Applications & Pathways
Energy System Requirements of Fossil-free Steelmaking using Hydrogen Direct Reduction
May 2021
Publication
The iron and steel industry is one of the world’s largest industrial emitters of greenhouse gases. One promising option for decarbonising the industry is hydrogen direct reduction of iron (H-DR) with electric arc furnace (EAF) steelmaking powered by zero carbon electricity. However to date little attention has been given to the energy system requirements of adopting such a highly energy-intensive process. This study integrates a newly developed long-term energy system planning tool with a thermodynamic process model of H-DR/EAF steelmaking developed by Vogl et al. (2018) to assess the optimal combination of generation and storage technologies needed to provide a reliable supply of electricity and hydrogen. The modelling tools can be applied to any country or region and their use is demonstrated here by application to the UK iron and steel industry as a case study. It is found that the optimal energy system comprises 1.3 GW of electrolysers 3 GW of wind power 2.5 GW of solar 60 MW of combined cycle gas with carbon capture 600 GWh/600 MW of hydrogen storage and 30 GWh/130 MW of compressed air energy storage. The hydrogen storage requirements of the industry can be significantly reduced by maintaining some dispatchable generation for example from 600 GWh with no restriction on dispatchable generation to 140 GWh if 20% of electricity demand is met using dispatchable generation. The marginal abatement costs of a switch to hydrogen-based steelmaking are projected to be less than carbon price forecasts within 5–10 years.
Concepts for Hydrogen Internal Combustion Engines and Their Implications on the Exhaust Gas Aftertreatment System
Dec 2021
Publication
Hydrogen as carbon-free fuel is a very promising candidate for climate-neutral internal combustion engine operation. In comparison to other renewable fuels hydrogen does obviously not produce CO2 emissions. In this work two concepts of hydrogen internal combustion engines (H2 -ICEs) are investigated experimentally. One approach is the modification of a state-of-the-art gasoline passenger car engine using hydrogen direct injection. It targets gasoline-like specific power output by mixture enrichment down to stoichiometric operation. Another approach is to use a heavy-duty diesel engine equipped with spark ignition and hydrogen port fuel injection. Here a diesel-like indicated efficiency is targeted through constant lean-burn operation. The measurement results show that both approaches are applicable. For the gasoline engine-based concept stoichio-metric operation requires a three-way catalyst or a three-way NOX storage catalyst as the primary exhaust gas aftertreatment system. For the diesel engine-based concept state-of-the-art selective catalytic reduction (SCR) catalysts can be used to reduce the NOx emissions provided the engine calibration ensures sufficient exhaust gas temperature levels. In conclusion while H2 -ICEs present new challenges for the development of the exhaust gas aftertreatment systems they are capable to realize zero-impact tailpipe emission operation.
Retrofitting Towards a Greener Marine Shipping Future: Reassembling Ship Fuels and Liquefied Natural Gas in Norway
Dec 2021
Publication
The reduction of greenhouse gas emissions has entered regulatory agendas in shipping. In Norway a debate has been ongoing for over a decade about whether liquefied natural gas (LNG) ship fuel enables or impedes the transition to a greener future for shipping. This paper explores the assembling of ship fuel before and after the introduction of a controversial carbon tax on LNG. It reconstructs how changes in the regulatory apparatus prompted the reworking of natural gas into a ship fuel yet later slowed down the development of LNG in a strategy to promote alternative zero-emission fuels such as hydrogen. Following ship fuel as socio-materiality in motion we find that fossil fuels are reworked into new modes of application as part of transition policies. Natural gas continues to be enacted as an “enabler of transition” in the context of shipping given that current government policies work to support the production of hydrogen from natural gas and carbon capture and storage (CCS). New modes of accounting for emissions reassemble existing fossil fuel materiality by means of CCS and fossil-based zero-emission fuels. We examine retrofit as a particular kind of reassembling and as a prism for studying the politics of fuel and the relation between transitions and existing infrastructures.
Preliminary Analysis of Compression System Integrated Heat Management Concepts Using LH2-Based Parametric Gas Turbine Model
Apr 2021
Publication
The investigation of the various heat management concepts using LH2 requires the development of a modeling environment coupling the cryogenic hydrogen fuel system with turbofan performance. This paper presents a numerical framework to model hydrogen-fueled gas turbine engines with a dedicated heat-management system complemented by an introductory analysis of the impact of using LH2 to precool and intercool in the compression system. The propulsion installations comprise Brayton cycle-based turbofans and first assessments are made on how to use the hydrogen as a heat sink integrated into the compression system. Conceptual tubular compact heat exchanger designs are explored to either precool or intercool the compression system and preheat the fuel to improve the installed performance of the propulsion cycles. The precooler and the intercooler show up to 0.3% improved specific fuel consumption for heat exchanger effectiveness in the range 0.5–0.6 but higher effectiveness designs incur disproportionately higher pressure losses that cancel-out the benefits.
Analysis of Hydrogen-powered Propulsion System Alternatives for Diesel-electric Regional Trains
Aug 2022
Publication
Non-electrified regional railway lines with typically employed diesel-electric multiple units require alternative propulsion systems to meet increasingly strict emissions regulations. With the aim to identify an optimal alternative to conventional diesel traction this paper presents a model-based assessment of hydrogen-powered propulsion systems with an internal combustion engine or fuel cells as the prime mover combined with different energy storage system configurations based on lithium-ion batteries and/or double-layer capacitors. The analysis encompasses technology identification design modelling and assessment of alternative powertrains explicitly considering case-related constraints imposed by the infrastructure technical and operational requirements. Using a regional railway network in the Netherlands as a case we investigate the possibilities in converting a conventional benchmark vehicle and provide the railway undertaking and decision-makers with valuable input for planning of future rolling stock investments. The results indicate the highest fuel-saving potential for fuel cell-based hybrid propulsion systems with lithium-ion battery or a hybrid energy storage system that combines both energy storage system technologies. The two configurations also demonstrate the highest reduction of greenhouse gas emissions compared to the benchmark diesel-driven vehicle by about 25% for hydrogen produced by steam methane reforming and about 19% for hydrogen obtained from electrolysis of water with grey electricity.
Sizing of a Fuel Cell–battery Backup System for a University Building Based on the Probability of the Power Outages Length
Jul 2022
Publication
Hydrogen is a bright energy vector that could be crucial to decarbonise and combat climate change. This energy evolution involves several sectors including power backup systems to supply priority facility loads during power outages. As buildings now integrate complex automation domotics and security systems energy backup systems cause interest. A hydrogen-based backup system could supply loads in a multi-day blackout; however the backup system should be sized appropriately to ensure the survival of essential loads and low cost. In this sense this work proposes a sizing of fuel cell (FC) backup systems for low voltage (LV) buildings using the history of power outages. Historical data allows fitting a probability function to determine the appropriate survival of loads. The proposed sizing is applied to a university building with a photovoltaic generation system as a case study. Results show that the sizing of an FC–battery backup system for the installation is 7.6% cheaper than a battery-only system under a usual 330-minutes outage scenario. And 59.3% cheaper in the case of an unusual 48-hours outage scenario. It ensures a 99% probability of supplying essential load during power outages. It evidences the pertinence of an FC backup system to attend to outages of long-duration and the integration of batteries to support the abrupt load variations. This research is highlighted by using historical data from actual outages to define the survival of essential loads with total service probability. It also makes it possible to determine adequate survival for non-priority loads. The proposed sizing is generalisable and scalable for other buildings and allows quantifying the reliability of the backup system tending to the resilience of electrical systems.
Hydrogen and Fuel Cell Demonstrations in Turkey
Nov 2012
Publication
As a non-profit UNIDO project funded 100% by the Turkish Ministry of Energy and Natural Resources International Center for Hydrogen Energy Technologies (ICHET) has been implementing pilot demonstration projects providing applied R&D funding; organizing workshops education and training activities in Turkey and other developing countries to show potential benefits of “hydrogen and fuel cell systems”. It is important to leap-frog developing countries to hydrogen for eliminating detrimental effect of fossil fuels. To achieve its mission ICHET implements pilot demonstration projects in combination with renewable energy systems to encourage local industry to manufacture similar systems and explore market potential for such use. Support is provided to selected industrial partners in Turkey for developing products or for early demonstrations including a fuel cell forklift a fuel cell boat a fuel cell passenger cart with PV integrated roof-top renewable integrated mobile house fuel cell based UPS installations. As more and more systems demonstrated public awareness on applications of hydrogen and fuel cell technologies will increase and viability of such systems will be realized to change public perception.
Modelling and Analyzing the Impact of Hydrogen Enriched Natural Gas on Domestic Gas Boilers in a Decarbonization Perspective
Aug 2020
Publication
Decarbonization of energy economy is nowadays a topical theme and several pathways are under discussion. Gaseous fuels have a fundamental role for this transition and the production of low carbon-impact fuels is necessary to deal with this challenge. The generation of renewable hydrogen is a trusted solution since this energy vector can be promptly produced from electricity and injected into the existing natural gas infrastructure granting storage capacity and easy transportation. This scenario will lead in the near future to hydrogen enrichment of natural gas whose impact on the infrastructures is being actively studied. The effect on end-user devices such as domestic gas boilers instead is still little analyzed and tested but is fundamental to be assessed. The aim of this research is to generate knowledge on the effect of hydrogen enrichment on the widely used premixed boilers: the investigations include pollutant emissions efficiency flashback and explosion hazard control system and materials selection. A model for calculating several parameters related to combustion of hydrogen enriched natural gas is presented. Guidelines for the design of new components are provided and an insight is given on the maximum hydrogen blending bearable by the current boilers.
Are Sustainable Aviation Fuels a Viable Option for Decarbonizing Air Transport in Europe? An Environmental and Economic Sustainability Assessment
Jan 2022
Publication
The use of drop-in capable alternative fuels in aircraft can support the European aviation sector to achieve its goals for sustainable development. They can be a transitional solution in the short and medium term as their use does not require any structural changes to the aircraft powertrain. However the production of alternative fuels is often energy-intensive and some feedstocks are associated with harmful effects on the environment. In addition alternative fuels are often more expensive to produce than fossil kerosene which can make their use unattractive. Therefore this paper analyzes the environmental and economic impacts of four types of alternative fuels compared to fossil kerosene in a well-to-wake perspective. The fuels investigated are sustainable aviation fuels produced by power-to-liquid and biomass-to-liquid pathways. Life cycle assessment and life cycle costing are used as environmental and economic assessment methods. The results of this well-towake analysis reveal that the use of sustainable aviation fuels can reduce the environmental impacts of aircraft operations. However an electricity mix based on renewable energies is needed to achieve significant reductions. In addition from an economic perspective the use of fossil kerosene ranks best among the alternatives. A scenario analysis confirms this result and shows that the production of sustainable aviation fuels using an electricity mix based solely on renewable energy can lead to significant reductions in environmental impact but economic competitiveness remains problematic.
Cradle-grave Energy Consumption, Greenhouse Gas and Acidification Emissions in Current and Future Fuel Cell Vehicles: Study Based on Five Hydrogen Production Methods in China
Jun 2022
Publication
Hydrogen fuel cell vehicles (FCVs) are regarded as a promising solution to the problems of energy security and environmental pollution. However the technology is under development and the hydrogen consumption is uncertain. The quantitative evaluation of life cycle energy consumption pollution emissions of current and future FCVs in China involves complex processes and parameters. Therefore this study addresses Life Cycle Assessment (LCA) of FCV and focuses on the key parameters of FCV production and different hydrogen production methods which include steam methane reforming catalysis decomposition methanol steam reforming electrolysis–photovoltaic (PV) and electrolysis Chinese electricity grid mix (CN). Sensitivity analysis of bipolar plate glider mass power density fuel cell system efficiency and energy control strategy are performed whilst accounting for different assumption scenarios. The results show that all impact assessment indicators will decrease by 28.8– 44.3% under the 2030 positive scenario for the production of FCVs. For cradle-grave FCVs the use of hydrogen from electrolysis operated with photovoltaic power reduces global warming potential (GWP) by almost 76.4% relative to steam methane reforming. By contrast the use of hydrogen from electrolysis operated with the Chinese electricity grid mix results in an increase in GWP of almost 158.3%.
Influence of Air Distribution on Combustion Characteristics of a Micro Gas Turbine Fuelled by Hydrogen-doped Methane
Nov 2021
Publication
Adding hydrogen to the fuel can change the combustion characteristics and greatly improve the pollutants emission for the gas turbine. The numerical method was adopted to study the combustion process in a counter-flow combustor of a 100 kW micro gas turbine using methane doped by hydrogen and various distribution schemes of air flow. The combustion characteristics and pollutant emissions were explored to ascertain the influence of air distribution based on solving the validated models. It was shown that as the amount of premixed air increased in the swirling gas the range of the recirculation region became larger and the range of the high-temperature zone in the combustion chamber gradually enlarged. When the amount of premixed air was 30% the outlet temperature distribution of the combustor was excellent and the average temperature was 1172 K. Moreover the concentration of NOX gradually increased and reached a maximum value of 23.46 ppm (@15% O2) as the premixed air increased in the range of the ratio less than 40%. It was reduced to 0.717 ppm (@15% O2) when the amount of premixed air increased to 50%. These findings may support the running of the micro gas turbine using the hybrid fuel of hydrogen and methane.
HydroGenerally - Episode 4: Hydrogen in a Global Maritime Industry: Plain Sailing or a Rough Ride?
May 2022
Publication
In this fourth episode Simon Buckley and Matthew Moss from Innovate UK KTN are exploring the use of hydrogen in the global maritime industry alongside their special guest Chester Lewis Business Development Manager at Ryze Hydrogen.
This podcast can be found on their website
This podcast can be found on their website
State-Aware Energy Management Strategy for Marine Multi-Stack Hybrid Energy Storage Systems Considering Fuel Cell Health
Jul 2025
Publication
To address the limitations of conventional single-stack fuel cell hybrid systems using equivalent hydrogen consumption strategies this study proposes a multi-stack energy management strategy incorporating fuel cell health degradation. Leveraging a fuel cell efficiency decay model and lithium-ion battery cycle life assessment power distribution is reformulated as an equivalent hydrogen consumption optimization problem with stack degradation constraints. A hybrid Genetic Algorithm–Particle Swarm Optimization (GAPSO) approach achieves global optimization. The experimental results demonstrate that compared with the Frequency Decoupling (FD) method the GA-PSO strategy reduces hydrogen consumption by 7.03 g and operational costs by 4.78%; compared with the traditional Particle Swarm Optimization (PSO) algorithm it reduces hydrogen consumption by 3.61 g per operational cycle and decreases operational costs by 2.66%. This strategy ensures stable operation of the marine power system while providing an economically viable solution for hybrid-powered vessels.
Using of an Electrochemical Compressor for Hydrogen Recirculation in Fuel Cell Vehicles
Jun 2020
Publication
The automotive industry sees hydrogen-powered fuel cell(FC) drives as a promising option with a high range and shortrefueling time. Current research aims to increase the profitabil-ity of the fuel cell system by reducing hydrogen consumption.This study suggests the use of an electrochemical hydrogencompressor (EHC) for hydrogen recirculation. Compared tomechanical compressors the EHC is very efficient due to thealmost isothermal conditions and due to its modular structurecan only take up a minimal amount of space in vehicles. Inaddition gas separation and purification of the hydrogentakes place in an EHC which is a significant advantage overthe standard recirculation with a blower or a jet pump. Thehigh purity of the hydrogen at the cathode outlet of the EHCalso increased partial pressure of the hydrogen at the fuel cellinlet and its efficiency. The study carried out shows that repla-cing the blower with the EHC reduces the hydrogen loss bypurging by up to ~95% and the efficiency of the FC systemcould be further improved. Thus the EHC has a great poten-tial for recycling hydrogen in FC systems in the automotiveindustry and is a great alternative to the current blower.
Optimized Design of a H2-Powered Moped for Urban Mobility
Mar 2024
Publication
Micro-mobility plays an increasingly important role in the current energy transition thanks to its low energy consumption and reduced contribution to urban congestion. In this scenario fuel cell hybrid electric vehicles have several advantages over state-of-the-art battery electric vehicles such as increased driving ranges and reduced recharge times. In this paper we study the conversion of a commercial electric moped (Askoll eS3 ®) into a fuel cell hybrid electric vehicle by finding the optimal design of the components through an optimization methodology based on backward dynamic programming. This optimal design and operation strategy can also be implemented with a rulesbased approach. The results show that a system composed of a 1 kW proton exchange membrane fuel cell a 2000 Sl metal hydride hydrogen tank and a 240 Wh buffer battery can cover the same driving range as the batteries in an electric moped (119 km). Such a hybrid system occupies considerably less volume (almost 40 L) and has a negligibly higher mass. The free volume can be used to extend the driving range up to almost three times the nominal value. Moreover by using a high-pressure composite tank it is possible to increase the mass energy density of the onboard energy storage (although compression can require up to 10% of the hydrogen’s chemical energy). The fuel cell hybrid electric vehicle can be recharged with green hydrogen that is locally produced. In detail we analyze a residential scenario and a shared mobility scenario in the small Italian city of Viterbo.
A Parametric Approach for Conceptual Integration and Performance Studies of Liquid Hydrogen Short–Medium Range Aircraft
Jul 2022
Publication
The present paper deals with the investigation at conceptual level of the performance of short–medium-range aircraft with hydrogen propulsion. The attention is focused on the relationship between figures of merit related to transport capability such as passenger capacity and flight range and the parameters which drive the design of liquid hydrogen tanks and their integration with a given aircraft geometry. The reference aircraft chosen for such purpose is a box-wing short–mediumrange airplane the object of study within a previous European research project called PARSIFAL capable of cutting the fuel consumption per passenger-kilometre up to 22%. By adopting a retrofitting approach non-integral pressure vessels are sized to fit into the fuselage of the reference aircraft under the assumption that the main aerodynamic flight mechanic and structural characteristics are not affected. A parametric model is introduced to generate a wide variety of fuselage-tank cross-section layouts from a single tank with the maximum diameter compatible with a catwalk corridor to multiple tanks located in the cargo deck and an assessment workflow is implemented to perform the structural sizing of the tanks and analyse their thermodynamic behaviour during the mission. This latter is simulated with a time-marching approach that couples the fuel request from engines with the thermodynamics of the hydrogen in the tanks which is constantly subject to evaporation and depending on the internal pressure vented-out in gas form. Each model is presented in detail in the paper and results are provided through sensitivity analyses to both the technologic parameters of the tanks and the geometric parameters influencing their integration. The guidelines resulting from the analyses indicate that light materials such as the aluminium alloy AA2219 for tanks’ structures and polystyrene foam for the insulation should be selected. Preferred values are also indicted for the aspect ratios of the vessel components i.e. central tube and endcaps as well as suggestions for the integration layout to be adopted depending on the desired trade-off between passenger capacity as for the case of multiple tanks in the cargo deck and achievable flight ranges as for the single tank in the section.
Solid-State Hydrogen Fuel by PSII–Chitin Composite and Application to Biofuel Cell
Dec 2021
Publication
Biomaterials attract a lot of attention as next-generation materials. Especially in the energy field fuel cells based on biomaterials can further develop clean next-generation energy and are focused on with great interest. In this study solid-state hydrogen fuel (PSII–chitin composite) composed of the photosystem II (PSII) and hydrated chitin composite was successfully created. Moreover a biofuel cell consisting of the electrolyte of chitin and the hydrogen fuel using the PSII– chitin composite was fabricated and its characteristic feature was investigated. We found that proton conductivity in the PSII–chitin composite increases by light irradiation. This result indicates that protons generate in the PSII–chitin composite by light irradiation. It was also found that the biofuel cell using the PSII–chitin composite hydrogen fuel and the chitin electrolyte exhibits the maximum power density of 0.19 mW/cm2 . In addition this biofuel cell can drive an LED lamp. These results indicate that the solid-state biofuel cell based on the bioelectrolyte “chitin” and biofuel “the PSII–chitin composite” can be realized. This novel solid-state fuel cell will be helpful to the fabrication of next-generation energy.
Optimal Design of Photovoltaic, Biomass, Fuel Cell, Hydrogen Tank Units and Electrolyzer Hybrid System for a Remote Area in Egypt
Jul 2022
Publication
In this paper a new isolated hybrid system is simulated and analyzed to obtain the optimal sizing and meet the electricity demand with cost improvement for servicing a small remote area with a peak load of 420 kW. The major configuration of this hybrid system is Photovoltaic (PV) modules Biomass gasifier (BG) Electrolyzer units Hydrogen Tank units (HT) and Fuel Cell (FC) system. A recent optimization algorithm namely Mayfly Optimization Algorithm (MOA) is utilized to ensure that all load demand is met at the lowest energy cost (EC) and minimize the greenhouse gas (GHG) emissions of the proposed system. The MOA is selected as it collects the main merits of swarm intelligence and evolutionary algorithms; hence it has good convergence characteristics. To ensure the superiority of the selected MOA the obtained results are compared with other well-known optimization algorithms namely Sooty Tern Optimization Algorithm (STOA) Whale Optimization Algorithm (WOA) and Sine Cosine Algorithm (SCA). The results reveal that the suggested MOA achieves the best system design achieving a stable convergence characteristic after 44 iterations. MOA yielded the best EC with 0.2106533 $/kWh the net present cost (NPC) with 6170134 $ the loss of power supply probability (LPSP) with 0.05993% and GHG with 792.534 t/y.
Recent Development of Hydrogen and Fuel Cell Technologies: A Review
Aug 2021
Publication
Hydrogen has emerged as a new energy vector beyond its usual role as an industrial feedstock primarily for the production of ammonia methanol and petroleum refining. In addition to environmental sustainability issues energy-scarce developed countries such as Japan and Korea are also facing an energy security issue and hydrogen or hydrogen carriers such as ammonia and methylcyclohexane seem to be options to address these long-term energy availability issues. China has been eagerly developing renewable energy and hydrogen infrastructure to meet their sustainability goals and the growing energy demand. In this review we focus on hydrogen electrification through proton-exchange membrane fuel cells (PEMFCs) which are widely believed to be commercially suitable for automotive applications particularly for vehicles requiring minimal hydrogen infrastructure support such as fleets of taxies buses and logistic vehicles. This review covers all the key components of PEMFCs thermal and water management and related characterization techniques. A special consideration of PEMFCs in automotive applications is the highlight of this work leading to the infrastructure development for hydrogen generation storage and transportation. Furthermore national strategies toward the use of hydrogen are reviewed thereby setting the rationale for the hydrogen economy.
Mobile Nuclear-Hydrogen Synergy in NATO Operations
Nov 2021
Publication
An uninterrupted chain of energy supplies is the core of every activity without exception for the operations of the North Atlantic Treaty Organization. A robust and efficient energy supply is fundamental for the success of missions and a guarantee of soldier safety. However organizing a battlefield energy supply chain is particularly challenging because the risks and threats are particularly high. Moreover the energy supply chain is expected to be flexible according to mission needs and able to be moved quickly if necessary. In line with ongoing technological changes the growing popularity of hydrogen is undeniable and has been noticed by NATO as well. Hydrogen is characterised by a much higher energy density per unit mass than other fuels which means that hydrogen fuel can increase the range of military vehicles. Consequently hydrogen could eliminate the need for risky refuelling stops during missions as well as the number of fatalities associated with fuel delivery in combat areas. Our research shows that a promising prospect lies in the mobile technologies based on hydrogen in combination with use of the nuclear microreactors. Nuclear microreactors are small enough to be easily transported to their destinations on heavy trucks. Depending on the design nuclear microreactors can produce 1–20 MW of thermal energy that could be used directly as heat or converted to electric power or for non-electric applications such as hydrogen fuel production. The aim of the article is to identify a model of nuclear-hydrogen synergy for use in NATO operations. We identify opportunities and threats related to mobile energy generation with nuclear-hydrogen synergy in NATO operations. The research presented in this paper identifies the best method of producing hydrogen using a nuclear microreactor. A popular and environmentally “clean” solution is electrolysis due to the simplicity of the process. However this is less efficient than chemical processes based on for example the sulphur-iodine cycle. The results of the research presented in this paper show which of the methods and which cycle is the most attractive for the production of hydrogen with the use of mini-reactors. The verification criteria include: the efficiency of the process its complexity and the residues generated as a result of the process (waste)—all taking into account usage for military purposes.
No more items...