Publications
Electric-field-promoted Photo-electrochemical Production of Hydrogen from Water Splitting
Jul 2021
Publication
Given that conversion efficiencies of incident solar radiation to liquid fuels e.g. H2 are of the order of a few percent or less as quantified by ‘solar to hydrogen’ (STH) economically inexpensive and operationally straightforward ways to boost photo-electrochemcial (PEC) H2 production from solar-driven water splitting are important. In this work externally-applied static electric fields have led to enhanced H2 production in an energy-efficient manner with up to ~30–40% increase in H2 (bearing in mind fieldinput energy) in a prototype open-type solar cell featuring rutile/titania and hematite/iron-oxide (Fe2O3) respectively in contact with an alkaline aqueous medium (corresponding to respective relative increases of STH by ~12 and 16%). We have also performed non-equilibrium ab-initio molecular dynamics in both static electric and electromagnetic (e/m) fields for water in contact with a hematite/iron-oxide (0 0 1) surface observing enhanced break-up of water molecules by up to ~70% in the linear-response régime. We discuss the microscopic origin of such enhanced water-splitting based on experimental and simulation-based insights. In particular we external-field direction at the hematite surfaces and scrutinise properties of the adsorbed water molecules and OH– and H3O+ species e.g. hydrogen bonds between water-protons and the hematite surfaces’ bridging oxygen atoms as well as interactions between oxygen atoms in adsorbed water molecules and underlying iron atoms.
Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry
May 2021
Publication
In April 2018 the International Maritime Organisation adopted an ambitious plan to contribute to the global efforts to reduce the Greenhouse Gas emissions as set by the Paris Agreement by targeting a 50% reduction in shipping’s Green House Gas emissions by 2050 benchmarked to 2008 levels. To meet these challenging goals the maritime industry must introduce environmentally friendly fuels with negligible or low SOX NOX and CO2 emissions. Ammonia use in maritime applications is considered promising due to its high energy density low flammability easy storage and low production cost. Moreover ammonia can be used as fuel in a variety of propulsors such as fuel cells and can be produced from renewable sources. As a result ammonia can be used as a versatile marine fuel exploiting the existing infrastructure and having zero SOX and CO2 emissions. However there are several challenges to overcome for ammonia to become a compelling fuel towards the decarbonisation of shipping. Such factors include the selection of the appropriate ammonia-fuelled power generator the selection of the appropriate system safety assessment tool and mitigating measures to address the hazards of ammonia. This paper discusses the state-of-the-art of ammonia fuelled fuel cells for marine applications and presents their potential and challenges.
Effect of Supercharging on Improving Thermal Efficiency and Modifying Combustion Characteristics in Lean-burn Direct-injection Near-zero-emission Hydrogen Engines
Oct 2021
Publication
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC) in which with an optimal combination of hydrogen injection timing and controlled jet geometry the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.
Synthesis and Characterization of Biogenic Iron Oxides of Different Nanomorphologies from Pomegranate Peels for Efficient Solar Hydrogen Production
Feb 2020
Publication
An eco-friendly green synthesis of mesoporous iron oxide (hematite) using pomegranate peels through a low-cost and massive product method was investigated. The mass of pomegranate peels was varied to control the morphology of the produced hematite (Fe2O3). The structures textures and optical properties of the products were investigated by FTIR XRD FE-SEM and UV–Vis spectroscopy. Three different Fe2O3 morphologies were obtained; Fe2O3(I) nanorod like shape Fe2O3(II) nanoparticles and Fe2O3(III) nanoporous structured layer. The bandgap values for Fe2O3 (I) (II) and (III) were 2.71 2.95 and 2.29 eV respectively. The newly hematite samples were used as promising photoelectrodes supported on graphite substrate for the photoelectrochemical (PEC) water splitting toward the efficient production of solar hydrogen. The number of generated hydrogen moles was calculated per active area to be 50 molh−1 cm−2 for electrode III which decreased to 15.3molh−1 cm−2 for electrode II. The effects of temperature (30–70 ◦C) on the PEC behavior of the three electrodes were addressed. Different thermodynamic parameters were calculated for the three electrodes which showed activation energies of 13.4 16.8 and 15.2 kJmol−1 respectively. The electrode stability was addressed as a function of the number of runs and exposure time in addition to electrochemical impedance study. Finally the conversion efficiency of the incident photon to-current(IPCE) was estimated under the monochromatic illumination. The optimum value was ∼11% @ 390nm for Fe2O3(III) electrode
Numerical Evaluation of Terrain Landscape Influence on Hydrogen Explosion Consequences
Sep 2021
Publication
The aim of this study is to assess numerically the influence of terrain landscape on the distribution of probable harmful consequences to personnel of hydrogen fueling station caused by an accidentally released and exploded hydrogen. In order to extract damaging factors of the hydrogen explosion wave (maximum overpressure and impulse of pressure phase) a three-dimensional mathematical model of gas mixture dynamics with chemical interaction is used. It allows controlling current pressure in every local point of actual space taking into account complex terrain. This information is used locally in every computational cell to evaluate the conditional probability of such consequences on human beings as ear-drum rupture and lethal ones on the basis of probit analysis. In order to use this technique automatically during the computational process the tabular dependence ""probit-functionimpact probability"" is replaced by a piecewise cubic spline. To evaluate the influence of the landscape profile on the non-stationary three-dimensional overpressure distribution above the earth surface near an epicenter of accidental hydrogen explosion a series of computational experiments with different variants of the terrain is carried out. Each variant differs in the level of mutual arrangement of the explosion epicenter and the places of possible location of personnel. Two control points with different distances from the explosion epicenter are considered. Diagrams of lethal and ear-drum rupture conditional probabilities are build to compare different variants of landscape profile. It is found that the increase or decrease in the level of the location of the control points relative to the level of the epicenter of the explosion significantly changes the scale of the consequences in the actual zone around the working places and should be taken into account by the risk managing experts at the stage of deciding on the level of safety at hydrogen fueling stations.
A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus
Aug 2022
Publication
Global efforts towards de-carbonization give rise to remarkable energy challenges which include renewable energy penetration increase and intermediate energy carriers for a sustainable transition. In order to reduce the dependence on fossil fuels alternative sources are considered by commodities to satisfy their increasing electricity demand as a consequence of a rise in population and the quantity of residential appliances in forthcoming years. The near-term trends appear to be in fuel and emission reduction techniques through the integration of carbon capture and storage and more efficient energy carriers exploiting alternative energy sources such as natural gas and hydrogen. Formulating both the fuel consumption and emission released the obtained experimental results showed that the total production cost can be reduced by making use of natural gas for the transition towards 2035’s targets. Maximum profits will be achieved with hydrogen as the only fuel in modern power plants by 2050. In this way the lowest electricity production can be achieved as well as the elimination of carbon dioxide emissions. Since the integration of renewable energy resources in the sectors of electricity heating/cooling and transportation will continuously be increased alternative feedstocks can serve as primary inputs and contribute to production cost profits improved utilization factors and further environmental achievements.
Homes of the Future: Unpacking Public Perceptions to Power the Domestic Hydrogen Transition
Apr 2022
Publication
Decarbonization in several countries is now linked to the prospect of implementing a national hydrogen economy. In countries with extensive natural gas infrastructure hydrogen may provide a real opportunity to decarbonize space heating. While this approach may prove technically and economically feasible in the longterm it is unclear whether consumers will be willing to adopt hydrogen-fueled appliances for heating and cooking should techno-economic feasibility be achieved. In response this paper develops an analytical framework for examining hydrogen acceptance which links together socio-technical barriers and social acceptance factors. Applying this framework the study synthesizes the existing knowledge on public perceptions of hydrogen and identifies critical knowledge gaps which should be addressed to support domestic hydrogen acceptance. The paper demonstrates that a future research agenda should account for the interactions between acceptance factors at the attitudinal socio-political market community and behavioral level. The analysis concludes that hydrogen is yet to permeate the public consciousness due to a lack of knowledge and awareness owing to an absence of information dissemination. In response consumer engagement in energy markets and stronger public trust in key stakeholders will help support social acceptance as the hydrogen transition unfolds. Affordability may prove the most critical barrier to the large-scale adoption of hydrogen homes while the disruptive impacts of the switchover and distributional injustice represent key concerns. As a starting point the promise of economic environmental and community benefits must be communicated and fulfilled to endorse the value of hydrogen homes.
Recent Developments in High-Performance Nafion Membranes for Hydrogen Fuel Cells Applications
Aug 2021
Publication
As a promising alternative to petroleum fossil energy polymer electrolyte membrane fuel cell has drawn considerable attention due to its low pollution emission high energy density portability and long operation times. Proton exchange membrane (PEM) like Nafion plays an essential role as the core of fuel cell. A good PEM must have satisfactory performance such as high proton conductivity excellent mechanical strength electrochemical stability and suitable for making membrane electrode assemblies (MEA). However performance degradation and high permeability remain the main shortcomings of Nafion. Therefore the development of a new PEM with better performance in some special conditions is greatly desired. In this review we aim to summarize the latest achievements in improving the Nafion performance that works well under elevated temperature or methanol-fueled systems. The methods described in this article can be divided into some categories utilizing hydrophilic inorganic material metal-organic frameworks nanocomposites and ionic liquids. In addition the mechanism of proton conduction in Nafion membranes is discussed. These composite membranes exhibit some desirable characteristics but the development is still at an early stage. In the future revolutionary approaches are needed to accelerate the application of fuel cells and promote the renewal of energy structure.
Evaluation of Stability and Catalytic Activity of Ni Catalysts for Hydrogen Production by Biomass Gasification in Supercritical Water
Mar 2019
Publication
Supercritical water gasification is a promising technology for wet biomass utilization. In this paper Ni and other metal catalysts were synthesized by wet impregnation. The stability and catalytic activities of Ni catalysts were evaluated. Firstly catalytic activities of Ni Fe Cu catalysts supported on MgO were tested using wheat straw as raw material in a batch reactor at 723 K and water density of 0.07 cm3/g. Experimental results showed that the order of metal catalyst activity for hydrogen generation was Ni/MgO > Fe/MgO > Cu/MgO. Secondly the influence of different supports on Ni catalysts performance was investigated. The results showed that the order of the Ni catalysts’ activity with different supports was Ni/MgO > Ni/ZnO > Ni/Al2O3 > Ni/ZrO2. Finally the effects of Ni loading and the amount of Ni catalyst addition on hydrogen production and the stability of Ni/MgO catalyst were studied. It was found that serious deactivation of Ni catalyst in the process of supercritical water gasification took place. Even if carbon deposited on the catalyst surface was removed by high temperature calcination and the catalyst was reduced with hydrogen the activity of used catalyst was only partially restored.
Numerical Study on Tri-fuel Combustion: Ignition Properties of Hydrogen-enriched Methane-diesel and Methanol-diesel Mixtures
Jan 2020
Publication
Simultaneous and interactive combustion of three fuels with differing reactivities is investigated by numerical simulations. In the present study conventional dual-fuel (DF) ignition phenomena relevant to DF compression ignition (CI) engines are extended and explored in tri-fuel (TF) context. In the present TF setup a low reactivity fuel (LRF) methane or methanol is perfectly mixed with hydrogen and air to form the primary fuel blend at the lean equivalence ratio of 0.5. Further such primary fuel blends are ignited by a high-reactivity fuel (HRF) here n-dodecane under conditions similar to HRF spray assisted ignition. Here ignition is relevant to the HRF containing parts of the tri-fuel mixtures while flame propagation is assumed to occur in the premixed LRF/ containing end gas regions. The role of hydrogen as TF mixture reactivity modulator is explored. Mixing is characterized by n-dodecane mixture fraction ξ and molar ratio . When x < 0.6 minor changes are observed for the first- and second-stage ignition delay time (IDT) of tri-fuel compared to dual-fuel blends (x = 0). For methane when x > 0.6 first- and second-stage IDT increase by factor 1.4–2. For methanol a respective decrease by factor 1.2–2 is reported. Such contrasting trends for the two LRFs are explained by reaction sensitivity analysis indicating the importance of OH radical production/consumption in the ignition process. Observations on LRF/ end gas laminar flame speed () indicate that increases with x due to the highly diffusive features of . For methane increase with x is more significant than for methanol.
Impacts of Load Profiles on the Optimization of Power Management of a Green Building Employing Fuel Cells
Dec 2018
Publication
This paper discusses the performance improvement of a green building by optimization procedures and the influences of load characteristics on optimization. The green building is equipped with a self-sustained hybrid power system consisting of solar cells wind turbines batteries proton exchange membrane fuel cell (PEMFC) electrolyzer and power electronic devices. We develop a simulation model using the Matlab/SimPowerSystemTM and tune the model parameters based on experimental responses so that we can predict and analyze system responses without conducting extensive experiments. Three performance indexes are then defined to optimize the design of the hybrid system for three typical load profiles: the household the laboratory and the office loads. The results indicate that the total system cost was reduced by 38.9% 40% and 28.6% for the household laboratory and office loads respectively while the system reliability was improved by 4.89% 24.42% and 5.08%. That is the component sizes and power management strategies could greatly improve system cost and reliability while the performance improvement can be greatly influenced by the characteristics of the load profiles. A safety index is applied to evaluate the sustainability of the hybrid power system under extreme weather conditions. We further discuss two methods for improving the system safety: the use of sub-optimal settings or the additional chemical hydride. Adding 20 kg of NaBH4 can provide 63 kWh and increase system safety by 3.33 2.10 and 2.90 days for the household laboratory and office loads respectively. In future the proposed method can be applied to explore the potential benefits when constructing customized hybrid power systems.
Bridging the Maritime-Hydrogen Cost-Gap: Real Options Analysis of Policy Alternatives
May 2022
Publication
Alternative and especially renewable marine fuels are needed to reduce the environmental and climate impacts of the shipping sector. This paper investigates the business case for hydrogen as an alternative fuel in a new-built vessel utilizing fuel cells and liquefied hydrogen. A real option approach is used to model the optimal time and costs for investment as well as the value of deferring an investment as a result of uncertainty. This model is then used to assess the impact of a carbon tax on a ship owner’s investment decision. A low carbon tax results in ship owners deferring investments which then slows the uptake of the technology. We recommend that policymakers set a high carbon tax at an early stage in order to help hydrogen compete with fossil fuels. A clear and timely policy design promotes further investments and accelerates the uptake of new technologies that can fulfill decarbonization targets.
Safety of Hydrogen Storage and Transportation: An Overview on Mechanisms, Techniques, and Challenges
Apr 2022
Publication
The extensive usage of fossil fuels has caused significant environmental pollution climate change and energy crises. The significant advantages of hydrogen such as cleanliness high efficiency and a wide range of sources make it quite promising. Hydrogen is prone to material damage which may lead to leakage. High-pressure leaking hydrogen is highly susceptible to spontaneous combustion due to its combustion characteristics which may cause jet fire or explosion accidents resulting in serious casualties and property damage. This paper presents a detailed review of the research progress on hydrogen leak diffusion characteristics leak spontaneous combustion mechanisms and material hydrogen damage mechanisms from the perspectives of theoretical analysis experiments and numerical simulations. This review points out that although a large number of research results have been obtained on the safety characteristics of hydrogen there are still some deficiencies and limitations. Further research topics are clarified such as further optimizing the kinetic mechanism of the high-pressure hydrogen leakage reaction and turbulence model exploring the expansion and dilution law of hydrogen clouds after liquid hydrogen flooding further studying the spontaneous combustion mechanism of leaked hydrogen and the interaction between mechanisms and investigating the synergistic damage effect of hydrogen and other components on materials. The leakage spontaneous combustion process in open space the development process of the bidirectional effect of hydrogen jet fuel and crack growth under the impact of high-pressure hydrogen jet fuel on the material may need to be explored next.
The EOS Project- A SOFC Pilot Plant in Italy Safety Aspects
Sep 2005
Publication
This paper deals with the main safety aspects of the EOS project. The partners of the project – Politecnico di Torino Gas Turbine Technologies (GTT Siemens group) Hysylab (Hydrogen System Laboratory) of Environment Park and Regione Piemonte – aim to create the main node of a regional fuel cell generator network. As a first step the Pennsylvania-based Stationary Fuel Cells division of Siemens Westinghouse Power Corporation (SWPC) supplied GTT with a CHP 100 kWe SOFC (Solide Oxide Fuel Cell) field unit fuelled by natural gas with internal reforming. The fuel cell is connected to the electricity national grid and provides part of the industrial district energy requirement. The thermal energy from the fuel cells is used for heating and air-conditioning of GTT offices bringing the total first Law efficiency of the plant to 70-80%. In the second phase of the EOS project (2007/2008) the maximum power produced by the SOFC systems installed in the GTT EOS test room will be increased to a total of about 225 kWe by means of an additional SOFC generator rated 125 kWe and up to 115 kWth. The paper provides information about the safety analysis which was performed during the main steps of the design of the system i.e. the HAZOP during the SOFC design by SWPC and the safety evaluations during the test hall design by GTT and Politecnico di Torino.
IGEM/SR/23 Review of Thermal Radiation and Noise for Hydrogen Venting
Nov 2021
Publication
IGEM/SR/23 (“Venting of natural gas”) provides recommendations for the conceptual design operation and safety aspects of permanent temporary and emergency venting of natural gas. The document was originally developed many years ago and the current edition dates to 1995. The document is due to be reviewed and updated for application to natural gas but the aim of this study is not to review the applicability of the document for natural gas but to assess the possible impact of 100% hydrogen on specific aspects of the existing guidance.<br/>A key element of the guidance concerns the safe dispersion distances for natural gas as vents are intended to provide a means of safely dispersing gas in the atmosphere without ignition. Guidance on safe dispersion distances for venting are provided in Section 6.6 accompanied by graphs showing the relationship between the mass flow rate through the vent and the safe (horizontal) dispersion distance. Details of the model used to predict the dispersion distances are given in Appendix 1. However for dispersion the guidance in IGEM/SR/23 has been superseded by similar guidance on hazard distances for unignited releases in IGEM/SR/25 (“Hazardous area classification of natural gas installations”) [2]. A comprehensive review of the applicability of IGEM/SR/25 to hydrogen is already underway for the LTS Futures project and is not duplicated here.<br/>However IGEM/SR/23 contains guidance on other important aspects relevant to the safe design and operation of vents which are not addressed elsewhere in the IGEM suite of standards; in particular guidance on hazard ranges for thermal radiation (in the event of an unplanned ignition of the venting gas) and noise.<br/>The main aim of this report is to assess the potential impact of replacing natural gas with 100% hydrogen on the guidance in IGEM/SR/23 concerned with thermal hazards with a secondary objective of assessing the available information to comment on the possible influence of hydrogen on noise.
The Challenges of Integrating the Principles of Green Chemistry and Green Engineering to Heterogeneous Photocatalysis to Treat Water and Produce Green H2
Jan 2023
Publication
Nowadays heterogeneous photocatalysis for water treatment and hydrogen production are topics gaining interest for scientists and developers from different areas such as environmental technology and material science. Most of the efforts and resources are devoted to the development of new photocatalyst materials while the modeling and development of reaction systems allowing for upscaling the process to pilot or industrial scale are scarce. In this work we present what is known on the upscaling of heterogeneous photocatalysis to purify water and to produce green H2. The types of reactors successfully used in water treatment plants are presented as study cases. The challenges of upscaling the photocatalysis process to produce green H2 are explored from the perspectives of (a) the adaptation of photoreactors (b) the competitiveness of the process and (c) safety. Throughout the text Green Chemistry and Engineering Principles are described and discussed on how they are currently being applied to the heterogeneous photocatalysis process along with the challenges that are ahead. Lastly the role of automation and high-throughput methods in the upscaling following the Green Principles is discussed.
PEFC System Reactant Gas Supply Management and Anode Purging Strategy: An Experimental Approach
Jan 2022
Publication
In this report a 5 kW PEFC system running on dry hydrogen with an appropriately sized Balance of Plant (BoP) was used to conduct experimental studies and analyses of gas supply subsystems. The improper rating and use of BoP components has been found to increase parasitic loads which consequently has a direct effect on the polymer electrolyte fuel cell (PEFC) system efficiency. Therefore the minimisation of parasitic loads while maintaining desired performance is crucial. Nevertheless little has been found in the literature regarding experimental work on large stacks and BoP with the majority of papers concentrating on modelling. A particular interest of our study was the anode side of the fuel cell. Additionally the rationale behind the use of hydrogen anode recirculation was scrutinised and a novel anode purging strategy was developed and implemented. Through experimental modelling the use of cathode air blower was minimised since it was found to be the biggest contributor to the parasitic loads.
Economic Feasibility of Green Hydrogen Production by Water Electrolysis Using Wind and Geothermal Energy Resources in Asal-Ghoubbet Rift (Republic of Djibouti): A Comparative Evaluation
Dec 2021
Publication
The Republic of Djibouti has untapped potential in terms of renewable energy resources such as geothermal wind and solar energy. This study examines the economic feasibility of green hydrogen production by water electrolysis using wind and geothermal energy resources in the Asal–Ghoubbet Rift (AG Rift) Republic of Djibouti. It is the first study in Africa that compares the cost per kg of green hydrogen produced by wind and geothermal energy from a single site. The unit cost of electricity produced by the wind turbine (0.042 $/kWh) is more competitive than that of a dry steam geothermal plant (0.086 $/kWh). The cost of producing hydrogen with a suitable electrolyzer powered by wind energy ranges from $0.672/kg H2 to $1.063/kg H2 while that produced by the high-temperature electrolyzer (HTE) powered by geothermal energy ranges from $3.31/kg H2 to $4.78/kg H2 . Thus the AG Rift area can produce electricity and green hydrogen at low-cost using wind energy compared to geothermal energy. The amount of carbon dioxide (CO2 ) emissions reduced by using a “Yinhe GX113-2.5MW” wind turbine and a single flash geothermal power plant instead of fuel-oil generators is 2061.6 tons CO2/MW/year and 2184.8 tons CO2/MW/year respectively.
Challenges in Hydrogen RCS’ Stakeholder Engagement in South Africa
Sep 2019
Publication
There is a great deal of knowledge and experience on the safe handling of hydrogen and the safe operation and management of hydrogen systems in South Africa. This knowledge and experience mostly sits within large gas supply companies and other large producers and consumers of hydrogen. However there appears to be less experience leading to a level of discomfort within regulatory bodies such as provincial and municipal fire departments and the national standards association. This compounded by a national policy of disallowing gas cylinders indoors has resulted in delays and indeed stalling in the process of obtaining permission to operate laboratories such as those of the national hydrogen programme HySA. In an effort to break this impasse two workshops were organised by HySA. The first was held at the CSIR’s facilities in Pretoria in October 2016. The second was held at the campus of the University of the Western Cape in Cape Town in May 2018. Four international experts and local experts in hydrogen regulations codes standards and safety addressed the 50-strong South African audiences via 5-way videoconferencing. This proved to be a very powerful tool to educate the audience and in particular the Tshwane (Pretoria) and Western Cape Fire Departments on the real issues risks and safety of hydrogen. The paper describes the South African Hydrogen RCS landscape the organisation and running of the workshops and the outputs achieved.
Studies on the Impact of Hydrogen on the Results of THT Measurement Devices
Dec 2021
Publication
An essential prerequisite for safe transport and use of natural gas is their appropriate odorization. This enables the detection of uncontrolled gas leaks. Proper and systematic odorization inspection ensures both safe use of gas and continuity of the process itself. In practice it is conducted through among others measuring odorant concentrations in gas. Control devices for rapid gas odorization measurements that are currently used on a large scale in the gas industry are equipped with electrochemical detectors selective for sulfur compounds like tetrahydrothiophene (THT). Because the selectivity of electrochemical detector response to one compound (e.g. THT) the available declarations of manufacturers show that detector sensitivity (indirectly also the quality of the measurement result) is influenced by the presence of increased e.g. sulfur or hydrogen compound content in the gas. Because of the lack of sufficient source literature data in this field it was necessary to experimentally verify this impact. The results of studies on experimental verification of suspected influence of increased amounts of hydrogen in gas on the response of electrochemical detector was carried out at the Oil and Gas Institute—National Research Institute (INiG—PIB). They are presented in this article. The data gathered in the course of researching the dependence between THT concentration measurement result quality and hydrogen content in gas composition enabled a preliminary assessment of the threat to the safety of end users of gaseous fuels caused by the introduction of this gas into the distribution network. Noticing the scope of necessary changes in the area of odorization is necessary to guarantee this safety.
No more items...