Publications
Evolutions in Hydrogen and Fuel Cell Standardization: The HarmonHy Experience
Dec 2007
Publication
HarmonHy is a European Union-funded Specific Support Action aiming to make an assessment of the activities on hydrogen and fuel cell regulations codes and standards (RCS) on a worldwide level. On this basis gaps have been identified and potential conflicts between regulations codes and standards have been investigated. Types of document to be referred to include international regional and national standards EU directives UNECE regulations… Particular attention will be paid to the identification of the needs for standards as perceived by the industry as well as to actions aiming to ensure concordance between standards codes and regulations. Standards and regulations require harmonization. HarmonHy pursues the elaboration of an action plan and a roadmap for future work on harmonizing regulations codes and standards on hydrogen and fuel cells on an international level.
Numerical Modeling of a Moderate Hydrogen Leakage in a Typical Two-vented Fuel Cell Configuration
Sep 2021
Publication
Numerical results are presented from two direct numerical simulations (DNS) where a moderate hydrogen leakage is modeled in a typical two-vented fuel cell configuration. The study mimics one of the experimental investigations carried out on the 1 m3 enclosure with a leak flow rate of 10.4 Nl.min−1 [1]. The injection dimensionless Richardson number is at the order of unity and thus characterizes a plume flow which becomes turbulent due to gravitational accelerations. Two large exterior regions are added to the computational domain to model correctly the exchange between the in/out flows at both vents and the outer environment. Two meshes are used in this study; a first consisting of 250 million cells while the second has 2 billion cells to ensure the fine DNS resolution at the level of Kolmogorov and Batchelor length scales. The high performance computation (HPC) platform TRUST is employed where the computational domain is distributed up to 5.104 central processing unit (CPU) cores. A detailed description of the flow structure and the hydrogen dispersion is provided where the sharp effect of the cross-flow on the plume is analyzed. Comparisons versus the experimental measurements show a very good agreement where both the bi-layer Linden regime and the maximal concentration in the top homogeneous layer are correctly reproduced by the DNS. This result is extremely important and breaks the limitations shown previously with statistical RANS approaches and LES models. This study can be considered as a good candidate for any further improvements of the theoretical industrial plume models in general and for the estimation of the non-constant entrainment coefficient in particular.
Everything About Hydrogen Podcast: Why the Fuel Cell World is Different This Time
Aug 2019
Publication
The fuel cell game is not new and for many it is has been a long time coming. Few know this better than Ballard Power Systems the third ever founded Fuel Cell company that has operated since the 1970s. On the show we ask Nicolas Pocard about Ballards history and why this time the market is different for fuel cell companies.
The podcast can be found on their website
The podcast can be found on their website
How to Decarbonise the UKs Freight Sector by 2050
Dec 2020
Publication
To achieve the UK’s net zero target vehicles including heavy-duty vehicles (HDVs) will need to be entirely decarbonised. The UK government has announced that it plans to phase out the sale of all new cars and vans with engines between 2030 and 2035. It has also announced its intention to consult on a similar phase-out for diesel-powered heavy-goods vehicles (HGVs). This study analyses policies and technologies which can contribute to the decarbonisation of the UK's inland freight sector.
It comprises an emissions modelling exercise and a cost analysis for total cost of ownership (TCO) of long-haul trucks. The study shows that for urban and regional deliveries battery electric trucks offer the best option to decarbonise. It also shows that battery electric trucks and those using an overhead catenary infrastructure are likely to be the most cost-effective pathway to decarbonise long-haul trucks by 2050 but that renewable hydrogen could also be an option.
Link to Document Download on Transport & Environment website
It comprises an emissions modelling exercise and a cost analysis for total cost of ownership (TCO) of long-haul trucks. The study shows that for urban and regional deliveries battery electric trucks offer the best option to decarbonise. It also shows that battery electric trucks and those using an overhead catenary infrastructure are likely to be the most cost-effective pathway to decarbonise long-haul trucks by 2050 but that renewable hydrogen could also be an option.
Link to Document Download on Transport & Environment website
Simulation of Turbulent Combustion in a Small-scale Obstructed Chamber Using Flamefoam
Sep 2021
Publication
Dynamic overpressures achieved during the combustion are related to the acceleration experienced by the propagating flame. In the case of premixed turbulent combustion in an obstructed geometry obstacles in the direction of flow result in a complex flame front interaction with the turbulence generated ahead of it. The interaction of flame front and vortex significantly affect the burning rate the rate of pressure rise and achieved overpressure the geometry of accelerating flame front and resulting structures in the flow field. Laboratory-scale premixed turbulent combustion experiments are convenient for the study of flame acceleration by obstacles in higher resolution. This paper presents numerical simulations of hydrogenair mixture combustion experiments performed in the University of Sydney small-scale combustion chamber. The simulations were performed using flameFoam – an open-source premixed turbulent combustion solver based on OpenFOAM. The experimental and numerical pressure evolutions are compared. Furthermore flow structures which develop due to the interaction between the obstacles and the flow are investigated with different obstacle configurations.
Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications
Dec 2021
Publication
About 25 years ago Bogdanovic and Schwickardi (B. Bogdanovic M. Schwickardi: J. Alloys Compd. 1–9 253 (1997) discovered the catalyzed release of hydrogen from NaAlH4 . This discovery stimulated a vast research effort on light hydrides as hydrogen storage materials in particular boron hydrogen compounds. Mg(BH4 )2 with a hydrogen content of 14.9 wt % has been extensively studied and recent results shed new light on intermediate species formed during dehydrogenation. The chemistry of B3H8 − which is an important intermediate between BH4 − and B12H12 2− is presented in detail. The discovery of high ionic conductivity in the high-temperature phases of LiBH4 and Na2B12H12 opened a new research direction. The high chemical and electrochemical stability of closo-hydroborates has stimulated new research for their applications in batteries. Very recently an all-solid-state 4 V Na battery prototype using a Na4 (CB11H12)2 (B12H12) solid electrolyte has been demonstrated. In this review we present the current knowledge of possible reaction pathways involved in the successive hydrogen release reactions from BH4 − to B12H12 2− and a discussion of relevant necessary properties for high-ionic-conduction materials.
Proton Exchange Membrane Hydrogen Fuel Cell as the Grid Connected Power Generator
Dec 2020
Publication
In this paper a proton exchange membrane fuel cell (PEMFC) is implemented as a grid-connected electrical generator that uses hydrogen gas as fuel and air as an oxidant to produce electricity through electrochemical reactions. Analysis demonstrated that the performance of the PEMFC greatly depends on the rate of fuel supply and air supply pressure. Critical fuel and air supply pressures of the PEMFC are analysed to test its feasibility for the grid connection. Air and fuel supply pressures are varied to observe the effects on the PEMFC characteristics efficiency fuel supply and air consumption over time. The PEMFC model is then implemented into an electrical power system with the aid of power electronics applications. Detailed mathematical modelling of the PEMFC is discussed with justification. The PEMFC functions as an electrical generator that is connected to the local grid through a power converter and a transformer. Modulation of the converter is controlled by means of a proportional-integral controller. The two-axis control methodology is applied to the current control of the system. The output voltage waveform and control actions of the controller on the current and frequency of the proposed system are plotted as well. Simulation results show that the PEMFC performs efficiently under certain air and fuel pressures and it can effectively supply electrical power to the grid.
Techno-Economic Evaluation of Hydrogen Production via Gasification of Vacuum Residue Integrated with Dry Methane Reforming
Dec 2021
Publication
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a sustainable way. Owing to various forms of emissions our environment conditions might be affected necessitating more focus of scientists and researchers to upgrade oil processing to more efficient manner. Gasification is a potential technology that can convert fossil fuels to produce clean and environmentally friendly hydrogen fuel in an economical manner. Therefore this study analyzed and examined it critically. In this study two different routes for the production of high-purity hydrogen from vacuum residue while minimizing the carbon emissions were proposed. The first route (Case I) studied the gasification of heavy vacuum residue (VR) in series with dry methane reforming (DMR). The second route studied the gasification of VR in parallel integration with DMR (Case II). After investigating both processes a brief comparison was made between the two routes of hydrogen production in terms of their CO2 emissions energy efficiency energy consumption and environmental and economic impacts. In this study the two vacuum-residue-to-hydrogen (VRTH) processes were simulated using Aspen Plus for a hydrogen production capacity of 50 t/h with 99.9 wt.% purity. The results showed that Case II offered a process energy efficiency of 57.8% which was slightly higher than that of Case I. The unit cost of the hydrogen product for Case II was USD 15.95 per metric ton of hydrogen which was almost 9% lower than that of Case I. In terms of the environmental analysis both cases had comparably low carbon emissions of around 8.3 kg of CO2/kg of hydrogen produced; with such high purity the hydrogen could be used for production of other products further downstream or for industrial applications.
Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-offs
Jul 2013
Publication
Because of their high surface areas crystallinity and tunable propertiesmetal−organic frameworks (MOFs) have attracted intense interest as next-generationmaterials for gas capture and storage. While much effort has been devoted to thediscovery of new MOFs a vast catalog of existing MOFs resides within the CambridgeStructural Database (CSD) many of whose gas uptake properties have not beenassessed. Here we employ data mining and automated structure analysis to identify“cleanup” and rapidly predict the hydrogen storage properties of these compounds.Approximately 20 000 candidate compounds were generated from the CSD using analgorithm that removes solvent/guest molecules. These compounds were thencharacterized with respect to their surface area and porosity. Employing the empiricalrelationship between excess H2 uptake and surface area we predict the theoretical total hydrogen storage capacity for the subsetof ∼4000 compounds exhibiting nontrivial internal porosity. Our screening identifies several overlooked compounds having hightheoretical capacities; these compounds are suggested as targets of opportunity for additional experimental characterization.More importantly screening reveals that the relationship between gravimetric and volumetric H2 density is concave downwardwith maximal volumetric performance occurring for surface areas of 3100−4800 m2 /g. We conclude that H2 storage in MOFswill not benefit from further improvements in surface area alone. Rather discovery efforts should aim to achieve moderate massdensities and surface areas simultaneously while ensuring framework stability upon solvent removal.
Energy Efficiency Based Control Strategy of a Three-Level Interleaved DC-DC Buck Converter Supplying a Proton Exchange Membrane Electrolyzer
Aug 2019
Publication
To face the intensive use of natural gas and other fossil fuels to generate hydrogen water electrolysis based on renewable energy sources (RES) seems to be a viable solution. Due to their fast response times and high efficiency proton exchange membrane electrolyzer (PEM EL) is the most suitable technology for long-term energy storage combined with RES. Like fuel cells the development of fit DC-DC converters is mandatory to interface the EL to the DC grid. Given that PEM EL operating voltages are quite low and to meet requirements in terms of output current ripples new emerging interleaved DC-DC converter topologies seem to be the best candidates. In this work a three-level interleaved DC-DC buck converter has been chosen to supply a PEM EL from a DC grid. Therefore the main objective of this paper is to develop a suitable control strategy of this interleaved topology connected to a PEM EL emulator. To design the control strategy investigations have been carried out on energy efficiency hydrogen flow rate and specific energy consumption. The obtained experimental results validate the performance of the converter in protecting the PEM EL during transient operations while guaranteeing correct specific energy consumption.
Techno-Economic Analysis of Low Carbon Hydrogen Production from Offshore Wind Using Battolyser Technology
Aug 2022
Publication
A battolyser is a combined battery electrolyser in one unit. It is based on flow battery technology and can be adapted to produce hydrogen at a lower efficiency than an electrolyser but without the need for rare and expensive materials. This paper presents a method of determining if a battolyser connected to a wind farm makes economic sense based on stochastic modelling. A range of cost data and operational scenarios are used to establish the impact on the NPV and LCOE of adding a battolyser to a wind farm. The results are compared to adding a battery or an electrolyser to a wind farm. Indications are that it makes economic sense to add a battolyser or battery to a wind farm to use any curtailed wind with calculated LCOE at £56/MWh to £58/MWh and positive NPV over a range of cost scenarios. However electrolysers are still too expensive to make economic sense.
R&D Status on Thermochemical IS Process for Hydrogen Production at JAEA
Nov 2012
Publication
Thermochemical hydrogen production process is one of the candidates of industrial fossil fuel free hydrogen production. Japan Atomic Energy Agency (JAEA) has been conducting R&D of the thermochemical water splitting iodine-sulfur (IS) process since the end of 1980s. This paper presents the recent study on the IS process in JAEA. In 2005-2009 test-fabrication of components collection of design database improvement of process components for higher thermal efficiency and proposition of composition measurement method were carried out. On the basis of them the integrity test of process components is carried out in 2010-2014 to examine their integrities in severe process environments. At present a Bunsen reactor which produces acids and incidental equipments has been already manufactured using corrosion resistant materials such as glass lining steel and fluoroplastic lining steel. Flow tests to examine the functionality and integrity of the materials are planned in 2012.
Hydrogen Emissions from the Hydrogen Value Chain-emissions Profile and Impact to Global Warming
Feb 2022
Publication
Future energy systems could rely on hydrogen (H2) to achieve decarbonisation and net-zero goals. In a similar energy landscape to natural gas H2 emissions occur along the supply chain. It has been studied how current gas infrastructure can support H2 but there is little known about how H2 emissions affect global warming as an indirect greenhouse gas. In this work we have estimated for the first time the potential emission profiles (g CO2eq/MJ H2HHV) of H2 supply chains and found that the emission rates of H2 from H2 supply chains and methane from natural gas supply are comparable but the impact on global warming is much lower based on current estimates. This study also demonstrates the critical importance of establishing mobile H2 emission monitoring and reducing the uncertainty of short-lived H2 climate forcing so as to clearly address H2 emissions for net-zero strategies.
Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests
Nov 2021
Publication
With the increase of the requirement for the economy of vehicles and the strengthening of the concept of environmental protection the development of future vehicles will develop in the direction of high efficiency and cleanliness and the current power system of vehicles based on traditional fossil fuels will gradually transition to hybrid power. As an essential technological direction for new energy vehicles the development of fuel cell passenger vehicles is of great significance in reducing transportation carbon emissions stabilizing energy supply and maintaining the sustainable development of the automotive industry. To study the fuel economy of a passenger car with the proton exchange membrane fuel cell (PEMFC) during the operating phase two typical PEMFC passenger cars test vehicles A and B were compared and analyzed. The hydrogen consumption and hydrogen emission under two operating conditions namely the different steady-state power and the Chinese Vehicle Driving Conditions-Passenger Car cycle were tested. The test results show the actual hydrogen consumption rates of vehicle A and vehicle B are 9.77 g/kM and 8.28 g/kM respectively. The average hydrogen emission rates for vehicle A and vehicle B are 1.56 g/(kW·h) and 5.40 g/(kW·h) respectively. By comparing the hydrogen purge valve opening time ratio the differences between test vehicles A and B in control strategy hydrogen consumption and emission rate are analyzed. This study will provide reference data for China to study the economics of the operational phase of PEMFC vehicles.
Hydrogen Production Methods Based on Solar and Wind Energy: A Review
Jan 2023
Publication
Several research works have investigated the direct supply of renewable electricity to electrolysis particularly from photovoltaic (PV) and wind generator (WG) systems. Hydrogen (H2 ) production based on solar energy is considered to be the newest solution for sustainable energy. Different technologies based on solar energy which allow hydrogen production are presented to study their benefits and inconveniences. The technology of water decomposition based on renewable energy sources to produce hydrogen can be achieved by different processes (photochemical systems; photocatalysis systems photo-electrolysis systems bio-photolysis systems thermolysis systems thermochemical cycles steam electrolysis hybrid processes and concentrated solar energy systems). A comparison of the different methods for hydrogen production based on PV and WG systems was given in this study. A comparative study of different types of electrolyzers was also presented and discussed. Finally an economic assessment of green hydrogen production is given. The hydrogen production cost depends on several factors such as renewable energy sources electrolysis type weather conditions installation cost and the productivity of hydrogen per day. PV/H2 and wind/H2 systems are both suitable in remote and arid areas. Minimum maintenance is required and a power cycle is not needed to produce electricity. The concentrated CSP/H2 system needs a power cycle. The hydrogen production cost is higher if using wind/H2 rather than PV/H2 . The green energy sources are useful for multiple applications such as hydrogen production cooling systems heating and water desalination.
The Effects of Perceived Barriers on Innovation Resistance of Hydrogen-Electric Motorcycles
Jun 2018
Publication
As environmental awareness among the public gradually improves it is predicted that the trend of green consumption will make green products enter the mainstream market. Hydrogen-electric motorcycles with eco-friendly and energy-efficient characteristics have great advantages for development. However as a type of innovative product hydrogen-electric motorcycles require further examination with regard to consumer acceptance and external variables of the products. In this study consumer behavioral intention (BI) for the use of hydrogen-electric motorcycles and its influencing factors are discussed using innovation resistance as the basis and environmental concern as the adjusting variable. Consumers’ willingness-to-pay (WTP) for hydrogen-electric motorcycles is estimated using the contingent valuation method (CVM). The results found that (1) perception barriers viz. usage barrier value barrier risk barrier tradition barrier and price barrier are statistically significant whereas image barrier is not; (2) a high degree of environmental concern will reduce the consumers’ innovation resistance to the hydrogen-electric motorcycles; (3) up to 94.79% of the respondents of the designed questionnaire suggested that the promotion of hydrogen-electric motorcycles requires a subsidy of 21.9% of the total price from the government. The mean WTP of consumers for the purchase of hydrogen-electric motorcycles is 10–15% higher than that of traditional motorcycles.
Synergistic Value in Vertically Integrated Power-to-Gas Energy Systems
Oct 2019
Publication
In vertically integrated energy systems integration frequently entails operational gains that must be traded off against the requisite cost of capacity investments. In the context of the model analyzed in this study the operational gains are subject to inherent volatility in both the price and the output of the intermediate product transferred within the vertically integrated structure. Our model framework provides necessary and sufficient conditions for the value (NPV) of an integrated system to exceed the sum of two optimized subsystems on their own. We then calibrate the model in Germany and Texas for systems that combine wind energy with Power-to-Gas (PtG) facilities that produce hydrogen. Depending on the prices for hydrogen in different market segments we find that a synergistic investment value emerges in some settings. In the context of Texas for instance neither electricity generation from wind power nor hydrogen production from PtG is profitable on its own in the current market environment. Yet provided both subsystems are sized optimally in relative terms the attendant operational gains from vertical integration more than compensate for the stand-alone losses of the two subsystems.
Investigation on the Effects of Blending Hydrogen-rich Gas in the Spark-ignition Engine
May 2022
Publication
In order to improve the energy efficiency of the internal combustion engine and replace fossil fuel with alternative fuels a concept of the methanol-syngas engine was proposed and the prototype was developed. Gasoline and dissociated methanol gas (GDM) were used as dual fuels and the engine performance was investigated by simulation and experiments. Dissociated methanol gas is produced by recycling the exhaust heat. The performance and combustion process was studied and compared with the gasoline engine counterpart. There is 1.9% energy efficiency improvement and 5.5% fuel consumption reduction under 2000r/min 100 N · m working condition with methanol substitution ratio of 10%. In addition the engine efficiency further improves with an increase of dissociated methanol gas substitution ratio because of the increased heating value of the fuel and effects of hydrogen. The peak pressure in the cylinder and the peak heat release rate of the GDM engine are higher than that of the original gasoline engine with a phase closer to the top dead center (TDC). Therefore blending hydrogen-rich gas in the spark-ignition engine can recycle the exhaust heat and improve the thermal efficiency of the engine.
Transient Modeling and Performance Analysis of Hydrogen-Fueled Aero Engines
Jan 2023
Publication
With the combustor burning hydrogen as well as the strongly coupled fuel and cooling system the configuration of a hydrogen-fueled aero engine is more complex than that of a conventional aero engine. The performance and especially the dynamic behavior of a hydrogen-fueled aero engine need to be fully understood for engine system design and optimization. In this paper both the transient modeling and performance analysis of hydrogen-fueled engines are presented. Firstly the models specific to the hydrogen-fueled engine components and systems including the hydrogen-fueled combustor the steam injection system a simplified model for a quick NOx emission assessment and the heat exchangers are developed and then integrated to a conventional engine models. The simulations with both Simulink and Speedgoat-based hardware in the loop system are carried out. Secondly the performance analysis is performed for a typical turbofan engine configuration CF6 and for the two hydrogen-fueled engine configurations ENABLEH2 and HySIITE which are currently under research and development by the European Union and Pratt & Whitney respectively. At last the simulation results demonstrate that the developed transient models can effectively reflect the characteristics of hydrogen burning heat exchanging and NOx emission for hydrogen-fueled engines. In most cases the hydrogen-fueled engines show lower specific fuel consumption lower turbine entry temperature and less NOx emissions compared with conventional engines. For example at max thrust state the advanced hydrogen-fueled engine can reduce the parameters mentioned above by about 68.5% 3.7% and 12.7% respectively (a mean value of two configurations).
CFD Modeling and Consequence Analysis of an Accidental Hydrogen Release in a Large Scale Facility
Sep 2013
Publication
In this study the consequences of an accidental release of hydrogen within large scale (>15000 m3) facilities were modelled. To model the hydrogen release an LES Navier–Stokes CFD solver called fireFoam was used to calculate the dispersion and mixing of hydrogen within a large scale facility. The performance of the CFD modelling technique was evaluated through a validation study using experimental results from a 1/6 scale hydrogen release from the literature and a grid sensitivity study. Using the model a parametric study was performed varying release rates and enclosure sizes and examining the concentrations that develop. The hydrogen dispersion results were then used to calculate the corresponding pressure loads from hydrogen-air deflagrations in the facility.
No more items...