Publications
An Innovative Approach for Energy Transition in China? Chinese National Hydrogen Policies from 2001 to 2020
Jan 2023
Publication
To accelerate clean energy transition China has explored the potential of hydrogen as an energy carrier since 2001. Until 2020 49 national hydrogen policies were enacted. This paper explores the relevance of these policies to the development of the hydrogen industry and energy transition in China. We examine the reasons impacts and challenges of Chinese national hydrogen policies through the conceptual framework of Thomas Dye’s policy analysis method and the European Training Foundation’s policy analysis guide. This research provides an ex‐post analysis for previous policies and an ex‐ante analysis for future options. We argue that the energy supply revolution and energy technology revolution highlight the importance of hydrogen development in China. Particularly the pressure of the automobile industry transition leads to experimentation concerning the application of hydrogen in the transportation sector. This paper also reveals that hydro‐ gen policy development coincides with an increase in resource input and has positive spill over effects. Furthermore we note that two challenges have impeded progress: a lack of regulations for the industry threshold and holistic planning. To address these challenges the Chinese government can design a national hydrogen roadmap and work closely with other countries through the Belt and Road Initiative.
Performance Analysis of a Flexi-Fuel Turbine-Combined Free-Piston Engine Generator
Jul 2019
Publication
The turbine-combined free-piston engine generator (TCFPEG) is a hybrid machine generating both mechanical work from the gas turbine and electricity from the linear electric generator for battery charging. In the present study the system performance of the designed TCFPEG system is predicted using a validated numerical model. A parametric analysis is undertaken based on the influence of the engine load valve timing the number of linear generators adopted and different fuels on the system performance. It is found that when linear electric generators are connected with the free-piston gas turbine the bottom dead centre the peak piston velocity and engine operation frequency are all reduced. Very minimal difference on the in-cylinder pressure and the compressor pressure is observed while the peak pressure in the bounce chamber is reduced. When coupled with a linear electric generator the system efficiency can be improved to nearly 50% by optimising engine load and the number of the linear generators adopted in the TCFPEG system. The system is able to be operated with different fuels as the piston is not limited by a mechanical system; the output power and system efficiency are highest when hydrogen is used as the fuel.
Hydrogen Projects Database – Analysis
Jun 2020
Publication
The IEA produced this dataset as part of efforts to track advances in low-carbon hydrogen technology. It covers all projects commissioned worldwide since 2000 to produce hydrogen for energy or climate-change-mitigation purposes. It includes projects which their objective is either to reduce emissions associated with producing hydrogen for existing applications or to use hydrogen as an energy carrier or industrial feedstock in new applications that have the potential to be a low-carbon technology. Projects in planning or construction are also covered.
Link to Download Database from IEA Website
Link to Download Database from IEA Website
Combustion Regimes of Hydrogen-air-steam Mixtures
Sep 2021
Publication
In the case of a severe nuclear power plant accident hydrogen gas formation may occur from the core degradation and cooling water evaporation and subsequent oxidation of zircaloy. These phenomena increase the risk of hazardous combustion events in the reactor especially when combined with an ignition source. If not handled carefully these types of accidents can cause severe damage to the reactor building with potential radioactive effects on the environment. Although hydrogen-air combustion has been investigated before hydrogen-air-steam mixtures remain unstudied under reactor-like conditions. Thus this study investigated such mixtures’ combustion regimes. A closed tube of 318 liters (7.65m tall and 0.23m inner diameter) measures the flame speed flame propagation and shock wave behaviors for 11-15 %vol hydrogen mixtures combined with 0 20 or 30 %vol steam and air. Thus both the effect of steam and hydrogen content was investigated and compared. The experimental setup combined photomultiplier tubes pressure sensors and shock detectors to give a full view of the different combustion regimes. A number of obstacles changed the in-chamber turbulence during flame propagation to provide further reactor-like environments. This changed turbulence affected the combustion regimes and enhanced the flame speed for some cases. The results showed varying combustion behaviors depending on the water vapor concentration where a higher concentration meant a lower flame speed reduced pressure load and sometimes combustion extinction. At 0 %vol steam dilution the flame speed remained supersonic for all H2 concentrations while at 30 %vol steam dilution the flame speed remained subsonic for all H2 concentrations. Thus with high levels of steam dilution the risk for shock waves leading to potential reactor building destruction decreases."
Towards a Safe Hydrogen Economy: An Absolute Climate Sustainability Assessment of Hydrogen Production
Jan 2023
Publication
Policymakers and global energy models are increasingly looking towards hydrogen as an enabling energy carrier to decarbonize hard-to-abate sectors (projecting growth in hydrogen consumption in the magnitude of hundreds of megatons). Combining scenarios from global energy models and life cycle impacts of different hydrogen production technologies the results of this work show that the life cycle emissions from proposed configurations of the hydrogen economy would lead to climate overshoot of at least 5.4–8.1x of the defined “safe” space for greenhouse gas emissions by 2050 and the cumulative consumption of 8–12% of the remaining carbon budget. This work suggests a need for a science-based definition of “clean” hydrogen agnostic of technology and compatible with a “safe” development of the hydrogen economy. Such a definition would deem blue hydrogen environmentally unviable by 2025–2035. The prolific use of green hydrogen is also problematic however due to the requirement of a significant amount of renewable energy and the associated embedded energy land and material impacts. These results suggest that demand-side solutions should be further considered as the large-scale transition to hydrogen which represents a “clean” energy shift may still not be sufficient to lead humanity into a “safe” space.
Design and Simulation Studies of Hybrid Power Systems Based on Photovoltaic, Wind, Electrolyzer, and PEM Fuel Cells
May 2021
Publication
In recent years the need to reduce environmental impacts and increase flexibility in the energy sector has led to increased penetration of renewable energy sources and the shift from concentrated to decentralized generation. A fuel cell is an instrument that produces electricity by chemical reaction. Fuel cells are a promising technology for ultimate energy conversion and energy generation. We see that this system is integrated where we find that the wind and photovoltaic energy system is complementary between them because not all days are sunny windy or night so we see that this system has higher reliability to provide continuous generation. At low load hours PV and electrolysis units produce extra power. After being compressed hydrogen is stored in tanks. The purpose of this study is to separate the Bahr AL-Najaf Area from the main power grid and make it an independent network by itself. The PEM fuel cells were analyzed and designed and it were found that one layer is equal to 570.96 Watt at 0.61 volts and 1.04 A/Cm2 . The number of layers in one stack is designed to be equal to 13 layers so that the total power of one stack is equal to 7422.48 Watt. That is the number of stacks required to generate the required energy from the fuel cells is equal to 203 stk. This study provided an analysis of the hybrid system to cover the electricity demand in the Bahr AL-Najaf region of 1.5 MW the attained hybrid power system TNPC cost was about 9573208 USD whereas the capital cost and energy cost (COE) were about 7750000 USD and 0.169 USD/kWh respectively for one year.
The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review
Mar 2022
Publication
Currently a progressively different approach to the generation of power and the production of fuels for the automotive sector as well as for domestic applications is being taken. As a result research on the feasibility of applying renewable energy sources to the present energy scenario has been progressively growing aiming to reduce greenhouse gas emissions. Following more than one approach the integration of renewables mainly involves the utilization of biomass-derived raw material and the combination of power generated via clean sources with conventional power generation systems. The aim of this review article is to provide a satisfactory overview of the most recent progress in the catalysis of hydrogen production through sustainable reforming and CO2 utilization. In particular attention is focused on the route that starting from bioethanol reforming for H2 production leads to the use of the produced CO2 for different purposes and by means of different catalytic processes passing through the water–gas shift stage. The newest approaches reported in the literature are reviewed showing that it is possible to successfully produce “green” and sustainable hydrogen which can represent a power storage technology and its utilization is a strategy for the integration of renewables into the power generation scenario. Moreover this hydrogen may be used for CO2 catalytic conversion to hydrocarbons thus giving CO2 added value.
Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming
Jun 2022
Publication
Fuel cell hybrid electric vehicles have attracted a large amount of attention in recent years owing to their advantages of zero emissions high efficiency and low noise. To improve the fuel economy and system durability of vehicles this paper proposes an energy management strategy optimization method for fuel cell hybrid electric vehicles based on dynamic programming. Rule-based and dynamic-programming-based strategies are developed based on building a fuel cell/battery hybrid system model. The rule-based strategy is improved with a power distribution scheme of dynamic programming strategy to improve the fuel economy of the vehicle. Furthermore a limit on the rate of change of the output power of the fuel cell system is added to the rule-based strategy to avoid large load changes to improve the durability of the fuel cell. The simulation results show that the equivalent 100 km hydrogen consumption of the strategy based on the dynamic programming optimization rules is reduced by 6.46% compared with that before the improvement and by limiting the rate of change of the output power of the fuel cell system the times of large load changes are reduced. Therefore the strategy based on the dynamic programming optimization rules effectively improves the fuel economy and system durability of vehicles.
The Hydrogen Grand Challenge
Apr 2016
Publication
More than 90% of the world’s growing energy demand is satisfied by fossil fuels (BP Statistical Review … 2015)1. One consequence of the unrestrained use of this technology is the continuous increase of the CO2 level of the atmosphere2. There are also the challenges associated with the limitations of the corresponding resources (Hubbert 1956; BP Statistical Review … 2015). Climate change as a consequence of the growing CO2 level (see text footnote 2 ESRL Global Monitoring Division 2015) has been identified as one of the most critical challenges facing mankind and requires immediate action: “The Paris Agreement aims to strengthen the global response to the threat of climate change ( … ) by low greenhouse gas emissions development in a manner that does not threaten food production” (United Nations Framework … 2015). How to reach the corresponding significant reduction of CO2 emission by 2050 is not defined in this document but it implies that mankind must transform its energy technology from a fossil to a renewable basis. Numerous studies and publications have indicated that the sun’s energy and its derivatives (wind water) are by far sufficient to supply world’s energy demand (see e.g. Smalley 2005; Züttel et al. 2010); but the large daily and seasonal power variation of renewable energy is an additional complication for a wide spread replacement of fossil energy by renewable energy.
Numerical Investigation of Thermal Hazards from Under-expanded Hydrogen Jet Fires using a New Scheme for the Angular Discretization of the Radiative Intensity
Sep 2021
Publication
In the context of a numerical investigation of thermal hazards from two under-expanded hydrogen jet fires results from a newly-developed thermal radiation module of the ADREA-HF computational fluid dynamics (CFD) code were validated against two physical experiments. The first experiment was a vertical under-expanded hydrogen jet fire at 170 bar with the objective of the numerical investigation being to capture the spatial distribution of the radial radiative heat flux at a given time instant. In the second case a horizontal under-expanded hydrogen jet fire at 340 bar was considered. Here the objective was to capture the temporal evolution of the radial radiative heat flux at selected fixed points in space. The numerical study employs the eddy dissipation model for combustion and the finite volume method (FVM) for the calculation of the radiative intensity. The FVM was implemented using a novel angular discretization scheme. By dividing the unit sphere into an arbitrary number of exactly equal angular control volumes this new scheme allows for more flexibility and efficiency. A demonstration of numerical convergence as a function the number of both spatial and angular control volumes was performed.
Fuel Cell Solution for Marine Applications
Sep 2021
Publication
With future regulations on the horizon port authorities and ship owners/operators are looking at alternative propulsion solutions to reduce emission. Fuel cell technology provides an attractive zeroemission solution to generate electric power on board using hydrogen as a fuel. Fuel cell systems are scalable from 200kW to multi-MW providing high efficiency dispatchable clean quiet power generation. Several innovative pilot projects are on the way to demonstrate the marine application of this proven technology. Electrification of propulsion systems is advancing and fuel cell technology provides the opportunity to produce on board large quantity of power with zero-emission using hydrogen as a fuel. We will present the value proposition of having a fuel cell power generator on board of an electric vessel while discussing the safety considerations with the fuel cell module and the onboard fuel storage. We will present some of our current fuel cell marine projects and review some of the product development considerations including system architecture and safety as well as hydrogen supply and on-board fuel storage.
Mathematical Modeling of Unstable Transport in Underground Hydrogen Storage
Apr 2015
Publication
Within the framework of energy transition hydrogen has a great potential as a clean energy carrier. The conversion of electricity into hydrogen for storage and transport is an efficient technological solution capable of significantly reducing the problem of energy shortage. Underground hydrogen storage (UHS) is the best solution to store the large amount of excess electrical energy arising from the excessive over-production of electricity with the objective of balancing the irregular and intermittent energy production typical of renewable sources such as windmills or solar. Earlier studies have demonstrated that UHS should be qualitatively identical to the underground storage of natural gas. Much later however it was revealed that UHS is bound to incur peculiar difficulties as the stored hydrogen is likely to be used by the microorganisms present in the rocks for their metabolism which may cause significant losses of hydrogen. This paper demonstrates that besides microbial activities the hydrodynamic behavior of UHS is very unique and different from that of a natural gas storage.
Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles
May 2018
Publication
The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption and we describe in detail the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA) model. As an example we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.
Numerical Simulation of Hydrogen Leakage from Fuel Cell Vehicle in an Outdoor Parking Garage
Aug 2021
Publication
It is significant to assess the hydrogen safety of fuel cell vehicles (FCVs) in parking garages with a rapidly increased number of FCVs. In the present work a Flame Acceleration Simulator (FLACS) a computational fluid dynamics (CFD) module using finite element calculation was utilized to predict the dispersion process of flammable hydrogen clouds which was performed by hydrogen leakage from a fuel cell vehicle in an outdoor parking garage. The effect of leakage diameter (2 mm 3 mm and 4 mm) and parking configurations (vertical and parallel parking) on the formation of flammable clouds with a range of 4–75% by volume was considered. The emission was assumed to be directed downwards from a Thermally Activated Pressure Relief Device (TPRD) of a 70 MPa storage tank. The results show that the 0.7 m parking space stipulated by the current regulations is less than the safety space of fuel cell vehicles. Compared with a vertical parking configuration it is safer to park FCVs in parallel. It was also shown that release through a large TPRD orifice should be avoided as the proportion of the larger hydrogen concentration in the whole flammable domain is prone to more accidental severe consequences such as overpressure.
Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2
Apr 2020
Publication
Poland The present paper is aimed at determining the less investigated effects of hydrogen uptake on the microstructure and the mechanical behavior of the oxidized Zircaloy-2 alloy. The specimens were oxidized and charged with hydrogen. The different oxidation temperatures and cathodic current densities were applied. The scanning electron microscopy X-ray electron diffraction spectroscopy hydrogen absorption assessment tensile and nanoindentation tests were performed. At low oxidation temperatures an appearance of numerous hydrides and cracks and a slight change of mechanical properties were noticed. At high-temperature oxidation the oxide layer prevented the hydrogen deterioration of the alloy. For nonoxidized samples charged at different current density nanoindentation tests showed that both hardness and Young’s modulus revealed the minims at specific current value and the stepwise decrease in hardness during hydrogen desorption. The obtained results are explained by the barrier effect of the oxide layer against hydrogen uptake softening due to the interaction of hydrogen and dislocations nucleated by indentation test and hardening caused by the decomposition of hydrides. The last phenomena may appear together and result in hydrogen embrittlement in forms of simultaneous hydrogen-enhanced localized plasticity and delayed hydride cracking.
Cost-Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field
Dec 2020
Publication
China has become a major market for hydrogen used in fuel cells in the transportation field. It is key to control the cost of hydrogen to open up the Chinese market. The development status and trends of China’s hydrogen fuel industry chain were researched. A hydrogen energy cost model was established in this paper from five aspects: raw material cost fixed cost of production hydrogen purification cost carbon trading cost and transportation cost. The economic analysis of hydrogen was applied to hydrogen transported in the form of high-pressure hydrogen gas or cryogenic liquid hydrogen and produced by natural gas coal and electrolysis of water. It was found that the cost of hydrogen from natural gas and coal is currently lower while it is greatly affected by the hydrogen purification cost and the carbon trading price. Considering the impact of future production technologies raw material costs and rising requirements for sustainable energy development on the hydrogen energy cost it is recommended to use renewable energy curtailment as a source of electricity and multi-stack system electrolyzers as large-scale electrolysis equipment in combination with cryogenic liquid hydrogen transportation or on-site hydrogen production. Furthermore participation in electricity market-oriented transactions cross-regional transactions and carbon trading can reduce the cost of hydrogen. These approaches represent the optimal method for obtaining inexpensive hydrogen.
Scientific Assessment in Support of the Materials Roadmap enabling Low Carbon Energy Technologies Hydrogen and Fuel Cells
Apr 2014
Publication
A group experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European Strategic Energy Technology Plan. The report summarises the results including key targets identified for medium term (2020/2030) and long term (2050) timescales.
Sustainable Aviation—Hydrogen Is the Future
Jan 2022
Publication
As the global search for new methods to combat global warming and climate change continues renewable fuels and hydrogen have emerged as saviours for environmentally polluting industries such as aviation. Sustainable aviation is the goal of the aviation industry today. There is increasing interest in achieving carbon-neutral flight to combat global warming. Hydrogen has proven to be a suitable alternative fuel. It is abundant clean and produces no carbon emissions but only water after use which has the potential to cool the environment. This paper traces the historical growth and future of the aviation and aerospace industry. It examines how hydrogen can be used in the air and on the ground to lower the aviation industry’s impact on the environment. In addition while aircraft are an essential part of the aviation industry other support services add to the overall impact on the environment. Hydrogen can be used to fuel the energy needs of these services. However for hydrogen technology to be accepted and implemented other issues such as government policy education and employability must be addressed. Improvement in the performance and emissions of hydrogen as an alternative energy and fuel has grown in the last decade. However other issues such as the storage and cost and the entire value chain require significant work for hydrogen to be implemented. The international community’s alternative renewable energy and hydrogen roadmaps can provide a long-term blueprint for developing the alternative energy industry. This will inform the private and public sectors so that the industry can adjust its plan accordingly.
Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles
Mar 2022
Publication
A proton exchange membrane fuel cell (PEMFC) is known as one of the most promising energy sources for electric vehicles. A hydrogen system is required to provide hydrogen to the stack in time to meet the flow and pressure requirements according to the power requirements. In this study a 1-D model of a hydrogen system including the fuel cell stack was established. Two modes one with and one without a proportion integration differentiation (PID) control strategy were applied to analyze the pressure characteristics and performance of the PEMFC. The results showed that the established model could be well verified with experimental data. The anode pressure fluctuation with a PID control strategy was more stable which reduced the damage to the fuel cell stack caused by sudden changes of anode pressure. In addition the performance of the stack with the PID control mode was slightly improved. There was an inflection point for hydrogen utilization; the hydrogen utilization rate was higher under the mode without PID control when the current density was greater than 0.4 A/cm2 . What is more a hierarchical control strategy was proposed which made the pressure difference between the anode and cathode meet the stack working requirements and more importantly maintained the high hydrogen utilization of the hydrogen system.
Review of Release Behavior of Hydrogen & Natural Gas Blends from Pipelines
Aug 2021
Publication
Hydrogen can be used to reduce carbon emissions by blending into other gaseous energy carriers such as natural gas. However hydrogen blending into natural gas has important implications for safety which need to be evaluated. Hydrogen has different physical properties than natural gas and these properties affect safety evaluations concerning a leak of the blended gas. The intent of this report is to begin to investigate the safety implications of blending hydrogen into the natural gas infrastructure with respect to a leak event from a pipeline. A literature review was conducted to identify existing data that will better inform future hazard and risk assessments for hydrogen/natural gas blends. Metrics with safety implications such as heat flux and dispersion behavior may be affected by the overall blend ratio of the mixture. Of the literature reviewed there was no directly observed separation of the hydrogen from the natural gas or methane blend. No literature was identified that experimentally examined unconfined releases such as concentration fields or concentration at specific distances. Computational efforts have predicted concentration fields by modified versions of existing engineering models but the validation of these models is limited by the unavailability of literature data. There are multiple literature sources that measured flame lengths and heat flux values which are both relevant metrics to risk and hazard assessments. These data can be more directly compared to the outputs of existing engineering models for validation.
The paper can be downloaded on their website
The paper can be downloaded on their website
No more items...