Publications
Hydrogen Inhibition as Explosion Prevention in Wet Metal Dust Removal Systems
Mar 2022
Publication
Hydrogen energy attracts an amount of attention as an environmentally friendly and sustainable energy source. However hydrogen is also flammable. Hydrogen fires and explosions might occur in wet-dust-removal systems if accumulated aluminum dust reacts with water. Hydrogen inhibition is a safe method to address these issues. For this purpose we used sodium citrate a renewable and nontoxic raw material to inhibit H2 formation. Specifically hydrogen inhibition experiments with sodium citrate were carried out using custom-built equipment developed by our research group. When the concentration of sodium citrate solution was in the range of 0.4–4.0 g/L a protective coating was formed on the surface of the Al particles which prevented them from contacting with water. The inhibitory effect was achieved when the concentration of sodium citrate was in a certain range and too much or too little addition may reduce the inhibitory effect. In this paper we also discuss the economic aspects of H2 inhibition with this method because it offers excellent safety advantages and could be incorporated on a large scale. Such an intrinsic safety design of H2 inhibition to control explosions in wet-dust-removal systems could be applied to ensure the safety of other systems such as nuclear reactors.
Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development
Jun 2022
Publication
This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray renewable electrolysis or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First the production cost of gray hydrogen showed an increasing trend until 2015 but started declining after 2015. Second the renewable electrolysis hydrogen cost was the highest of all but has shown a gradual declining trend since 2015. Finally the biomass hydrogen cost has been relatively cheaper up until 2015 after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO2 emissions in the future but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.
Assessment of Operability and Inspection, Maintenance and Repair Requirements for Transmission Pipelines and Installations in Hydrogen Service
Apr 2021
Publication
This report has been prepared for Hytechnical work programme to support the technical strategy for repurposing existing transmission pipelines and installations for the transportation and distribution of hydrogen and natural gas / hydrogen blends. The aim of the Hytechnical work programme is to support the implementation of the IGEM supplements to the standards TD/1 TD/13 TD/3 and TD/4.<br/>The report covers a desk study into the requirements for the inspection maintenance operation and repair of above 7 bar natural gas pipelines and installations designed and operated in accordance with the standards existing IGEM/TD/1 and IGEM/TD/13 which are repurposed for hydrogen service.
How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance
Nov 2019
Publication
Hydrogen which is expected to be a popular type of next-generation energy is drawing attention as a fuel option for the formation of a low-carbon society. Because hydrogen energy is different in nature from existing energy technologies it is necessary to promote sufficient social recognition and acceptability of the technology for its widespread use. In this study we focused on the effect of initiatives to improve awareness of hydrogen energy technology thereby investigating the acceptability of hydrogen energy to those participating in either several hydrogen energy technology introduction events or professional seminars. According to the survey results participants in the technology introduction events tended to have lower levels of hydrogen and hydrogen energy technology knowledge than did participants in the hydrogen-energy-related seminars but confidence in the technology and acceptability of the installation of hydrogen stations near their own residences tended to be higher. It was suggested that knowledge about hydrogen and technology could lead to improved acceptability through improved levels of trust in the technology. On the other hand social benefits such as those for the environment socioeconomics and energy security have little impact on individual levels of acceptance of new technology.
Molten Carbonate Fuel Cells for Simultaneous CO2 Capture, Power Generation, and H2 Generation
Mar 2022
Publication
This article presents a new technology for the generation of power and steam or other process heat with very low CO2 emissions. It is well known that cogeneration of electricity and steam is highly efficient and that amine units can be used to remove CO2 from combustion flue gas but that the amine unit consumes a significant amount of steam and power reducing the overall system efficiency. In this report the use of molten carbonate fuel cells (MCFCs) to capture CO2 from cogen units is investigated and shown to be highly efficient due to the additional power that they produce while capturing the CO2. Furthermore the MCFCs are capable of reforming methane to hydrogen simultaneous to the power production and CO2 capture. This hydrogen can either be recycled as fuel for consumption by the cogen or MCFCs or exported to an independent combustion unit as low carbon fuel thereby decarbonizing that unit as well. The efficiency of MCFCs for CO2 capture is higher than use of amines in all cases studied often by a substantial margin while at the same time the MCFCs avoid more CO2 than the amine technology. As one example the use of amines on a cogeneration unit can avoid 87.6% of CO2 but requires 4.91 MJ/kg of additional primary energy to do so. In contrast the MCFCs avoid 89.4% of CO2 but require only 1.37 MJ/kg of additional primary energy. The high thermal efficiency and hydrogen export option demonstrate the potential of this technology for widespread deployment in a low carbon energy economy.
Thermodynamic Evaluation of Bi-directional Solid Oxide Cell Systems Including Year-round Cumulative Exergy Analysis
Jun 2018
Publication
Bi-directional solid oxide cell systems (Bi-SOC) are being increasingly considered as an electrical energy storage method and consequently as a means to boost the penetration of renewable energy (RE) and to improve the grid flexibility by power-to-gas electrochemical conversion. A major advantage of these systems is that the same SOC stack operates as both energy storage device (SOEC) and energy producing device (SOFC) based on the energy demand and production. SOEC and SOFC systems are now well-optimised as individual systems; this work studies the effect of using the bi-directionality of the SOC at a system level. Since the system performance is highly dependent on the cell-stack operating conditions this study improves the stack parameters for both operation modes. Moreover the year-round cumulative exergy method (CE) is introduced in the solid oxide cell (SOC) context for estimating the system exergy efficiencies. This method is an attempt to obtain more insightful exergy assessments since it takes into account the operational hours of the SOC system in both modes. The CE method therefore helps to predict more accurately the most efficient configuration and operating parameters based on the power production and consumption curves in a year. Variation of operating conditions configurations and SOC parameters show a variation of Bi-SOC system year-round cumulative exergy efficiency from 33% to 73%. The obtained thermodynamic performance shows that the Bi-SOC when feasible can prove to be a highly efficient flexible power plant as well as an energy storage system.
Safety Design and Engineering Solution of Fuel Cell Powered Ship in Inland Waterway of China
Oct 2021
Publication
From the perspective of risk control when hydrogen fuel and fuel cells are used on ships there is a possibility of low-flash fuel leakage leading to the risk of explosion. Since the fuel cell space (cabin for fuel cell installations) is an enclosed space any small amount of leakage must be handled properly. In ship design area classification is a method of analyzing and classifying the areas where explosive gas atmospheres may occur. If the fuel cell space is regarded as a hazardous area all the electrical devices inside it must be explosion-proof type which will make the ship’s design very difficult. This paper takes a Chinese fuel cell powered ship as an example to analyze its safety. Firstly the leakage rates of fuel cell modules valves and connectors are calculated. Secondly the IEC60079-10-1 algorithm is used to calculate the risk level of the fuel cell space. Finally the ship and fuel cells are optimized and redesigned and the risk level of the fuel cell space is recalculated and compared. The result shows that the optimized fuel space risk level could be reduced to the level of the non-hazardous zone.
New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization
Oct 2021
Publication
The achievement of a carbon-free emissions economy is one of the main goals to reduce climate change and its negative effects. Scientists and technological improvements have followed this trend improving efficiency and reducing carbon and other compounds that foment climate change. Since the main contributor of these emissions is transportation detaching this sector from fossil fuels is a necessary step towards an environmentally friendly future. Therefore an evaluation of alternative fuels will be needed to find a suitable replacement for traditional fossil-based fuels. In this scenario hydrogen appears as a possible solution. However the existence of the drawbacks associated with the application of H2 -ICE redirects the solution to dual-fuel strategies which consist of mixing different fuels to reduce negative aspects of their separate use while enhancing the benefits. In this work a new combustion modelling approach based on machine learning (ML) modeling is proposed for predicting the burning rate of different mixtures of methane (CH4 ) and hydrogen (H2). Laminar flame speed calculations have been performed to train the ML model finding a faster way to obtain good results in comparison with actual models applied to SI engines in the virtual engine model framework.
Seasonal Hydrogen Storage for Sustainable Renewable Energy Integration in the Electricity Sector: A Case Study of Finland
Nov 2021
Publication
Wind power is rapidly growing in the Finnish grid and Finland’s electricity consumption is low in the summer compared to the winter. Hence there is a need for storage that can absorb a large amount of energy during summer and discharge it during winter. This study examines one such storage technology geological hydrogen storage which has the potential to store energy on a GWh scale and also over longer periods of time. Finland’s electricity generation system was modelled with and without hydrogen storage using the LEAP-NEMO modeling toolkit. The results showed about 69% decline in carbon dioxide emissions as well as a decline in the fossil fuel-based power accompanied with a higher capability to meet demand with less imports in both scenarios. Finally a critical analysis of the Finnish electricity mix with and without hydrogen storage is presented.
Hydrogen-assisted Fatigue Crack Growth: Pre-charging vs In-situ Testing in Gaseous Environments
Mar 2023
Publication
We investigate the implications of conducting hydrogen-assisted fatigue crack growth experiments in a hydrogen gas environment (in-situ hydrogen charging) or in air (following exposure to hydrogen gas). The study is conducted on welded 42CrMo4 steel a primary candidate for the future hydrogen transport infrastructure allowing us to additionally gain insight into the differences in behavior between the base steel and the coarse grain heat affected zone. The results reveal significant differences between the two testing approaches and the two weld regions. The differences are particularly remarkable for the comparison of testing methodologies with fatigue crack growth rates being more than one order of magnitude higher over relevant loading regimes when the samples are tested in a hydrogen-containing environment relative to the pre-charged samples. Aided by finite element modelling and microscopy analysis these differences are discussed and rationalized. Independent of the testing approach the heat affected zone showed a higher susceptibility to hydrogen embrittlement. Similar microstructural behavior is observed for both testing approaches with the base metal exhibiting martensite lath decohesion while the heat affected zone experienced both martensite lath decohesion and intergranular fracture.
Everything About Hydrogen Podcast: Hydrogen from Waste
Mar 2021
Publication
On this episode of EAH the team is joined by Tim Yeo Chairman of Powerhouse Energy to talk about the work they are doing in the waste-to-energy space and how they see the sector evolving in the coming years.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Building Europe's Hydrogen Mobility Network
Jan 2020
Publication
On this weeks episode the team are talking all things hydrogen with Jacob Krogsgaard the CEO of Everfuel a leading supplier of green hydrogen for mobility and industry in Europe. Since its establishment by Nel and a Consortium of parties and investors Everfuel has become a market leader in establishing green hydrogen solutions for mobility in Europe and has recently expanded into areas such as power-to-gas as well. The team catch up with Jacob on Everfuels business model the establishment of the H2Bus Consortium Jacob’s views on how the market for green hydrogen is evolving in Europe and where he sees the greatest early potential for scaling.…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Petroleum Sector-Driven Roadmap for Future Hydrogen Economy
Nov 2021
Publication
In the climate change mitigation context based on the blue hydrogen concept a narrative frame is presented in this paper to build the argument for solving the energy trilemma which is the possibility of job loss and stranded asset accumulation with a sustainable energy solution in gas- and oil-rich regions especially for the Persian Gulf region. To this aim scientific evidence and multidimensional feasibility analysis have been employed for making the narrative around hydrogen clear in public and policy discourse so that choices towards acceleration of efforts can begin for paving the way for the future hydrogen economy and society. This can come from natural gas and petroleum-related skills technologies experience and infrastructure. In this way we present results using multidimensional feasibility analysis through STEEP and give examples of oil- and gas-producing countries to lead the transition action along the line of hydrogen-based economy in order to make quick moves towards cost effectiveness and sustainability through international cooperation. Lastly this article presents a viewpoint for some regional geopolitical cooperation building but needs a more full-scale assessment.
Notch-induced Anisotropic Fracture of Cold Drawn Pearlitic Steels and the Associated Crack Path Deflection and Mixed-mode Stress State: A Tribute to Masaccio
Jul 2018
Publication
This paper deals with notch-induced anisotropic fracture behavior of progressively cold drawn pearlitic steels on the basis of their microstructural evolution during manufacturing by multi-step cold drawing that produces slenderizing and orientation of the pearlitic colonies together with densification and orientation of the Fe/Fe3C lamellae reviewing previous research by the author. Results of fracture test using notched specimens of cold drawn pearlitic steels with different degrees of cold drawing (distinct levels of strain hardening) in air and hydrogen environment shows: (i) the key impact of the colonies and lamellae alignment and orientation on notch-induced fracture producing anisotropic fracture behavior with its related crack path deflection (or fracture path deviation); (ii) the necessity of both stress triaxiality (constraint) and microstructural orientation (colonies/lamellae) alignment to produce fracture path deflection; (iii) hydrogen presence (the circumstance) promotes crack path deviation in addition to the inherent microstructural anisotropy created by cold drawing; (iv) the anisotropic fracture path with a stepped profile in cold drawn pearlitic steel consisting of deflections and deviations from the initial transverse fracture path in mode I resembles Masaccio’s Tribute Money painting with its mountains at the background so that the present paper can be considered as a Tribute to Masaccio.
Analysis of the Environmental Degradation Effects on the Cables of “La Arena” Bridge (Spain)
Sep 2017
Publication
After nearly 25 years of service some of the wires of the tendons of “La Arena” bridge (Spain) started to exhibit the effects of environmental degradation processes. “La Arena” is cable-stayed bridge with 6 towers and a reference span between towers of about 100 meters. After a maintenance inspection of the bridge evidences of corrosion were detected in some of the galvanized wires of the cables. A more in-deep analysis of these wires revealed that many of them exhibited loss of section due to the corrosion process. In order to clarify the causes of this degradation event and to suggest some remedial actions an experimental program was designed. This program consisted of tensile and fatigue tests on some strand samples of the bridge together with a fractographic analysis of the fracture surfaces of the wires its galvanized layer thickness and some hydrogen measurements (hydrogen embrittlement could be another effect of the environmental degradation process).Once the type and extension of the flaws in the wires was characterized a structural integrity assessment of the strands was performed with the aim of quantifying the margins until failure and establishing some maintenance recommendations.
Boosting Carbon Efficiency of the Biomass to Liquid Process with Hydrogen from Power: The Effect of H2/CO Ratio to the Fischer-Tropsch Reactors on the Production and Power Consumption
Jun 2019
Publication
Carbon efficiency of a biomass to liquid process can be increased from ca. 30 to more than 90% by adding hydrogen generated from renewable power. The main reason is that in order to increase the H2/CO ratio after gasification to the value required for Fischer-Tropsch (FT) synthesis the water gas shift reaction step can be avoided; instead a reversed water gas shift reactor is introduced to convert produced CO2 to CO. Process simulations are done for a 46 t/h FT biofuel production unit. Previous results are confirmed and it is shown how the process can be further improved. The effect of changing the H2/CO ratio to the Fischer-Tropsch synthesis reactors is studied with the use of three different kinetic models. Keeping the CO conversion in the reactors constant at 55% the volume of the reactors decreases with increasing H2/CO ratio because the reaction rates increase with the partial pressure of hydrogen. Concurrently the production of C5+ products and the consumption of hydrogen increases. However the power required per extra produced liter fuel also increases pointing at optimum conditions at a H2/CO feed ratio significantly lower than 2. The trends are the same for all three kinetic models although one of the models is less sensitive to the hydrogen partial pressure. Finally excess renewable energy can be transformed to FT syncrude with an efficiency of 0.8–0.88 on energy basis.
Building Hydrogen Competence, a Technology Aligned Skills and Knowledge Approach
Sep 2021
Publication
There is a pressing need for a framework and strategic approach to be taken to workforce safety training requirements of new hydrogen projects. It is apparent that organisations embarking on projects utilizing or producing green hydrogen need to implement a program of training for their workforce in order to ensure that all personnel within their organisation understand not only the environmental benefits of green hydrogen but also the safety considerations that come with either producing or using hydrogen as a fuel. Energy Transition must be safe to be successful. If such an approach is taken by industry and stakeholders it is also possible to use the high level content as a vehicle and basis to offer public audiences which also require a basic level of understanding in order to fully accept the transition to using hydrogen more widely as a fuel. This will be crucial to the success of national hydrogen strategies. Coeus Energy has developed an innovative framework of training following engagement with operators keen to ensure their duty of care responsibilities have been met. Whilst having highly skilled personnel already employed within their organisations specific hydrogen content is still required for workforce competence. This is where the framework need arises as the knowledge is required at all levels of an organisation.
Cost-optimized Design Point and Operating Strategy of Polymer Electrolyte Membrane Electrolyzers
Nov 2022
Publication
Green hydrogen is a key solution for reducing CO2 emissions in various industrial applications but high production costs continue to hinder its market penetration today. Better competitiveness is linked to lower investment costs and higher efficiency of the conversion technologies among which polymer electrolyte membrane electrolysis seems to be attractive. Although new manufacturing techniques and materials can help achieve these goals a less frequently investigated approach is the optimization of the design point and operating strategy of electrolyzers. This means in particular that the questions of how often a system should be operated and which cell voltage should be applied must be answered. As existing techno-economic models feature gaps which means that these questions cannot be adequately answered a modified model is introduced here. In this model different technical parameters are implemented and correlated to each other in order to simulate the lowest possible levelized cost of hydrogen and extract the required designs and strategies from this. In each case investigated the recommended cost-based cell voltage that should be applied to the system is surprisingly low compared to the assumptions made in previous publications. Depending on the case the cell voltage is in a range between 1.6 V and 1.8 V with an annual operation of 2000e8000 h. The wide range of results clearly indicate how individual the design and operation must be but with efficiency gains of several percent the effect of optimization will be indispensable in the future.
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle
May 2022
Publication
The development of hydrogen energy is an effective solution to the energy and environmental crisis. Hydrogen fuel cells and energy storage cells as hybrid power have broad application prospects in the field of vehicle power. Energy management strategies are key technologies for fuel cell hybrid systems. The traditional optimization strategy is generally based on optimization under the global operating conditions. The purpose of this project is to develop a power allocation optimization method based on real-time load forecasting for fuel cell/lithium battery hybrid electric vehicles which does not depend on specific working conditions or causal control methods. This paper presents an energy-management algorithm based on real-time load forecasting using GRU neural networks to predict load requirements in the short time domain and then the local optimization problem for each predictive domain is solved using a method based on Pontryagin’s minimum principle (PMP). The algorithm adopts the idea of model prediction control (MPC) to transform the global optimization problem into a series of local optimization problems. The simulation results show that the proposed strategy can achieve a good fuel-saving control effect. Compared with the rule-based strategy and equivalent hydrogen consumption strategy (ECMS) the fuel consumption is lower under two typical urban conditions. In the 1800 s driving cycle under WTCL conditions the fuel consumption under the MPC-PMP strategy is 22.4% lower than that based on the ECMS strategy and 10.3% lower than the rules-based strategy. Under CTLT conditions the fuel consumption of the MPC-PMP strategy is 13.12% lower than that of the rule-based strategy and 3.01% lower than the ECMS strategy.
Everything About Hydrogen Podcast: Rethinking Hydrogen Storage with H2GOPOWER
Sep 2019
Publication
For this episode we speak to Enass Abo-Hamed the CEO of H2GOPower about their cutting edge hydrogen storage technology. Below we have attached a few links to the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
Thermodynamic and Ecological Preselection of Synthetic Fuel Intermediates from Biogas at Farm Sites
Jan 2020
Publication
Background: Synthetic fuels based on renewable hydrogen and CO2 are a currently highly discussed piece of the puzzle to defossilize the transport sector. In this regard CO2 can play a positive role in shaping a sustainable future. Large potentials are available as a product of biogas production however occurring in small scales and in thin spatial distributions. This work aims to evaluate suitable synthetic fuel products to be produced at farm sites.<br/>Methods: A thermodynamic analysis to assess the energetic efficiency of synthesis pathways and a qualitative assessment of product handling issues is carried out.<br/>Results: Regarding the technical and safety-related advantages in storage liquid products are the superior option for fuel production at decentralized sites. Due to the economy of scale multi-stage synthesis processes lose economic performance with rising complexity. A method was shown which covers a principle sketch of all necessary reaction separation steps and all compression and heat exchanger units. The figures showed that methanol and butanol are the most suitable candidates in contrast to OME3-5 for implementation in existing transportation and fuel systems. These results were underpin by a Gibbs energy analysis.<br/>Conclusions: As long as safety regulations are met and the farm can guarantee safe storage and transport farm-site production for all intermediates can be realized technically. Ultimately this work points out that the process must be kept as simple as possible favoring methanol production at farm site and its further processing to more complicated fuels in large units for several fuel pathways.
Potential Role of Natural Gas Infrastructure in China to Supply Low-carbon Gases During 2020–2050
Oct 2021
Publication
As natural gas (NG) demand increases in China the question arises how the NG infrastructure fit into a low greenhouse gas (GHG) emissions future towards 2050. Herein the potential role of the NG infrastructure in supplying low-carbon gases during 2020–2050 for China at a provincial resolution was analyzed for different scenarios. In total four low-carbon gases were considered in this study: biomethane bio-synthetic methane hydrogen and low-carbon synthetic methane. The results show that the total potential of low-carbon gas production can increase from 1.21 EJ to 5.25 EJ during 2020–2050 which can replace 20%–67% of the imported gas. In particular Yunnan and Inner Mongolia contribute 17% of China’s low-carbon gas production. As the deployment of NG infrastructure can be very different three scenarios replacing imported pipeline NG were found to reduce the expansion of gas infrastructure by 35%–42% while the three scenarios replacing LNG imports were found to increase infrastructure expansion by 31%–53% as compared to the base case. The cumulative avoided GHG emissions for the 6 analyzed scenarios were 6.0–8.3 Gt CO2. The GHG avoidance costs were highly influenced by the NG price. This study shows that the NG infrastructure has the potential to supply low-carbon gases in China thereby significantly reducing GHG emissions and increasing both China’s short- and long-term gas supply independence.
Building Efficiency- Reducing Energy Demand in the Commercial Sector
Dec 2013
Publication
The report was formally launched on 2nd December in Parliament at a panel debate chaired by Lord Whitty and Oliver Colvile and featured representatives from Government and Industry. The report outlines the case for investment by businesses in the energy efficiency of their buildings and operations and highlights how this could help neutralise the threat to profitability posed by increasing energy bills energy price volatility and an increasing reliance on electricity in the commercial sector. The report highlights that business in the UK have the opportunity to not only reduce energy bills but increase their competitiveness and improve worker productivity through better designed buildings.
Is Hydrogen the Future of Nuclear Energy?
Jan 2008
Publication
The traditionally held belief is that the future of nuclear energy is electricity production. However another possible future exists: nuclear energy used primarily for the production of hydrogen. The hydrogen in turn would be used to meet our demands for transport fuels (including liquid fuels) materials such as steel and fertilizer and peak-load electricity production. Hydrogen would become the replacement for fossil fuels in these applications that consume more than half the world’s energy. Such a future would follow from several factors: (a) concerns about climatic change that limit the use of fossil fuels (b) the fundamental technological differences between hydrogen and electricity that may preferentially couple different primary energy sources with either hydrogen or electricity and (c) the potential for other technologies to competitively produce electricity but not hydrogen. Electricity (movement of electrons) is not fundamentally a large-scale centralized technology that requires centralized methods of production distribution or use. In contrast hydrogen (movement of atoms) is intrinsically a large-scale centralized technology. The large-scale centralized characteristics of nuclear energy as a primary energy source hydrogen production systems and hydrogen storage systems naturally couple these technologies. This connection suggests that serious consideration be given to hydrogen as the ultimate product of nuclear energy and that nuclear systems be designed explicitly for hydrogen production.
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Everything About Hydrogen Podcast: Building Hydrogen Infrastructure with Black & Veatch
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Maryline Daviaud Lewett Director of Business Development for Transformative Technologies at Black & Veatch (B&V). On the show we discuss the role that Engineering Procurement and Construction (EPC) firms are playing in developing hydrogen and fuel cell infrastructure as well as discussing the unique aspects of developing projects in North America. As the leading EPC for hydrogen refuelling stations in North America and a wealth of experience across electric vehicle charging and hydrogen Maryline brings a uniquely well rounded perspective to the discussion and shares a wealth of insights for how the market may evolve. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: The Other Hydrogen Vehicle?
Oct 2019
Publication
For this episode we speak to Amanda Lyne the Managing Director of ULEMCo and the Chair of the UK Hydrogen and Fuel Cell Association (UKHFCA). Below are a few links to some of the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
The Czech Republic's Hydrogen Strategy
Jul 2021
Publication
The Czech Republic’s Hydrogen Strategy is being developed in the context of the Hydrogen Strategy for a climate neutral Europe which reflects the European Green Deal objective of climate neutrality by 2050. The objective of the Strategy is thus to reduce greenhouse gas emissions in such a way that the economy shifts smoothly to low-carbon technologies.
This is associated with two strategic goals:
This is associated with two strategic goals:
- Reduce greenhouse gas emissions
- Stimulate the economic growth
- Volume of low-carbon hydrogen production
- Volume of low-carbon hydrogen consumption
- Infrastructure readiness for hydrogen transport and storage
- Progress in R&D and production of hydrogen technologies
- Low-carbon hydrogen production
- Low-carbon hydrogen use
- Hydrogen transport and storage
- Hydrogen technologies
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
Climate Change Impacts of E-fuels for Aviation in Europe Under Present-day Conditions and Future Policy Scenarios
Jan 2023
Publication
‘E-fuels’ or ‘synthetic fuels’ are hydrocarbon fuels synthesized from hydrogen (H2) and carbon dioxide (CO2) where H2 can be produced via electrolysis of water or steam reforming of natural gas and CO2 is captured from the combustion of a fossil or biogenic source or directly from the atmosphere. E-fuels are drop-in substitutes for fossil fuels but their climate change mitigation benefits are largely unclear. This study evaluates the climate change impacts of e-fuels for aviation by combining different sources of CO2 and H2 up to 2050 under two contrasting policy scenarios. The analysis includes different climate metrics and the effects of near-term climate forcers which are particularly relevant for the aviation sector. Results are produced for European average conditions and for Poland and Norway two countries with high and low emission intensity from their electricity production mix. E-fuels can either have higher or lower climate change impacts than fossil fuels depending on multiple factors such as in order of importance the electricity mix the origin of CO2 the technology for H2 production and the electrolyzer efficiency. The climate benefits are generally higher for e-fuels produced from CO2 of biogenic origin while e-fuels produced from CO2 from direct air capture or fossil fuel combustion require countries with clean electricity to outperform fossil fuels. Synthetic fuels produced from H2 derived from natural gas have higher impacts than fossil fuels even when coupled with carbon capture and storage if CO2 is sourced from fossil fuels or the atmosphere. Climate change impacts of e-fuels improve in the future and they can all achieve considerable climate change mitigation in 2050 relative to fossil jet fuel provided that strict climate policy measures are implemented to decarbonize the electricity sector. Under reduced policy efforts future climate impacts in 2050 of e-fuels from atmospheric or fossil CO2 are still higher than those of fossil jet fuels with an average European electricity mix. This study shows the conditions to maximize the climate change mitigation benefits of e-fuels which essentially depend on progressive decarbonization of the electricity sector and on reduced use of CO2 sourced from fossil fuels.
Everything About Hydrogen Podcast: Greening the Maritime Transport Sector
Nov 2021
Publication
We have been talking about the difficulties of decarbonizing the maritime sector since the beginning of the Everything About Hydrogen podcast. For this episode we finally bring on the experts who are looking to make the changes in maritime and marine operations a reality for a zero-carbon shipping future. The EAH Team sits down with Tomas Tronstad Head of Shipping and Technology for the New Energy Division at Wilhelmsen Group. Founded in Norway in 1861 Wilhelmsen is now a comprehensive global maritime group providing essential products and services to the merchant fleet along with supplying crew and technical management to the largest and most complex vessels ever to sail. Committed to shaping the maritime industry the company also seeks to develop new opportunities and collaborations in renewables zero-emission shipping and marine digitalization. Tomas is helping Wilhelmsen achieve its decarbonization ambitions and we are delighted to share our conversation with him with our listerners!
The podcast can be found on their website
The podcast can be found on their website
Controlled Autoignition of Hydrogen in a Direct-injection Optical Engine
Mar 2021
Publication
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio typically in the range / = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.
Everything About Hydrogen Podcast: Venturing into Hydrogen
Apr 2021
Publication
Since 2014 when the firm was founded within Anglo-American AP Ventures has been at the forefront of investment in hydrogen sector technologies. At the time the firm started the concerns around climate change and investment in renewable energy tech was gearing up but interest in hydrogen as part of the path to a decarbonized future was limited. The founders of AP Ventures felt differently and saw significant potential for hydrogen to offer a means for cleaning up highly carbon intensive sectors such as heavy transport industrial manufacturing and mining operations. Today that vision for hydrogen appears rather prescient. We are delighted to have two members from the team at AP Ventures with us on the show today. The team is joined by Kevin Eggers - a founding partner at AP - and Michell Robson - associate on the firm's investment team.
The podcast can be found on their website
The podcast can be found on their website
Future Heat Series Part 2 - Policy for Heat
Oct 2015
Publication
Policy for Heat: Transforming the System urges Government to implement an ambitious long-term decarbonisation strategy for the heat sector before it’s too late in new inquiry report. The report builds on the work of Part 1 in the Future Heat Series which compared recent decarbonisation pathways and analyses to identify and highlight key policy mechanisms and transitions that are needed in order to decarbonise heat for buildings by 2050. Chaired by Shadow Energy Minister Jonathan Reynolds MP and Conservative MP Rebecca Pow (and also previous MP and member of the Energy and Climate Change Select Committee Dan Byles MP until he stood down at the General Election) the report is written by cross-party think tank group Carbon Connect. The report was published in Parliament at a cross-party debate on Wednesday 14th October. Sponsored by Energy & Utilities Alliance (EUA) and the Institution of Gas Engineers and Managers (IGEM) the report is the second in a cross-party and independent inquiry series.
Everything About Hydrogen Podcast: Hydrogen: The Next Generation
May 2021
Publication
This is the inaugural episode of the EAH: Deep Dive podcast mini-series! Our first episode features the co-founders of Enapter Vaitea Cowan and Jan Justus-Schmidt. Enapter is a young company that has made a big splash in the hydrogen space with their modular scalable AEM electrolyzer technology. Last year they made headlines with their successful public offering on the DAX and the company is expected to be a the forefront of the hydrogen sector again in 2021 as they begin construction of their mass production facility in Germany and announce the upcoming Generation Hydrogen event on May 19 2021.
The podcast can be found on their website
The podcast can be found on their website
Prospects of Integrated Photovoltaic‐Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review
Oct 2021
Publication
Integrated photovoltaic‐fuel cell (IPVFC) systems amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse re‐ search and development attentions over the last few decades due to their potential applications in a hydrogen economy. This article systematically updates the state‐of‐the‐art of IPVFC systems and provides critical insights into the research and development gaps needed to be filled/addressed to advance these systems towards full commercialization. Design methodologies renewable energy‐ based microgrid and off‐grid applications energy management strategies optimizations and the prospects as self‐sustaining power sources were covered. IPVFC systems could play an important role in the upcoming hydrogen economy since they depend on solar hydrogen which has almost zero emissions during operation. Highlighted herein are the advances as well as the technical challenges to be surmounted to realize numerous potential applications of IPVFC systems in unmanned aerial vehicles hybrid electric vehicles agricultural applications telecommunications desalination synthesis of ammonia boats buildings and distributed microgrid applications.
Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive
Jun 2022
Publication
Hydrogen has been attracting attention as a fuel in the transportation sector to achieve carbon neutrality. Hydrogen storage in liquid form is preferred in locomotives ships drones and aircraft because these require high power but have limited space. However liquid hydrogen must be in a cryogenic state wherein thermal insulation is a core problem. Inner materials including glass bubbles multi-layer insulation (MLI) high vacuum and vapor-cooled shields are used for thermal insulation. An analytic study is preferred and proceeds liquid hydrogen tanks due to safety regulations in each country. This study reviewed the relevant literature for thermodynamic modeling. The literature was divided into static dynamic and systematic studies. In summary the authors summarized the following future research needs: The optimal design of the structure including suspension baffle and insulation system can be studied to minimize the boil-off gas (BOG). A dynamic study of the pressure mass flow and vaporizer can be completed. The change of the components arrangement from the conventional diesel–electric locomotive is necessary.
Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis
Mar 2022
Publication
Proton Exchange Membrane (PEM) water electrolysis (WE) produces H2 with a high degree of purity requiring only water and energy. If the energy is provided from renewable energy sources it releases “Green H2” a CO2 -free H2 . PEMWE uses expensive and rare noble metal catalysts which hinder their use at a large industrial scale. In this work the electrocatalytic properties of Transition Metal Phosphides (TMP) catalysts supported on Carbon Black (CB) for Hydrogen Evolution Reaction (HER) were investigated as an alternative to Platinum Group Metals. The physico-chemical properties and catalytic performance of the synthesized catalysts were characterized. In the ex situ experiments the 25% FeP/CB 50% FeP/CB and 50% CoP/CB with overpotentials of −156.0 −165.9 and −158.5 mV for a current density of 100 mA cm−2 showed the best catalytic properties thereby progressing to the PEMWE tests. In those tests the 50% FeP/CB required an overpotential of 252 mV for a current density of 10 mA cm−2 quite close to the 220 mV of the Pt catalyst. This work provides a proper approach to the synthesis and characterization of TMP supported on carbon materials for the HER paving the way for further research in order to replace the currently used PGM in PEMWE.
Everything About Hydrogen Podcast: Why Generate Capital is Excited About the Prospects of Hydrogen
Dec 2019
Publication
On this weeks episode the team are talking all things hydrogen with Jigar Shah the President of Generate Capital and Co-host of the Energy Gang podcast. Jigar Shah has a well earned reputation as one of the most influential voices in the US clean energy market having pioneered no-money down solar with SunEdison and led the not for profit climate group the Carbon War Room. Since its founding in 2014 Generate Capital the company has provided $130 million of funds to a leading fuel cell provide Plug Power meanwhile in October 2019 Jigar declared hydrogen to be the ultimate clean electricity enabler. On the show we ask Jigar why he thinks Hydrogen is becoming interesting for investors today what business models he feels are exciting and offer the most attractive niches for hydrogen technology businesses whilst getting his side of the story on that time he met Chris at a conference…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Ending on a Hy Note
Jul 2021
Publication
This week's show is the last episode of Season 2! To celebrate we invited our friend and colleague Markus Wilthaner partner at McKinsey & Company to come speak with us. Markus has been a leader in the hydrogen space for the past ten years and has drafted a number of the Hydrogen Council's reports since its founding including the newly released - and highly anticipated - Hydrogen Insights 2021 (link below). In this episode we speak with Markus about the state of the market and the innovation he has seen in the last couple of years that make hydrogen a critical part of the energy transition. We had a lot of fun recording this interview and it was the perfect way to end a fantastic EAH season!
The podcast can be found on their website
The podcast can be found on their website
Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies
Oct 2020
Publication
A common sustainability issue arising in production systems is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas coal gasification water electrolysis via proton exchange membrane fuel cell (PEM) solid oxide electrolyzer cell (SOEC) biomass gasification and reforming and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope Water scarcity footprint (WSF) quantified using Available Water Remaining (AWARE) method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway identify the drivers of environmental impact quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.
Everything About Hydrogen Podcast: Hydrogen Technology: The Engineer's Perspective
Sep 2020
Publication
The team are joined by Dr. Jenifer Baxter of the Institution for Mechanical Engineers (IMECHE). Dr. Baxter is based in the UK and is the Chief Engineer at IMECHE. We often focus heavily on the business cases and development models at the heart of the hydrogen economy here at EAH. On this episode we bring the technical discussion to the forefront and speak with Dr. Baxter about the technical advantages and the challenges that hydrogen presents as an essential part of the path to decarbonizing the future. The team's conversation is a can't miss exploration of a wide range of potential applications for hydrogen technologies that brings a new and essential perspective to the podcast. Don't miss out on EAH's newest episode where we get the engineer's perspective on the future of hydrogen!
The podcast can be found on their website
The podcast can be found on their website
Comprehensive Investigation of Solar-based Hydrogen and Electricity Production in Iran
Jun 2021
Publication
Hydrogen is a clean and environmentally friendly energy vector that can play an important role in meeting the world’s futureenergy needs. Therefore a comprehensive study of the potential for hydrogen production from solar energy could greatlyfacilitate the transition to a hydrogen economy. Because by knowing the exact amount of potential for solar hydrogenproduction the cost-effectiveness of its production can be compared with other methods of hydrogen production. Consideringthe above it can be seen that so far no comprehensive study has been done on finding the exact potential of solar hydrogenproduction in different stations of Iran and finding the most suitable station. Therefore in the present work for the first timeusing the HOMER and ArcGIS softwares the technical-economic study of solar hydrogen production at home-scale was done.The results showed that Jask station with a levelized cost of energy equal to $ 0.172 and annual production of 83.8 kg ofhydrogen is the best station and Darab station with a levelized cost of energy equal to $ 0.286 and annual production of 50.4 kgof hydrogen is the worst station. According to the results other suitable stations were Bushehr and Deyr and other unsuitablestations were Anzali and Khalkhal. Also in 102 under study stations 380 MW of solar electricity equivalent to 70.2 tons ofhydrogen was produced annually. Based on the geographic information system map it is clear that the southern half of Iranespecially the coasts of the Persian Gulf and the sea of Oman is suitable for hydrogen production and the northernnortheastern northwestern and one region in southern of Iran are unsuitable for hydrogen production. The authors of thisarticle hope that the results of the present work will help the energy policymakers to create strategic frameworks and a roadmapfor the production of solar hydrogen in Iran.
Everything About Hydrogen Podcast: Giga-watt it Takes to Scale Green Hydrogen (and Ammonia)
Feb 2021
Publication
How do we get green hydrogen (and green ammonia) production to scale and make it cost competitive? It's a great question and we ask it all the time on the show. Well Alicia Eastman Co-founder & Managing Director of InterContinental Energy (ICE) may be one of the best authorities in the world on this topic and she joins us on this episode of EAH to tell the team all about her and ICE's work developing the Asian Renewable Energy Hub (AREH). Located in Western Australia the AREH when completed will be the largest renewable energy project by total generation capacity on the planet. At 26 GW it surpasses even the likes of the Three Gorges Dam and will act as a central production and distribution point for huge quantities of clean hydrogen and ammonia for offtakers and customers across APAC and beyond. The AREH is a truly massive project that has global implications for the global energy landscape of the future.
The podcast can be found on their website.
The podcast can be found on their website.
Everything About Hydrogen Podcast: ITM Power
Sep 2019
Publication
On this weeks show we discuss with Graham Cooley the CEO of ITM Power how his company has expanded from a research company on AIM in the early 2000’s to one of the largest electrolyser manufacturers in the world. On the show we also ask Graham to talk about how the hydrogen market has evolved where he sees the potential growth trajectory for the industry and how ITM sees its role within this space.
The podcast can be found on their website
The podcast can be found on their website
Resilience-oriented Schedule of Microgrids with Hybrid Energy Storage System using Model Predictive Control
Nov 2021
Publication
Microgrids can be regarded as a promising solution by which to increase the resilience of power systems in an energy paradigm based on renewable generation. Their main advantage is their ability to work as islanded systems under power grid outage conditions. Microgrids are usually integrated into electrical markets whose schedules are carried out according to economic aspects while resilience criteria are ignored. This paper shows the development of a resilience-oriented optimization for microgrids with hybrid Energy Storage System (ESS) which is validated via numerical simulations. A hybrid ESS composed of hydrogen and batteries is therefore considered with the objective of improving the autonomy of the microgrid while achieving a rapid transition response. The control problem is formulated using Stochastic Model Predictive Control (SMPC) techniques in order to take into account possible transitions between grid-connected and islanded modes at all the sample instants of the schedule horizon (SH). The control problem is developed by considering a healthy operation of the hybrid ESS thus avoiding degradation issues. The plant is modeled using the Mixed Logic Dynamic (MLD) framework owing to the presence of logic and dynamic control variables.
THyGA - Overview of Relevant Existing Certification Experience and On-going Standardization Activities in the EU and Elsewhere Related to Gas Appliances Using H2NG
Oct 2021
Publication
This 2nd deliverable from WP4 gives an overview of relevant existing certification experience on-going standardization activities and field trials in the European Union and other countries regarding gas appliances using H2NG. It gives a picture of the today’s situation as many of the identified initiatives are ongoing and progressing continuously.
Everything About Hydrogen Podcast: Hydrogen, Net Zero and Circularity a Perfect Syzygy!
Jul 2020
Publication
On this week's show we speak with Trevor Best CEO of Syzygy Plasmonics a Houston area startup who is a pioneer in the field of photocatalytic based hydrogen production. The company has recently closed its series A funding round. We discuss with Trevor the potential applications of the Syzygy approach and where they are aiming to engage the market first as well as his view of the evolution of the hydrogen market today. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
No more items...