Publications
Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production
Mar 2022
Publication
Biogas is one of the most important sources of renewable energy and hydrogen production which needs upgrading to be functional. In this study two methods of biogas upgrading from organic parts of municipal waste were investigated. For biogas upgrading this article used a 3E analysis and simulated cryogenic separation and chemical scrubbing. The primary goal was to compare thermoeconomic indices and create hydrogen by reforming biomethane. The exergy analysis revealed that the compressor of the refrigerant and recovery column of MEA contributed the most exergy loss in the cryogenic separation and chemical scrubbing. The total exergy efficiency of cryogenic separation and chemical scrubbing was 85% and 84%. The energy analysis revealed a 2.07% lower energy efficiency for chemical scrubbing. The capital energy and total annual costs of chemical absorption were 56.51 26.33 and 54.44 percent lower than those of cryogenic separation respectively indicating that this technology is more economically feasible. Moreover because the thermodynamic efficiencies of the two methods were comparable the chemical absorption method was adopted for hydrogen production. The biomethane steam reforming was simulated and the results indicated that this method required an energy consumption of 90.48 MJ kgH2 . The hydrogen production intensity equaled 1.98 kmoleH2 kmolebiogas via a 79.92% methane conversion.
An Investigation into the Change Leakage when Switching from Natural Gas to Hydrogen in the UK Gas Distribution Network
Sep 2021
Publication
The H21 National Innovation Competition project is examining the feasibility of repurposing the existing GB natural gas distribution network for transporting 100% hydrogen. It aims to undertake an experimental testing programme that will provide the necessary data to quantify the comparative risk between a 100% hydrogen network and the natural gas network. The first phase of the project focuses on leakage testing of a strategic set of assets that have been removed from service which provide a representative sample of assets across the network. This paper presents the work undertaken for Phase 1A (background testing) where HSE and industry partners have tested a range of natural gas pipework assets of varying size material age and pressure-rating in a new bespoke open-air testing facility at the HSE Science and Research Centre Buxton. The assets have been pressurised with hydrogen and then methane and the leakage rate from the assets measured in both cases. The main finding of this work is that the assets tested which leak hydrogen also leak methane. None of the assets were found to leak hydrogen but not methane. In addition repair techniques that were effective at stopping methane leaks were also effective at stopping hydrogen leaks. The data from the experiments have been interpreted to obtain a range of leakage ratios between the two gases for releases under different conditions. This has been compared to the predicted ratio of hydrogen to methane volumetric leak rates for laminar (1.2:1) and turbulent (2.9:1) releases and good agreement was observed.
Vented Hydrogen-air Explosion in a Small Obstructed Rectangular Container- effect of the Blockage Ratio
Sep 2019
Publication
The explosion venting is an effective way to reduce hydrogen-air explosion hazards but the explosion venting has been hardly touched in an obstructed container. Current experiments focused on the effects of different blockage ratios on the explosion venting in a small obstructed rectangular container. Experimental results show that three overpressure peaks are formed in the case with the obstacle while only two can be observed in the case of no obstacle. The obstacle blockage ratio has a significant influence on the peak overpressure induced by the obstacle-acoustic interactions but it has an ignorable effect on the peak overpressure caused by the rupture of the vent film. The obstacle-induced overpressure peak first increases and then decreases with the increase of the blockage ratio. In addition all overpressure peaks inside the container decreases with the increase of the vent area and its appearance time is relatively earlier for larger vent area.
Russia’s Policy Transition to a Hydrogen Economy and the Implications of South Korea–Russia Cooperation
Dec 2021
Publication
Leading countries are developing clean energy to replace fossil fuels. In this context Russia is changing its energy policy towards fostering new energy resources such as hydrogen and helium. Hydrogen will not only contribute to Russia’s financial revenue by replacing natural gas but will also provide a basis for it to maintain its dominance over the international energy market by pioneering new energy markets. Russia is aiming to produce more than two million tons of hydrogen fuel for export to Europe and Asia by 2035. However it is facing many challenges including developing hydrogen fuel storage systems acquiring the technology required for exporting hydrogen and building trust in the fuel market. Meanwhile South Korea has a foundation for developing a hydrogen industry as it has the highest capacity in the world to produce fuel cells and the ability to manufacture LNG: (liquefied natural gas) carriers. Therefore South Korea and Russia have sufficient potential to create a new complementary and reciprocal cooperation model in the hydrogen fuel field. This study examines the present and future of Russia’s energy policy in this area as well as discusses South Korea and Russia’s cooperation plans in the hydrogen fuel sector and the related implications.
Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels
Sep 2021
Publication
Consideration of the possibility of transporting compressed hydrogen through existing gas pipelines leads to the need to study the regularities of the effect of hydrogen on the mechanical properties of steels in relation to the conditions of their operation in pipelines (operating pressure range stress state of the pipe metal etc.). This article provides an overview of the types of influence of hydrogen on the mechanical properties of steels including those used for the manufacture of pipelines. The effect of elastic and plastic deformations on the intensity of hydrogen saturation of steels and changes in their strength and plastic deformations is analyzed. An assessment of the potential losses of transported hydrogen through the pipeline wall as a result of diffusion has been made. The main issues that need to be solved for the development of a scientifically grounded conclusion on the possibility of using existing gas pipelines for the transportation of compressed hydrogen are outlined.
Advanced Optimal Planning for Microgrid Technologies Including Hydrogen and Mobility at a Real Microgrid Testbed
Apr 2021
Publication
This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis seasonal storage and fuelling station for meeting the hydrogen fuel demand of fuel cell vehicles busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation)
A New Energy System Based on Biomass Gasification for Hydrogen and Power Production
Apr 2020
Publication
In this paper a new gasification system is developed for the three useful outputs of electricity heat and hydrogen and reported for practical energy applications. The study also investigates the composition of syngas leaving biomass gasifier. The composition of syngas is represented by the fractions of hydrogen carbon dioxide carbon monoxide and water. The integrated energy system comprises of an entrained flow gasifier a Cryogenic Air Separation (CAS) unit a double-stage Rankine cycle Water Gas Shift Reactor (WGSR) a combined gas–steam power cycle and a Proton Exchange Membrane (PEM) electrolyzer. The whole integrated system is modeled in the Aspen plus 9.0 excluding the PEM electrolyzer which is modeled in Engineering Equation Solver (EES). A comprehensive parametric investigation is conducted by varying numerous parameters like biomass flow rate steam flow rate air input flow rate combustion reactor temperature and power supplied to the electrolyzer. The system is designed in a way to supply the power produced by the steam Rankine cycle to the PEM electrolyzer for hydrogen production. The overall energy efficiency is obtained to be 53.7% where the exergy efficiency is found to be 45.5%. Furthermore the effect of the biomass flow rate is investigated on the various system operational parameters.
Safety Analysis and Risk Control of Shore-Based Bunkering Operations for Hydrogen Powered Ships
Sep 2021
Publication
In order to ensure the safety of shore-based hydrogen bunkering operations this paper takes a 2000-ton bulk hydrogen powered ship as an example. Firstly the HAZID method is used to identify the hazards of hydrogen bunkering then the probability of each scenario is analyzed and then the consequences of scenarios with high risk based on FLACS software is simulated. Finally the personal risk of bunkering operation is evaluated and the bunkering restriction area is defined. The results show that the personal risk of shore-based bunkering operation of hydrogen powered ship is acceptable but the following risk control measures should be taken: (1) The bunkering restriction area shall be delineated and only the necessary operators are allowed to enter the area and control the any form of potential ignition source; (2) The hose is the high risk hazards during bunkering. The design form of bunkering arm and bunkering hose is considered to shorten the length of the hose as far as possible; (3) A safe distance between shore-based hydrogenation station and the building outside the station should be guaranteed. The results have a guiding role in effectively reducing the risk of hydrogen bunkering operation.
A Multi-objective MILP Model for the Design and Operation of Future Integrated Multi-vector Energy Networks Capturing Detailed Spatio-temporal Dependencies
Dec 2017
Publication
A multi-objective optimisation model based on mixed integer linear programming is presented that can simultaneously determine the design and operation of any integrated multi-vector energy networks. It can answer variants of the following questions: What is the most effective way in terms of cost value/profit and/or emissions of designing and operating the integrated multi-vector energy networks that utilise a variety of primary energy sources to deliver different energy services such as heat electricity and mobility given the availability of primary resources and the levels of demands and their distribution across space and time? When to invest in technologies where to locate them; what resources should be used where when and how to convert them to the energy services required; how to transport the resources and manage inventory? Scenarios for Great Britain were examined involving different primary energy sources such as natural gas biomass and wind power in order to satisfy demands for heat electricity and mobility via various energy vectors such as electricity natural gas hydrogen and syngas. Different objectives were considered such as minimising cost maximising profit minimising emissions and maximising renewable energy production subject to the availability of suitable land for biomass and wind turbines as well as the maximum local production and import rates for natural gas. Results suggest that if significant mobility demands are met by hydrogen-powered fuel cell vehicles then hydrogen is the preferred energy vector over natural gas for satisfying heat demands. If natural gas is not used and energy can only be generated from wind power and biomass electricity and syngas are the preferred energy carriers for satisfying electricity and heat demands.
Combined Ammonia Recovery and Solid Oxide Fuel Cell Use at Wastewater Treatment Plants for Energy and Greenhouse Gas Emission Improvements
Feb 2019
Publication
Current standard practice at wastewater treatment plants (WWTPs) involves the recycling of digestate liquor produced from the anaerobic digestion of sludge back into the treatment process. However a significant amount of energy is required to enable biological breakdown of ammonia present in the liquor. This biological processing also results in the emission of damaging quantities of greenhouse gases making diversion of liquor and recovery of ammonia a noteworthy option for improving the sustainability of wastewater treatment. This study presents a novel process which combines ammonia recovery from diverted digestate liquor for use (alongside biomethane) in a solid oxide fuel cell (SOFC) system for implementation at WWTPs. Aspen Plus V.8.8 and numerical steady state models have been developed using data from a WWTP in West Yorkshire (UK) as a reference facility (750000p.e.). Aspen Plus simulations demonstrate an ability to recover 82% of ammoniacal nitrogen present in digestate liquor produced at the WWTP. The recovery process uses a series of stripping absorption and flash separation units where water is recovered alongside ammonia. This facilitates effective internal steam methane as a case of study has the potential to make significant impacts energetically and environmentally; findings suggest the treatment facility could transform from a net consumer of electricity to a net producer. The SOFC has been demonstrated to run at an electrical efficiency of 48% with NH3 contributing 4.6% of its power output. It has also been demonstrated that 3.5 kg CO2e per person served by the WWTP could be mitigated a year due to a combination of emissions savings by diversion of ammonia from biological processing and lifecycle emissions associated with the lack of reliance on grid electricity.
Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria
Oct 2021
Publication
Achieving climate neutrality requires a massive transformation of current energy systems. Fossil energy sources must be replaced with renewable ones. Renewable energy sources with reasonable potential such as photovoltaics or wind power provide electricity. However since chemical energy carriers are essential for various sectors and applications the need for renewable gases comes more and more into focus. This paper determines the Austrian green hydrogen potential produced exclusively from electricity surpluses. In combination with assumed sustainable methane production the resulting renewable gas import demand is identified based on two fully decarbonised scenarios for the investigated years 2030 2040 and 2050. While in one scenario energy efficiency is maximised in the other scenario significant behavioural changes are considered to reduce the total energy consumption. A techno-economic analysis is used to identify the economically reasonable national green hydrogen potential and to calculate the averaged levelised cost of hydrogen (LCOH2) for each scenario and considered year. Furthermore roll-out curves for the necessary expansion of national electrolysis plants are presented. The results show that in 2050 about 43% of the national gas demand can be produced nationally and economically (34 TWh green hydrogen 16 TWh sustainable methane). The resulting national hydrogen production costs are comparable to the expected import costs (including transport costs). The most important actions are the quick and extensive expansion of renewables and electrolysis plants both nationally and internationally
Heat Recovery from a PtSNG Plant Coupled with Wind Energy
Nov 2021
Publication
Power to substitute natural gas (PtSNG) is a promising technology to store intermittent renewable electricity as synthetic fuel. Power surplus on the electric grid is converted to hydrogen via water electrolysis and then to SNG via CO2 methanation. The SNG produced can be directly injected into the natural gas infrastructure for long-term and large-scale energy storage. Because of the fluctuating behaviour of the input energy source the overall annual plant efficiency and SNG production are affected by the plant operation time and the standby strategy chosen. The re-use of internal (waste) heat for satisfying the energy requirements during critical moments can be crucial to achieving high annual efficiencies. In this study the heat recovery from a PtSNG plant coupled with wind energy based on proton exchange membrane electrolysis adiabatic fixed bed methanation and membrane technology for SNG upgrading is investigated. The proposed thermal recovery strategy involves the waste heat available from the methanation unit during the operation hours being accumulated by means of a two-tanks diathermic oil circuit. The stored heat is used to compensate for the heat losses of methanation reactors during the hot-standby state. Two options to maintain the reactors at operating temperature have been assessed. The first requires that the diathermic oil transfers heat to a hydrogen stream which is used to flush the reactors in order to guarantee the hot-standby conditions. The second option entails that the stored heat being recovered for electricity production through an Organic Rankine Cycle. The electricity produced is used to compensate the reactors heat losses by using electrical trace heating during the hot-standby hours as well as to supply energy to ancillary equipment. The aim of the paper is to evaluate the technical feasibility of the proposed heat recovery strategies and how they impact on the annual plant performances. The results showed that the annual efficiencies on an LHV basis were found to be 44.0% and 44.3% for the thermal storage and electrical storage configurations respectively.
Hydrogen Supply Chain Scenarios for the Decarbonisation of a German Multi-modal Energy System
Sep 2021
Publication
Analysing hydrogen supply chains is of utmost importance to adequately understand future energy systems with a high degree of sector coupling. Here a multi-modal energy system model is set up as linear programme incorporating electricity natural gas as well as hydrogen transportation options for Germany in 2050. Further different hydrogen import routes and optimised inland electrolysis are included. In a sensitivity analysis hydrogen demands are varied to cover uncertainties and to provide scenarios for future requirements of a hydrogen supply and transportation infrastructure. 80% of the overall hydrogen demand of 150 TWh/a emerge in Northern Germany due to optimised electrolyser locations and imports which subsequently need to be transported southwards. Therefore a central hydrogen pipeline connection from Schleswig-Holstein to the region of Darmstadt evolves already for moderate demands and appears to be a no-regret investment. Furthermore a natural gas pipeline reassignment potential of 46% is identified.
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
Storage System of Renewable Energy Generated Hydrogen for Chemical Industry
Nov 2012
Publication
Chemical industry is the base of the value chains and has strong influence on the competitiveness of almost all branches in economics. To develop the technologies for sustainability and climate protection and at the same time to guarantee the supply of raw material is a big challenge for chemical industry. In the project CO2RRECT (CO2 - Reaction using Regenerative Energies and Catalytic Technologies) funded by the German federal ministry of Education and Research carbon dioxide is used as the source of carbon for chemical products with certain chemical processes. Hydrogen that is needed in these processes is produced by electrolyzing water with renewable energy. To store a large amount of hydrogen different storage systems are studied in this project including liquid hydrogen tanks/cryo tanks high pressure tanks pipelines and salt cavities. These systems are analyzed and compared considering their storage capacity system costs advantages and disadvantages. To analyze capital and operational expenditure of the hydrogen storage systems a calculation methodology is also developed in this work.
Preference Structure on the Design of Hydrogen Refueling Stations to Activate Energy Transition
Aug 2020
Publication
As a countermeasure to the greenhouse gas problem the world is focusing on alternative fuel vehicles (AFVs). The most prominent alternatives are battery electric vehicles (BEV) and fuel cell electric vehicles (FCEVs). This study examines FCEVs especially considering hydrogen refueling stations to fill the gap in the research. Many studies suggest the important impact that infrastructure has on the diffusion of AFVs but they do not provide quantitative preferences for the design of hydrogen refueling stations. This study analyzes and presents a consumer preference structure for hydrogen refueling stations considering the production method distance probability of failure to refuel number of dispensers and fuel costs as core attributes. For the analysis stated preference data are applied to choice experiments and mixed logit is used for the estimation. Results indicate that the supply stability of hydrogen refueling stations is the second most important attribute following fuel price. Consumers are willing to pay more for green hydrogen compared to gray hydrogen which is hydrogen produced by fossil fuels. Driver fuel type and perception of hydrogen energy influence structure preference. Our results suggest a specific design for hydrogen refueling stations based on the characteristics of user groups.
A Critique on the UK's Net Zero Strategy
Dec 2022
Publication
Before the Covid-19 pandemic UK passed net-zero emission law legislation to become the first major economy in the world to end its contribution to global warming by 2050. Following the UK’s legislation to reach net-zero emissions a long-term strategy for transition to a net-zero target was published in 2021. The strategy is a technology-led and with a top-down approach. The intention is to reach the target over the next three decades. The document targets seven sectors to reduce emissions and include a wide range of policies and innovations for decarbonization. This paper aims to accomplish a much needed review of the strategy in heat and buildings part and cover the key related areas in future buildings standard heat pumps and use of hydrogen as elaborated in the strategy. For that purpose this research reviews key themes in the policy challenges recent advancement and future possibilities. It provides an insight on the overall development toward sustainability and decarbonization of built environment in the UK by 2050. A foresight model Future Wheels is also used to visualize the findings from the review and provide a clear picture of the potential impact of the policy.
A Model for Hydrogen Detonation Diffraction or Transmission to a Non-confined Layer
Sep 2021
Publication
One strategy for arresting propagating detonation waves in pipes is by imposing a sudden area enlargement which provides a rapid lateral divergence of the gases in the reaction zone and attenuates the leading shock. For sufficiently small tube diameter the detonation decays to a deflagration and the shock decays to negligible strengths. This is known as the critical tube diameter problem. In the present study we provide a closed form model to predict the detonation quenching for 2D channels. This problem also applies to the transmission of a detonation wave from a confined layer to a weakly-confined layer. Whitham’s geometric shock dynamics coupled with a shock evolution law based on shocks sustained by a constant source obtained by the shock change equations of Radulescu is shown to capture the lateral shock dynamics response to the failure wave originating at the expansion corner. A criterion for successful detonation transmission to open space is that the lateral strain rate provided by the failure wave not exceed the critical strain rate of steady curved detonations. Using the critical lateral strain rate obtained by He and Clavin a closed form solution is obtained for the critical channel opening permitting detonation transmission. The predicted critical channel width is found in excellent agreement with our recent experiments and simulations of diffracting H2/O2/Ar detonations. Model comparison with available data for H2/air detonation diffraction into open space at ambient conditions or for transmission into a weakly confined layer by air is also found in good agreement within a factor never exceeding 2 for the critical opening or layer dimension.
Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review
May 2021
Publication
Dry reforming of hydrocarbons alcohols and biological compounds is one of the most promising and effective avenues to increase hydrogen (H2 ) production. Catalytic dry reforming is used to facilitate the reforming process. The most popular catalysts for dry reforming are Ni-based catalysts. Due to their inactivation at high temperatures these catalysts need to use metal supports which have received special attention from researchers in recent years. Due to the existence of a wide range of metal supports and the need for accurate detection of higher H2 production in this study a systematic review and meta-analysis using ANNs were conducted to assess the hydrogen production by various catalysts in the dry reforming process. The Scopus Embase and Web of Science databases were investigated to retrieve the related articles from 1 January 2000 until 20 January 2021. Forty-seven articles containing 100 studies were included. To determine optimal models for three target factors (hydrocarbon conversion hydrogen yield and stability test time) artificial neural networks (ANNs) combined with differential evolution (DE) were applied. The best models obtained had an average relative error for the testing data of 0.52% for conversion 3.36% for stability and 0.03% for yield. These small differences between experimental results and predictions indicate a good generalization capability.
A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems
Mar 2020
Publication
Various concepts have been proposed to use hydrocarbon fuels in solid oxide fuel cell (SOFC) systems. A combination of either allothermal or adiabatic pre-reforming and water recirculation (WR) or anode off-gas recirculation (AOGR) is commonly used to convert the fuel into a hydrogen rich mixture before it is electrochemically oxidised in the SOFC. However it is unclear how these reforming concepts affect the electrochemistry and temperature gradients in the SOFC stack. In this study four reforming concepts based on either allothermal or adiabatic pre-reforming and either WR or AOGR are modelled on both stack and system level. The electrochemistry and temperature gradients in the stack are simulated with a one-dimensional SOFC model and the results are used to calculate the corresponding system efficiencies. The highest system efficiencies are obtained with allothermal pre-reforming and WR. Adiabatic pre-reforming and AOGR result in a higher degree of internal reforming which reduces the cell voltage compared to allothermal pre-reforming and WR. Although this lowers the stack efficiency higher degrees of internal reforming reduce the power consumption by the cathode air blower as well leading to higher system efficiencies in some cases. This illustrates that both stack and system operation need to be considered to design an efficient SOFC system and predict potentially deteriorating temperature gradients in the stack.
No more items...