benefits and costs (i.e. in regard to competing for land use) the large-scale deployment of hydrogen is a contested policy issue. This paper draws from a historical analysis of past energy projects to contribute to a more informed policy-making process toward a more just transition to the hydrogen economy. We perform a systematic literature review to identify relevant conflict factors that can influence the outcome of hydrogen energy transition projects in selected Economic Community of West African States countries namely Nigeria and Mali. To better address potential challenges policymakers must not only facilitate technology development access and market structures for hydrogen energy policies but also focus on energy access to affected communities. Further research should monitor hydrogen implementation with a special focus on societal impacts in producing countries.
Assessing Damaged Pipelines Transporting Hydrogen
Jun 2022
Publication
There is worldwide interest in transporting hydrogen using both new pipelines and pipelines converted from natural gas service. Laboratory tests investigating the effect of hydrogen on the mechanical properties of pipeline steels have shown that even low partial pressures of hydrogen can substantially reduce properties such as reduction in area and fracture toughness and increase fatigue crack growth rates. However qualitative arguments suggest that the effects on pipelines may not be as severe as predicted from the small scale tests. If the trends seen in laboratory tests do occur in service there are implications for the assessment of damage such as volumetric corrosion dents and mechanical interference. Most pipeline damage assessment methods are semi-empirical and have been calibrated with data from full scale tests that did not involve hydrogen. Hence the European Pipeline Research Group (EPRG) commissioned a study to investigate damage assessment methods in the presence of hydrogen. Two example pipeline designs were considered both were assessed assuming a modern high performance material and an older material. From these analyses the numerical results show that the high toughness material will tolerate damage even if the properties are degraded by hydrogen exposure. However low toughness materials may not be able to tolerate some types of severe damage. If the predictions are realistic operators may have to repair more damage or reduce operating pressures. Furthermore damage involving cracking may not Page 2 of 22 satisfy the ASME B31.12 requirements for preventing time dependent crack growth. Further work is required to determine if the effects predicted using small scale laboratory test data will occur in practice.
Simulation of Hydrogen Mixing and Par Operation During Accidental Release in an LH2 Carrier Engine Room
Sep 2021
Publication
Next-generation LH2 carriers may use the boil-off gas from the cargo tanks as additional fuel for the engine. As a consequence hydrogen pipes will enter the room of the ship’s propulsion system and transport hydrogen to the main engine. The hydrogen distribution resulting from a postulated hydrogen leak inside the room of the propulsion system has been analyzed by means of Computational Fluid Dynamics (CFD). In a subsequent step simulations with passive auto-catalytic recombiners (PARs) were carried out in order to investigate if the recombiners can increase the safety margins during such accident scenarios. CFD enables a 3D prediction of the transient distribution with a high resolution allowing to identify local accumulation of hydrogen and consequently to identify optimal PAR positions as well as to demonstrate the efficiency of the PARs. The simulation of the unmitigated reference case reveals a strong natural circulation driven by the density difference of hydrogen and the incoming cold air from the ventilation system. Globally this natural circulation dilutes the hydrogen and removes a considerable amount from the room of the ship’s propulsion system via the ventilation ducts. However a hydrogen accumulation beyond the flammability limit is identified below the first ceiling above the leak position and the back-side wall of the engine room. Based on these findings suitable positions for recombiners were identified. The design objectives of the PAR system were on the one hand to provide both high instantaneous and integral removal rate and on the other hand to limit build-up of flammable clouds by means of depletion and PAR induced mixing processes. The simulations performed with three different PAR arrangements (variation of large and<br/>small PAR units at different positions) confirm that the PARs reduce efficiently the hydrogen<br/>accumulations.
Experimental Investigation of Stress Corrosion on Supercritical CO2 Transportation Pipelines Against Leakage for CCUS Applications
Nov 2022
Publication
Carbon Capture Utilization and Storage (CCUS) is one of the key technologies that will determine how humans address global climate change. For captured CO2 in order to avoid the complications associated with two-phase flow most carbon steel pipelines are operated in the supercritical state on a large scale. A pipeline has clear Stress Corrosion Cracking (SCC) sensitivity under the action of stress and corrosion medium which will generally cause serious consequences. In this study X70 steel was selected to simulate an environment in the process of supercritical CO2 transportation by using high-temperature high-pressure Slow Strain Rate Tensile (SSRT) tests and high-temperature high-pressure electrochemical test devices with different O2 and SO2 contents. Studies have shown that 200 ppm SO2 shows a clear SCC sensitivity tendency which is obvious when the SO2 content reaches 600 ppm. The SCC sensitivity increases with the increase of SO2 concentration but the increase amplitude decreases. With the help of advanced microscopic characterization techniques such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) through the analysis of fracture and side morphology the stress corrosion mechanism of a supercritical CO2 pipeline containing SO2 and O2 impurities was obtained by hydrogen embrittlement fracture characteristics. With the increase of SO2 content the content of Fe element decreases and the corrosion increases demonstrating that SO2 plays a leading role in electrochemical corrosion. This study further strengthens the theoretical basis of stress corrosion of supercritical CO2 pipelines plays an important role in preventing leakage of supercritical CO2 pipelines and will provide guidance for the industrial application of CCUS.
Everything About Hydrogen Podcast: Decarbonizing Steel and Industrial Manufacturing
May 2022
Publication
H2 Green Steel was founded in 2020 with the aim to build a large-scale green steel production in northern Sweden. H2 Green Steel is on a mission to undertake the global steel industry’s greatest ever technological shift. By 2024 H2 Green Steel will be in production at their Boden site and by 2030 will produce five million tonnes of green steel annually. Vargas co-founder and a major shareholder in Northvolt is also H2 Green Steel’s founder and largest shareholder. The EAH team speaks with Kajsa Ryttberg-Wallgren head of the Hydrogen Business Unit at H2 Green Steel.
The podcast can be found on their website
The podcast can be found on their website
Effects of Hydrogen Mixture Ratio and Scavenging Air Temperature on Combustion and Emission Characteristics of a 2-stroke Marine Engine
Nov 2022
Publication
A numerical study was conducted to investigate the effects of hydrogen and scavenging air temperature (SAT) on the combustion and emission characteristics of a 2-stroke heavy-duty dual-fuel (DF) marine engine at full load. The engine had a 700 mm bore fuelled with hydrogen–methane (H2-CH4) mixtures. Three-dimensional simulations of the combustion and emission formation inside the engine cylinder with various H2 contents in the H2-CH4 mixture were performed. ANSYS FLUENT simulation software was used to analyse the engine performance in-cylinder pressure temperature and emission characteristics. The CFD models were validated against the measured data recorded from the engine experiments. The results showed that an increase in the in-cylinder peak pressure increased the engine power when the H2 content in the H2-CH4 mixture increased. Notably CO2 and soot emissions decreased (up to more than 65%) when the H2 content in the gaseous mixture increased to 50%. Specific NO emissions in the DF modes were lower than that of the diesel mode when the H2 content in the gaseous mixture was lower than 40%. However they increased compared to the diesel mode when the H2 content continued to increase. This limits the H2 amount that should be used in a gaseous mixture creating NO emissions. The results also showed that the SAT cooling method can further reduce emission problems while enhancing engine power. In particular reducing the SAT to 28 ◦C in the gaseous mixture with 10% H2 ensured that the DF mode emitted the lowest NO emissions compared to the diesel mode. This reduced NO emissions by 37.92% compared to the measured NO emissions of the research engine (a Tier II marine engine). This study successfully analysed the benefits of using an H2-CH4 mixture as the primary fuel and the SAT cooling method in a 2-stroke ME-GI heavy-duty marine engine.
An Effective Optimisation Method for Coupled Wind–Hydrogen Power Generation Systems Considering Scalability
Jan 2023
Publication
A wind–hydrogen coupled power generation system can effectively reduce the power loss caused by wind power curtailment and further improve the ability of the energy system to accommodate renewable energy. However the feasibility and economy of deploying such a power generation system have not been validated through large‐scale practical applications and the economic comparison between regions and recommendations on construction are still lacking. In order to solve the aforementioned problems this paper establishes an economic analysis model for the wind–hydrogen coupled power generation system and proposes a linear optimisation‐based priority analysis method focusing on the major net present value for regional energy system as well as a cost priority analysis method for hydrogen production within sample power plants. The case study proves the effectiveness of the proposed analysis methods and the potential to develop wind–hydrogen coupled power generation systems in various provinces is compared based on the national wind power data in recent years. This provides recommendations for the future pilot construction and promotion of wind–hydrogen coupled power generation systems in China.
Wind Resource Assessment and Techno-economic Analysis of Wind Energy and Green Hydrogen Production in the Republic of Djibouti
Jul 2022
Publication
The ever increasing energy demand of the Republic of Djibouti leads to the diversification of energy sources. While a few studies have explored the prospects of green hydrogen production from wind energy in developing countries and particularly in Africa the economic risk analysis of wind power production for electricity generation and green hydrogen production has not been assessed for African countries. This study evaluates for the first time the potential of wind energy for electricity and green hydrogen production in the Republic of Djibouti. In this study wind speed characteristics were analyzed using wind data measured at five meteorological stations from 2015 to 2019. The technoeconomic analysis of five wind farms with a total capacity of 450 MW is performed. Levelized cost of energy production (LCOE) levelized cost of green hydrogen production (LCOH) sensitivity analysis Monte Carlo simulation and economic performance indicators are presented. Results reveal that the annual wind speed varies between 5.52 m/s and 9.01 m/s for the five sites. ERA5 wind reanalysis indicates that the seasonal variability of wind is stable between different years. The proposed wind farms estimate 1739 GWh per year of electrical energy with LCOE ranging from 6.94 to 13.30 US cents/kWh which is less than the locale electricity tariff. The production cost of green hydrogen was competitive with LCOH ranging from 1.79 to 3.38 US $/kg H2. The sensitivity analysis shows that the most relevant parameters in the economic analysis are the initial investment cost the interest rate and the factor capacity.
Numerical Analysis on the Mechanism of Blast Mitigation by Water Droplets
Sep 2021
Publication
Hydrogen has a high risk of ignition owing to its extremely low ignition energy and wide range of flammability. Therefore acquiring parameters relating to safe usage is of particular interest. The ignition of hydrogen generates combustion processes such as detonation and deflagration which may produce a blast wave. The severity of injuries sustained from a blast wave is determined by its strength. To reduce the physical hazards caused by explosion there is a need for some concepts for attenuating explosions and blast waves. In the present study we used water droplets as a material to reduce the blast wave strength. Numerical analysis of the interaction between blast waves and water droplets in a shock tube was conducted to understand the mitigation mechanism of blast wave. In this report we numerically modelled the experiment conducted by Mataradze et al. [1] to understand the main factor of blast mitigation by water droplets. In order to quantitatively clarify the mitigation effect of water droplets on the blast wave especially by quasi-steady drag here we conducted parameter studies on water droplet sprayed region. From this calculation it was suggested that the location of water droplet sprayed layer did not affect the blast mitigation effect at far side of the high explosives.
Novel Carbon-neutral Hydrogen Production Process of Steam Methane Reforming Integrated with Desalination Wastewater-based CO2 Utilization
Nov 2022
Publication
Steam methane reforming (SMR) process is facing serious greenhouse effect problems because of the significant CO2 emissions. To reduce pollution caused by gaseous emissions desalination wastewater can be used because it contains highly concentrated useful mineral ions such as Ca2+ Mg2+ and Na+ which react with carbonate ions. This study proposes a novel SMR process for carbon-neutral hydrogen production integrated with desalination wastewater-based CO2 utilization. A process model for the design of a novel SMR process is proposed; it comprises the following steps: (1) SMR process for hydrogen production; and (2) desalination wastewater recovery for CO2 utilization. In the process model the CO2 from the SMR process was captured using the Na+ ion and the captured ionic CO2 was carbonated using the Ca2+ and Mg2+ ions in desalination wastewater. The levelized cost of hydrogen (LCOH) was assessed to demonstrate the economic feasibility of the proposed process. Therefore 94.5 % of the CO2 from the SMR process was captured and the conversion of MgCO3 and CaCO3 was determined to be 60 % and 99 % respectively. In addition the CO2 emission via the proposed process was determined to be 0.016 kgCO2/kgH2 and the LCOH was calculated to be 2.6 USD/kgH2.
Everything About Hydrogen Podcast: Global Energy Majors in the Hydrogen Space
Jul 2022
Publication
On today’s episode of Everything About Hydrogen we are speaking with Paul Bogers Vice President for Hydrogen at Shell. As a company Shell needs no introduction but the company’s work and investments in the hydrogen space make it a global leader in the energy transition especially when it comes to the hydrogen component. Paul is amongst the executives at Shell that are working to bring their hydrogen vision to fruition and it is great to have him with us on the show today.
The podcast can be found on their website
The podcast can be found on their website
No more items...