Applications & Pathways
Modelling and Evaluation of PEM Hydrogen Technologies for Frequency Ancillary Services in Future Multi-energy Sustainable Power Systems
Mar 2019
Publication
This paper examines the prospect of PEM (Proton Exchange Membrane) electrolyzers and fuel cells to partake in European electrical ancillary services markets. First the current framework of ancillary services is reviewed and discussed emphasizing the ongoing European harmonization plans for future frequency balancing markets. Next the technical characteristics of PEM hydrogen technologies and their potential uses within the electrical power system are discussed to evaluate their adequacy to the requirements of ancillary services markets. Last a case study based on a realistic representation of the transmission grid in the north of the Netherlands for the year 2030 is presented. The main goal of this case study is to ascertain the effectiveness of PEM electrolyzers and fuel cells for the provision of primary frequency reserves. Dynamic generic models suitable for grid simulations are developed for both technologies including the required controllers to enable participation in ancillary services markets. The obtained results show that PEM hydrogen technologies can improve the frequency response when compared to the procurement with synchronous generators of the same reserve value. Moreover the fast dynamics of PEM electrolyzers and fuel cells can help mitigate the negative effects attributed to the reduction of inertia in the system.
Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers
Dec 2022
Publication
The fishing sector is faced with emission problems arising from the extensive use of diesel engines as prime movers. Energy efficiency environmental performance and minimization of operative costs through the reduction of fuel consumption are key research topics across the whole maritime sector. Ship emissions can be determined at different levels of complexity and accuracy i.e. by analyzing ship technical data and assuming its operative profile or by direct measurements of key parameters. This paper deals with the analysis of the environmental footprint of a fishing trawler operating in the Adriatic Sea including three phases of the Life-Cycle Assessment (manufacturing Well-to-Pump (WTP) and Pump-to-Wake (PTW)). Based on the data on fuel consumption the viability of replacing the conventional diesel-powered system with alternative options is analyzed. The results showed that fuels such as LNG and B20 represent the easiest solution that would result in a reduction of harmful gases and have a positive impact on overall costs. Although electrification and hydrogen represent one of the cleanest forms of energy due to their high price and complex application in an obsolete fleet they do not present an optimal solution for the time being. The paper showed that the use of alternative fuels would have a positive effect on the reduction of harmful emissions but further work is needed to find an environmentally acceptable and economically profitable pathway for redesigning the ship power system of fishing trawlers.
Global Warming Potential and Societal-governmental Impacts of the Hydrogen Ecosystem in the Transportation Sector
Apr 2024
Publication
The environmental and societal challenges of our contemporary society are leading us to reconsider our approaches to vehicle design. The aim of this article is to provide the reader with the essential knowledge needed to responsibly design a vehicle equipped with a hydrogen fuel cell system. Two pivotal aspects of hydrogen-electric powertrain eco-design are examined. First the global warming potential is assessed for both PEMFC systems and Type IV hydrogen tanks accounting for material extraction production and end-of-life considerations. The usage phase was omitted from the study in order to facilitate data adaptation for each type of use. PEMFC exhibits a global warming potential of about 29.2 kgCO2eq/kW while the tank records 12.4 kgCO2eq/kWh with transportation factors considered. Secondly the societal and governmental impacts are scrutinized with the carbon-intensive hydrogen tank emerging as having the most significant societal and governmental risks. In fact on a scale of 1–5 with 5 representing the highest level of risk the PEMFC system has a societal impact and governance risk of 2.98. The Type IV tank has a societal impact and governance risk of 3.31. Although uncertainties persist regarding the results presented in this study the values obtained provide an overview of the societal and governmental impacts of the hydrogen ecosystem in the transportation sector. The next step will be to compare for the same usage which solution between hydrogen-electric and 100% battery is more respectful of humans and the environment.
Development of a New Renewable Energy System for Clean Hydrogen and Ethanol Production
Mar 2024
Publication
The present research work aims to present a uniquely designed renewable energy-based integrated system along with an equilibrium model for the processing of feedstock by following a hybrid route of thermochemical and biochemical ways. In this regard Canadian maple leaves and plastic wastes are selected as potential feedstocks for co-pyrolysis and syngas fermentation. The influence of co-pyrolysis process parameters on the overall system performance is investigated and assessed. Also several sensitivity analyses are performed to determine the optimal operating parameters that can generate maximum yields of hydrogen and ethanol. The present system is further investigated thermodynamically in terms of energetic and exergetic approaches and efficiencies. The present study shows that a molar flow ratio of 1:1 for maple leaves to plastic wastes a temperature of 1000◦C temperature and a pressure of 1 bar appear to be the most suitable operating conditions with the net production capacities of 7.43 tons/day for hydrogen and 8.72 tons/day for ethanol. The cold gas efficiency and LHV of the syngas produced are found to be 57.23% and 19.96 MJ/kg respectively. The overall energetic and exergetic efficiencies of the present system are found to be 30.98% and 26.88% respectively.
Experimental Analysis of the Effects of Ship Motion on Hydrogen Dispersion in an Enclosed Area
Apr 2023
Publication
This study aims to experimentally quantify the hydrogen diffusion characteristics by ship motion. Hydrogen leakage experiments were conducted under various ship motion conditions and the corresponding hydrogen concentrations for each sensor were expressed by an equation. The experimental facility was a scale model of the hydrogen fuel storage room of a ship. An experiment was conducted by implementing the roll and pitch motions of the ship as well as motion direction using a ship simulator. In the equation describing the hydrogen concentration the minimum and maximum root mean square deviations were 0.987 and 0.707 respectively and the correlations were 0.000109 and 0.0012289. Although the results differed as per the sensor location the hydrogen concentration was affected by the motion period of the ship. The experimental results and prediction equations can be useful for sensor and vent location selection by predicting the concentration when hydrogen leaks in ships in motion.
Evaluation of a Hydrogen Powered Scooter Toy Prototype
Nov 2022
Publication
Electric scooters are used as alternative ways of transport because they easily make travel faster. However the batteries can take around 5 h to charge and have an autonomy of 30 km. With the presence of the hydrogen cell a hybrid system reduces the charging times and increases the autonomy of the vehicle by using two types of fuel. An increase of up to 80% in maximum distance and of 34% in operating times is obtained with a 1:10 scale prototype with the hydrogen cell; although more energy is withdrawn the combined fuel efficiency increases too. This suggests the cell that is used has the same behavior as some official reported vehicles which have a long range but low power. This allows concluding that use of the cell is functional for load tests and that the comparison factor obtained works as input for real-scale scooter prototypes to compete with the traditional electric scooters.
Regional Supply Chains for Decarbonising Steel: Energy Efficiency and Green Premium Mitigation
Jan 2022
Publication
Decarbonised steel enabled by green hydrogen-based iron ore reduction and renewable electricity-based steel making will disrupt the traditional supply chain. Focusing on the energetic and techno-economic assessment of potential green supply chains this study investigates the direct reduced iron-electric arc furnace production route enabled by renewable energy and deployed in regional settings. The hypothesis that co-locating manufacturing processes with renewable energy resources would offer highest energy efficiency and cost reduction is tested through an Australia-Japan case study. The binational partnership is structured to meet Japanese steel demand (for domestic use and regional exports) and source both energy and iron ore from the Pilbara region of Western Australia. A total of 12 unique supply chains differentiated by spatial configuration timeline and energy carrier were simulated which validated the hypothesis: direct energy and ore exports to remote steel producers (i.e. Japan-based production) as opposed to co-locating iron and steel production with abundant ore and renewable energy resources (i.e. Australia-based production) increased energy consumption and the levelised cost of steel by 45% and 32% respectively when averaged across 2030 and 2050. Two decades of technological development and economies of scale realisation would be crucial; 2030 supply chains were on average 12% more energy-intense and 23% more expensive than 2050 equivalents. On energy vectors liquefied hydrogen was more efficient than ammonia for export-dominant supply chains due to the pairing of its process flexibility and the intermittent solar energy profile as well as the avoidance of the need for ammonia cracking prior to direct reduction. To mitigate the green premium a carbon tax in the range of A$66–192/t CO2 would be required in 2030 and A$0–70/t CO2 in 2050; the diminished carbon tax requirement in the latter is achievable only by wholly Australia-based production. Further the modelled system scale was immense; producing 40 Mtpa of decarbonised steel will require 74–129% of Australia’s current electricity output and A$137–328 billion in capital investment for solar power production and shipping vessel infrastructure. These results call for strategic planning of regional resource pairing to drive energy and cost efficiencies which accelerate the global decarbonisation of steel.
Thermodynamic Analysis of Methanol, Ammonia, and Hydrogen as Alternative Fuels in HCCI Engines
May 2023
Publication
The present study enters in the context of reducing harmful emissions of the marine fleet by using three of the most promising alternative fuels namely methanol ammonia and hydrogen. These fuels are to be examined from the perspective of both the first and second laws of thermodynamics when employed in turbocharged and intercooled Homogeneous Charge Compression Ignition Engines (HCCI) under various values of ambient temperature and equivalence ratio. Results showed that the highest engine performance values favour using ammonia as fuel followed in order by hydrogen and methanol. Furthermore most of the exergy destruction rates (65.26% ammonia to 84.02% for hydrogen) of the exergy destruction rate occurring in the engine take place in the HCCI engine.
Study on Hydrogen in Ports and Industrial Coastal Areas - Report 1
Jan 2023
Publication
The study feeds into the work of the Global Hydrogen Ports Coalition launched at the latest Clean Energy Ministerial (CEM12). This important international initiative brings together ports from around the world to work together on hydrogen technologies. The planned study will be a comprehensive assessment of the hydrogen demand in ports and industrial coastal areas enabling the creation of a 'European Hydrogen Ports Roadmap'. It will also feature clear economic forecasts based on a variety of business models for the transition to renewable hydrogen in ports while presenting new case studies and project concepts. “The objective is to provide new directions for research and innovation guidance for regulation codes and standards and proposals on policy and regulation. The forthcoming study will also help create impetus for stakeholders to come together and take a long term perspective on the hydrogen transition in ports. Finally the study will be a centralized resource It will form a Europe wide hydrogen ports ' when combined with roadmaps and other materials created by individual ports.
Techno-Economic Analysis of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems for Stationary Power Applications Using Renewable Hydrogen
Jun 2023
Publication
Solid oxide fuel cell (SOFC)–gas turbine (GT) hybrid systems can produce power at high electrical efficiencies while emitting virtually zero criteria pollutants (e.g. ozone carbon monoxide oxides of nitrogen and sulfur and particulate matters). This study presents new insights into renewable hydrogen (RH2 )-powered SOFC–GT hybrid systems with respect to their system configuration and techno-economic analysis motivated by the need for clean on-demand power. First three system configurations are thermodynamically assessed: (I) a reference case with no SOFC off-gas recirculation (II) a case with cathode off-gas recirculation and (III) a case with anode off-gas recirculation. While these configurations have been studied in isolation here we provide a detailed performance comparison. Moreover a techno-economic analysis is conducted to study the economic competitiveness of RH2 -fueled hybrid systems and the economies of scale by offering a comparison to natural gas (NG)-fueled systems. Results show that the case with anode off-gas recirculation with 68.50%-lower heating value (LHV) at a 10 MW scale has the highest efficiency among the studied scenarios. When moving from 10 MW to 50 MW the efficiency increases to 70.22%-LHV. These high efficiency values make SOFC–GT hybrid systems highly attractive in the context of a circular economy as they outcompete most other power generation technologies. The cost-of-electricity (COE) is reduced by about 10% when moving from 10 MW to 50 MW from USD 1976/kW to USD 1668/kW respectively. Renewable H2 is expected to be economically competitive with NG by 2030 when the U.S. Department of Energy’s target of USD 1/kg RH2 is reached.
A Comparison of Well-to-Wheels Energy Use and Emissions of Hydrogen Fuel Cell, Electric, LNG, and Diesel-Powered Logistics Vehicles in China
Jul 2023
Publication
Global energy and environmental issues are becoming increasingly serious and the promotion of clean energy and green transportation has become a common goal for all countries. In the logistics industry traditional fuels such as diesel and natural gas can no longer meet the requirements of energy and climate change. Hydrogen fuel cell logistics vehicles are expected to become the mainstream vehicles for future logistics because of their “zero carbon” advantages. The GREET model is computer simulation software developed by the Argonne National Laboratory in the USA. It is extensively utilized in research pertaining to the energy and environmental impact of vehicles. This research study examines four types of logistics vehicles: hydrogen fuel cell vehicles (FCVs) electric vehicles LNG-fueled vehicles and diesel-fueled vehicles. Diesel-fueled logistics vehicles are currently the most abundant type of vehicle in the logistics sector. LNG-fueled logistics vehicles are considered as a short-term alternative to diesel logistics vehicles while electric logistics vehicles are among the most popular types of new-energy vehicles currently. We analyze and compare their well-to-wheels (WTW) energy consumption and emissions with the help of GREET software and conduct lifecycle assessments (LCAs) of the four types of vehicles to analyze their energy and environmental benefits. When comparing the energy consumption of the four vehicle types electric logistics vehicles (EVs) have the lowest energy consumption with slightly lower energy consumption than FCVs. When comparing the nine airborne pollutant emissions of the four vehicle types the emissions of the FCVs are significantly lower than those of spark-ignition internal combustion engine logistics vehicles (SI ICEVs) compression-ignition direct-injection internal combustion engine logistics vehicles (CIDI ICEVs) and EVs. This study fills a research gap regarding the energy consumption and environmental impact of logistics vehicles in China.
Market Uptake and Impact of Key Green Aviation Technologies
Jan 2023
Publication
Steer was appointed by the Directorate-General of Research and Innovation (DG RTD) to undertake an overview of key green aviation technologies and conditions for their market uptake. Steer is being supported in delivery by the Institute of Air Transport and Airport Research of the German Aerospace Centre DLR. The study was undertaken in the context of the Clean Aviation Partnership’s Strategic Research and Innovation Agenda (SRIA) for the period 2030-2050. The objective of the project is to identify the prerequisites for the market entry of climate-neutral aviation technologies as well as the flanking measures required for this to be successful. The scope of the study is hydrogen and electrically powered aircraft in the regional and short/medium range categories taking a holistic view on the technological development and keeping the economic context in mind. The outcome of the study will serve as guidance for the Commission and other actors with regard to further policy or industry initiatives such as in the context of Horizon Europe or the Alliance Zero Emission Aviation.
The Role of Liquid Hydrogen in Integrated Energy Systems - A Case Study for Germany
May 2023
Publication
Hydrogen (H2) is expected to be a key building block in future greenhouse gas neutral energy systems. This study investigates the role of liquid hydrogen (LH2) in a national greenhouse gas-neutral energy supply system for Germany in 2045. The integrated energy system model suite ETHOS is extended by LH2 demand profiles in the sectors aviation mobility and chemical industry and means of LH2 transportation via inland vessel rail and truck. This case study demonstrates that the type of hydrogen demand (liquid or gaseous) can strongly affect the cost-optimal design of the future energy system. When LH2 demand is introduced to the energy system LH2 import transportation and production grow in importance. This decreases the need for gaseous hydrogen (GH2) pipelines and affects the location of H2 production plants. When identifying no-regret measures it must be considered that the largest H2 consumers are the ones with the highest readiness to use LH2.
Hydrogen Fuel Cell Integration and Testing in a Hybrid-electric Propulsion Rig
Jun 2023
Publication
On the road towards greener aviation hybrid-electric propulsion systems have emerged as a viable solution. In this paper a system based on hydrogen fuel cells is proposed and evaluated in a laboratory setting with its future integration in a propulsive system in mind and main focus on the ability to lessen the power demand on the opposing side of the bench. The setup consists in a parallel architecture with two power sources: a hydrogen fuel cell and a battery. First the performance of the fuel cell and its capability to provide power to one of the motors are analyzed. Then the entire parallel hybrid system is evaluated. Although the experimental setup was shown to be sub-optimal the results demonstrated the ability of this greener alternative to reduce power demand on the opposing side of the parallel configuration with a reduction of up to 40.3% in the highest load scenario and maximum power output on the fuel cell of 257.8 W. The stack performance was also concluded to be very dependent on the operating temperature.
The Hydrogen Dilemma: An Industrial Site-specific Case Study on the Transformation Pathway Toward Renewable Hydrogen
Jul 2025
Publication
Future renewable energy systems are expected to heavily rely on low-emission hydrogen not least as a crucial feedstock for industry. Although there are numerous pan-European system studies exploring a cost-efficient hydrogen ramp-up a number of issues are driving companies to develop site-specific transformation strategies that are not always in line with the results of these large-scale studies. Addressing this gap this study contributes a detailed analysis of a real-world chemical site in Southern Germany that depends on hydrogen as a feedstock. In doing so insights in industry transformation options and its implications at site level are provided. Applying a cost-optimizing energy system model several corporate strategies and extensive sensitivity analyses for the transition to renewable hydrogen are evaluated for the period 2025 to 2045. This involves considering onsite interdependencies between the production and use of hydrogen as a feedstock and the site’s electricity and heat sector. The results show that under a purely rational strategy and current expectations the transformation to renewable hydrogen will not become competitive before 2045 while neither expensive emission allowances nor low-priced hydrogen supply on their own will result in a substantially accelerated transformation. This highlights the need for additional policy measures. Furthermore it is demonstrated that under almost any realistic condition within the following 20 years using hydrogen for heat generation below 200 ◦C is unlikely. Therefore prioritizing the electrification of process heat supply while waiting for hydrogen imports would be a logical approach for reducing greenhouse gas emissions.
Deep Decarbonisation Pathways of the Energy System in Times of Unprecedented Uncertainty in the Energy Sector
May 2023
Publication
Unprecedented investments in clean energy technology are required for a net-zero carbon energy system before temperatures breach the Paris Agreement goals. By performing a Monte-Carlo Analysis with the detailed ETSAPTIAM Integrated Assessment Model and by generating 4000 scenarios of the world’s energy system climate and economy we find that the uncertainty surrounding technology costs resource potentials climate sensitivity and the level of decoupling between energy demands and economic growth influence the efficiency of climate policies and accentuate investment risks in clean energy technologies. Contrary to other studies relying on exploring the uncertainty space via model intercomparison we find that the CO2 emissions and CO2 prices vary convexly and nonlinearly with the discount rate and climate sensitivity over time. Accounting for this uncertainty is important for designing climate policies and carbon prices to accelerate the transition. In 70% of the scenarios a 1.5 ◦C temperature overshoot was within this decade calling for immediate policy action. Delaying this action by ten years may result in 2 ◦C mitigation costs being similar to those required to reach the 1.5 ◦C target if started today with an immediate peak in emissions a larger uncertainty in the medium-term horizon and a higher effort for net-zero emissions.
Cryogenic Hydrogen Jet and Flame for Clean Energy Applications: Progress and Challenges
May 2023
Publication
Industries across the world are making the transition to net-zero carbon emissions as government policies and strategies are proposed to mitigate the impact of climate change on the planet. As a result the use of hydrogen as an energy source is becoming an increasingly popular field of research particularly in the aviation sector where an alternative green renewable fuel to the traditional hydrocarbon fuels such as kerosene is essential. Hydrogen can be stored in multiple ways including compressed gaseous hydrogen cryo-compressed hydrogen and cryogenic liquid hydrogen. The infrastructure and storage of hydrogen will play a pivotal role in the realisation of large-scale conversion from traditional fuels with safety being a key consideration. This paper provides a review on previous work undertaken to study the characterisation of both unignited and ignited hydrogen jets which are fundamental phenomena for the utilisation of hydrogen. This includes work that focuses on the near-field flow structure dispersion in the far-field ignition and flame characteristics with multi-physics. The safety considerations are also included. The theoretical models and computational fluid dynamics (CFD) multiphase and reactive flow approaches are discussed. Then an overview of previous experimental work is provided before focusing the review on the existing computational results with comparison to experiments. Upon completion of this review it is highlighted that the complex near-field physics and flow phenomena are areas lacking in research. The near-field flow properties and characteristics are of significant importance with respect to the ignition and combustion of hydrogen.
Optimal Scheduling of Integrated Energy System Considering Hydrogen Blending Gas and Demand Response
Apr 2024
Publication
In the context of carbon neutrality and carbon peaking in order to achieve low carbon emissions and promote the efficient utilization of wind energy hydrogen energy as an important energy carrier is proposed to mix hydrogen and natural gas to form hydrogen-enriched compressed natural gas (HCNG). It is also injected into the natural gas pipeline network to achieve the transmission and utilization of hydrogen energy. At the same time the participation of demand response is considered the load’s peak and trough periods are adjusted and the large-scale consumption of renewable energy and the reduction in carbon emissions are achieved. First of all a fine model of hydrogen production and hydrogen use equipment is established to analyze the impact of adding hydrogen mixing on the economy and the low-carbon property of the system. With green certificates and demand response the utilization rate of hydrogen energy is improved to further explore the energy utilization rate and emission reduction capacity of the system. Secondly on the basis of modeling the optimal scheduling strategy is proposed with the sum of energy purchase cost equipment operation cost carbon emission cost wind curtailment cost and green certificate income as the lowest objective function. Considering the constraints such as hydrogen blending ratio and flexible load ratio of the pipeline network a low-carbon economic scheduling model of hydrogen mixed natural gas was established. The model was linearized and solved by using MATLAB 2021a and CPLEX solver. By comparing different scenarios the superiority of the model and the effectiveness of the strategy are verified.
Hydrogen or Electric Drive—Inconvenient (Omitted) Aspects
May 2023
Publication
Currently hydrogen and electric drives used in various means of transport is a leading topic in many respects. This article discusses the most important aspects of the operation of vehicles with electric drives (passenger cars) and hydrogen drives. In both cases the official reason for using both drives is the possibility of independence from fossil fuel supplies especially oil. The desire for independence is mainly dictated by political considerations. This article discusses the acquisition of basic raw materials for the construction of lithium-ion batteries in electric cars as well as methods for obtaining hydrogen as a fuel. The widespread use of electric passenger cars requires the construction of a network of charging stations. This article shows that taking into account the entire production process of electric cars including lithium-ion batteries the argument that they are ecological cannot be used. Additionally it was indicated that there is no concept for the use of used accumulator batteries. If hydrogen drives are used in trains there is no need to build the traction network infrastructure and then continuously monitor its technical condition and perform the necessary repairs. Of course the necessary hydrogen tanks must be built but there must be similar tanks to store oil for diesel locomotives. This paper also deals with other possibilities of hydrogen application for transformational usage e.g. the use of combustion engines driven with liquid hydrogen. Unfortunately an optimistic approach to this issue does not allow for a critical view of the whole matter. In public discussion there is no room for scientific arguments and emotions to dominate.
Green Hydrogen Supply Chain Risk Analysis: A European Hard-to-abate Sectors Perspective
May 2023
Publication
Green hydrogen is a tentative solution for the decarbonisation of hard-to-abate sectors such as steel chemical cement and refinery industries. Green hydrogen is a form of hydrogen gas that is produced using renewable energy sources such as wind or solar power through a process called electrolysis. The green hydrogen supply chain includes several interconnected entities such as renewable energy providers electrolysers distribution facilities and consumers. Although there have been many studies about green hydrogen little attention has been devoted to green hydrogen supply chain risk identification and analysis especially for hard-to-abate sectors in Europe. This research contributes to existing knowledge by identifying and analysing the European region’s green hydrogen supply chain risk factors. Using a Delphi method 7 categories and 43 risk factors are identified based on the green hydrogen supply chain experts’ opinions. The best-worst method is utilised to determine the importance weights of the risk categories and risk factors. High investment of capital for hydrogen production and delivery technology was the highest-ranked risk factor followed by the lack of enough capacity for electrolyser and policy & regulation development. Several mitigation strategies and policy recommendations are proposed for high-importance risk factors. This study provides novelty in the form of an integrated approach resulting in a scientific ranking of the risk factors for the green hydrogen supply chain. The results of this study provide empirical evidence which corroborates with previous studies that European countries should endeavour to create comprehensive and supportive standards and regulations for green hydrogen supply chain implementation.
Evaluating Hydrogen-based Electricity Generation using the Concept of Total Efficiency
Aug 2023
Publication
The popularity of hydrogen has been increasing globally as a promising sustainable energy source. However hydrogen needs to be produced and processed before it can be used in the energy sector. This paper uses total efficiency to evaluate the lifecycle of hydrogen-driven power generation. Total efficiency introduces the energy requirement of fuel preparation in conventional efficiency and is a reliable method to fairly compare different energy sources. Two case studies in Spain and Germany with nine scenarios each are defined to study different hydrogen-preparation routes. The scenarios include the main colors of hydrogen production (grey turquoise yellow and green) and different combinations of processing and transportation choices. In most cases the highest energy penalty in the overall preparation process of the fuel is linked to the production step. A large difference is found between fossil fuel-based hydrogen and green hydrogen derived from excess renewable energy with fossil fuel-based hydrogen resulting in significantly lower total efficiencies compared to green hydrogen. The use of natural gas as the primary source to generate hydrogen is found to be a critical factor affecting total efficiency particularly in cases where the gas must be transported from far away. This shows the value of using excess renewable energy in the production of hydrogen instead of grid power. Even in the most efficient scenario of green hydrogen studied total efficiency was found to be 7 % lower than the respective conventional efficiency that does not account for hydrogen generation. These results emphasize the importance of considering the impact of fuel preparation stages in comparative thermodynamic analyses and evaluations.
PEMFC Poly-Generation Systems: Developments, Merits, and Challenges
Oct 2021
Publication
Significant research efforts are directed towards finding new ways to reduce the cost increase efficiency and decrease the environmental impact of power-generation systems. The poly-generation concept is a promising strategy that enables the development of a sustainable power system. Over the past few years the Proton Exchange Membrane Fuel Cell-based Poly-Generation Systems (PEMFC-PGSs) have received accelerated developments due to the low-temperature operation high efficiency and low environmental impact. This paper provides a comprehensive review of the main PEMFC-PGSs including Combined Heat and Power (CHP) co-generation systems Combined Cooling and Power (CCP) co-generation systems Combined Cooling Heat and Power (CCHP) tri-generation systems and Combined Water and Power (CWP) co-generation systems. First the main technologies used in PEMFC-PGSs such as those related to hydrogen production energy storage and Waste Heat Recovery (WHR) etc. are detailed. Then the research progresses on the economic energy and environmental performance of the different PEMFC-PGSs are presented. Also the recent commercialization activities on these systems are highlighted focusing on the leading countries in this field. Furthermore the remaining economic and technical obstacles of these systems along with the future research directions to mitigate them are discussed. The review reveals the potential of the PEMFC-PGS in securing a sustainable future of the power systems. However many economic and technical issues particularly those related to high cost and degradation rate still need to be addressed before unlocking the full benefits of such systems.
Green Energy Hubs for the Military That Can Also Support he Civilian Mobility Sector with Green Hydrogen
May 2023
Publication
To support the energy transition in the area of defence we developed a tool and conducted a feasibility study to transform a military site from being a conventional energy consumer to becoming an energy-positive hub (or prosumer). Coupling a green energy source (e.g. photovoltaic wind) with fuel cells and hydrogen storage satisfied the dynamic energy consumption and dynamic hydrogen demand for both the civilian and military mobility sectors. To make the military sector independent of its civilian counterpart a military site was connected to a renewable energy hub. This made it possible to develop a stand-alone green-energy system transform the military site into a positive energy hub and achieve autonomous energy operation for several days or weeks. An environmental and economic assessment was conducted to determine the carbon footprint and the economic viability. The combined installed capacity of the solar power plant and the wind turbine was 2.5 times the combined peak consumption with about 19% of the total electricity and 7% of the hydrogen produced still available to external consumers.
A Hydrogen-fuelled Compressed Air Energy Storage System for Flexibility Reinforcement and Variable Renewable Energy Integration in Grids with High Generation Curtailment
Mar 2024
Publication
Globally the increasing share of renewables prominently driven by intermittent sources such as solar and wind power poses significant challenges to the reliability of current electrical infrastructures leading to the adoption of extreme measures such as generation curtailment to preserve grid security. Within this framework it is essential to develop energy storage systems that contribute to reinforce the flexibility and security of power grids while simultaneously reducing the share of generation curtailment. Therefore this study investigates the performance of an integrated photovoltaic-hydrogen fuelled-compressed air energy storage system whose configuration is specifically conceived to enable the connection of additional intermittent sources in already saturated grids. The yearly and seasonal performance of the integrated energy storage system specifically designed to supply flexibility services are evaluated for a scenario represented by a real grid with high-variable renewables penetration and frequent dispatchability issues. Results show that the integrated system with performanceoptimized components and a new energy management strategy minimizes photovoltaic energy curtailment otherwise around 50% to as low as 4% per year achieving system efficiencies of up to 62% and reinforces the grid by supplying inertial power for up to 20% of nighttime hours. In conclusion the integrated plant operating with zero emissions on-site hydrogen production and optimized for non-dispatchable photovoltaic energy utilization proves to be effective in integrating new variable renewable sources and reinforcing saturated grids particularly during spring and summer.
The Effect of Explosions on the Protective Wall of a Containerized Hydrogen Fuel Cell System
Jun 2023
Publication
With the development of hydrogen energy containerized hydrogen fuel cell systems are being used in distributed energy-supply systems. Hydrogen pipelines and electronic equipment of fuel cell containers can trigger hydrogen-explosion accidents. In the present study Computational Fluid Dynamics (CFD) software was used to calculate the affected areas of hydrogen fuel cell container-explosion accidents with and without protective walls. The protective effects were studied for protective walls at various distances and heights. The results show that strategically placing protective walls can effectively block the propagation of shock waves and flames. However the protective wall has a limited effect on the reduction of overpressure and temperature behind the wall when the protective wall is insufficiently high. Reflected explosion shock waves and flames will cause damage to the area inside the wall when the protective wall is too close to the container. In this study a protective wall that is 5 m away from the container and 3 m high can effectively protect the area behind the wall and prevent damage to the container due to the reflection of shock waves and flame. This paper presents a suitable protective wall setting scheme for hydrogen fuel cell containers.
Three-Stage Modeling Framework for Analyzing Islanding Capabilities of Decarbonized Energy Communities
May 2023
Publication
Contrary to microgrids (MGs) for which grid code or legislative support are lacking in the majority of cases energy communities (ECs) are one of the cornerstones of the energy transition backed up by the EU’s regulatory framework. The main difference is that unlike MGs ECs grow and develop organically through citizen involvement and investments in the existing low-voltage (LV) distribution networks. They are not planned and built from scratch as closed distribution systems that are independent of distribution system operator plans as assumed in the existing literature. An additional benefit of ECs could be the ability to transition into island mode contributing to the resilience of power networks. To this end this paper proposes a three-stage framework for analyzing the islanding capabilities of ECs. The framework is utilized to comprehensively assess and compare the islanding capabilities of ECs whose organic development is based upon three potential energy vectors: electricity gas and hydrogen. Detailed dynamic simulations clearly show that only fully electrified ECs inherently have adequate islanding capabilities without the need for curtailment or additional investments.
Performance and Weight Parameters Calculation for Hydrogen and Battery-Powered Aircraft Concepts
May 2023
Publication
This article describes the creation of a program that would be useful for calculating mathematical models in order to estimate the weight of aircraft components. Using several parameters it can calculate other parameters of civil transport aircraft powered by batteries or fuel cells. The main goals of this research were to add the missing dimensions and parameters to the aircraft database create a simple but effective program for creating mathematical models and use this program to find technological barriers to battery or hydrogen fuel-cell-powered aircraft concepts. The article introduces the reader to the problem of calculating OEW (operating empty weight) using Breguet– Leduc equations. A calculation model was created for OEW calculation. The result of this work is the verification of a mathematical model for battery-powered electric aircraft of the CS-23 (European Aviation Safety Agency Certification Specification for Normal Utility Aerobatic and Commuter Category Aeroplanes) category by comparing the program’s outputs with real aircraft. Subsequently the results of mathematical models are shown in graphs that specify the space of possible concepts of aircraft powered by batteries or fuel cells sorted by the number of passengers and the range of the aircraft delimited by two or three criteria respectively.
Alternative Sources of Energy in Transport: A Review
May 2023
Publication
Alternative sources of energy are on the rise primarily because of environmental concerns in addition to the depletion of fossil fuel reserves. Currently there are many alternatives approaches and attempts to introduce alternative energy sources in the field of transport. This article centers around the need to explore additional energy sources beyond the current ones in use. It delves into individual energy sources that can be utilized for transportation including their properties production methods and the advantages and disadvantages associated with their use across different types of drives. The article not only examines the situation in the Czech Republic but also in other nations. In addition to addressing future mobility the thesis also considers how the utilization of new energy sources may impact the environment.
Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation
Jul 2023
Publication
This paper investigates the performance of hydrogen-fueled spark-ignited single-cylinder Cooperative Fuel Research using experimental and numerical approaches. This study examines the effect of the air–fuel ratio on engine performance emissions and knock behaviour across different compression ratios. The results indicate that λ significantly affects both engine performance and emissions with a λ value of 2 yielding the highest efficiency and lowest emissions for all the tested compression ratios. Combustion analysis reveals normal combustion at λ ≥ 2 while knocking combustion occurs at λ < 2 irrespective of the tested compression ratios. The Livenwood–Wu integral approach was evaluated to assess the likelihood of end-gas autoignition based on fuel reactivity demonstrating that both normal and knocking combustion possibilities are consistent with experimental investigations. Combustion analysis at the ignition timing for maximum brake torque conditions demonstrates knock-free stable combustion up to λ = 3 with increased end-gas autoignition at lower λ values. To achieve knock-free combustion at those low λs the spark timings are significantly retarded to after top dead center crank angle position. Engine-out NOx emissions consistently increase in trend with a decrease in the air–fuel ratio of up to λ = 3 after which a distinct variation in NOx is observed with an increase in the compression ratio.
Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges
Dec 2022
Publication
It is becoming increasingly important to develop effective combustion technologies for low calorific industrial gases (LCIG) because of the rising energy demand and environmental issues caused by the extensive use of fossil fuels. In this review the prospect of these opportunity fuels in China is discussed. Then the recent fundamental and engineering studies of LCIG combustion are summarized. Specifically the differences between LCIG and traditional fuels in the composition and fundamental combustion characteristics are described. The state-of-the-art combustion strategies for burning LCIG are reviewed including porous media combustion flameless combustion oxy-fuel combustion and dual-fuel combustion. The technical challenges and further development needs for efficient LCIG combustion are also discussed.
Sustainable Propulsion Alternatives in Regional Aviation: The Case of the Canary Islands
May 2023
Publication
Sustainability is one of the main challenges the aviation industry is currently facing. In a global context of energy transition towards cleaner and renewable sources the sector is developing technologies to fly more efficiently and mitigate its environmental impact. Innovative propulsion alternatives such as biofuels electric aircraft and hydrogen engines are already a reality or are close to becoming so. To assess their feasibility a study is conducted on specific routes and aircraft across different flight ranges. The analysis focuses on the Canary Islands an outermost region of the EU with high mobility and no comparable alternative means of transport. For three routes flight profiles are analyzed obtaining the fuel consumption and emissions generated by the conventional propulsion and later applying the sustainable alternatives. The results indicate optimistic perspectives with reductions in environmental impact ranging between 40% and 75% compared to the present.
Investigation of Pre-cooling Strategies for Heavy-duty Hydrogen Refuelling
Mar 2024
Publication
Green hydrogen presents a promising solution for transitioning from fossil fuels to a clean energy future particularly with the application of fuel cell electric vehicles (FCEVs). However the hydrogen refuelling process for FCEVs requires extensive pre-cooling to achieve fast filling times. This study presents experiments and simulations of a hydrogen refuelling station equipped with an adaptable cold-fill unit aiming to maximize fuelling efficiencies. For this purpose we developed and experimentally validated simulation models for a hydrogen tank and an aluminium block heat exchanger. Different pre-cooling parameters affect the final tank temperatures during the parallel filling of three 350 L type IV tanks. The results indicate significant potential for optimizing the required cooling energy with achievable savings of over 50 % depending on the pre-cooling strategy. The optimized pre-cooling strategies and energy savings aid in advancing the refuelling process for FCEVs effectively contributing to the transition to clean energy.
Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options
Nov 2022
Publication
The impact of ship emission reductions can be maximised by considering climate health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships routes and regions. Carbon-neutral fuels including low-carbon and carbon-negative fuels from biogenic or non-biogenic origin (biomass waste renewable hydrogen) could resemble current marine fuels (diesel-type methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO2) methane (CH4) and nitrous oxide emissions (N2O). Additionally non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NOx) sulphur oxides (SOx) ammonia (NH3) formaldehyde particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SOx emissions and efficient exhaust aftertreatment technologies such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations policies and investments needed to support this development.
Low-Carbon Optimal Scheduling Model for Peak Shaving Resources in Multi-Energy Power Systems Considering Large-Scale Access for Electric Vehicles
May 2023
Publication
Aiming at the synergy between a system’s carbon emission reduction demand and the economy of peak shaving operation in the process of optimizing the flexible resource peaking unit portfolio of a multi-energy power system containing large-scale electric vehicles this paper proposes a low-carbon optimal scheduling model for peak shaving resources in multi-energy power systems considering large-scale access for electric vehicles. Firstly the charging and discharging characteristics of electric vehicles were studied and a comprehensive cost model for electric vehicles heat storage and hydrogen storage was established. At the same time the carbon emission characteristics of multienergy power systems and their emission cost models under specific carbon trading mechanisms were established. Secondly the change characteristics of the system’s carbon emissions were studied and a carbon emission cost model of multi-energy power was established considering the carbon emission reduction demand of the system. Then taking the carbon emission of the system and the peak regulating operation costs of traditional units energy storage and new energy unit as optimization objectives the multi-energy power system peak regulation multi-objective optimization scheduling model was established and NSGA-II was used to solve the scheduling model. Finally based on a regional power grid data in Northeast China the improved IEEE 30 node multi-energy power system peak shaving simulation model was built and the simulation analysis verified the feasibility of the optimal scheduling model proposed in this paper.
Selected Materials and Technologies for Electrical Energy Sector
Jun 2023
Publication
Ensuring the energy transition in order to decrease CO2 and volatile organic compounds emissions and improve the efficiency of energy processes requires the development of advanced materials and technologies for the electrical energy sector. The article reviews superconducting materials functional nanomaterials used in the power industry mainly due to their magnetic electrical optical and dielectric properties and the thin layers of amorphous carbon nitride which properties make them an important material from the point of view of environmental protection optoelectronic photovoltaic and energy storage. The superconductivity-based technologies material processing and thermal and nonthermal plasma generation have been reviewed as technologies that can be a solution to chosen problems in the electrical energy sector and environment. The study explains directly both—the basics and application potential of low and high-temperature superconductors as well as peculiarities of the related manufacturing technologies for Roebel cables 1G and 2G HTS tapes and superconductor coil systems. Among the superconducting materials particular attention was paid to the magnesium di-boride MgB2 and its potential applications in the power industry. The benefits of the use of carbon films with amorphous structures in electronics sensing technologies solar cells FETs and memory devices were discussed. The article provides the information about most interesting from the R&D point of view groups of materials for PV applications. It summarises the advantages and disadvantages of their use regarding commercial requirements such as efficiency lifetime light absorption impact on the environment costs of production and weather dependency. Silicon processing inkjet printing vacuum deposition and evaporation technologies that allow obtaining improved and strengthened materials for solar cell manufacturing are also described. In the case of the widely developed plasma generation field waste-to-hydrogen technology including both thermal and non-thermal plasma techniques has been discussed. The review aims to draw attention to the problems faced by the modern power industry and to encourage research in this area because many of these problems can only be solved within the framework of interdisciplinary and international cooperation.
Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review
Aug 2023
Publication
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power which typically include photovoltaic modules a proton exchange membrane (PEM) electrolyzer hydrogen gas storage and PEM fuel cells the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode URFCs function similarly to stand-alone electrolyzers. However in fuel cell mode the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past present and future of URFCs with details on the operating modes of URFCs limitations and technical challenges and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
Multi-objective Optimization of a Cogeneration System Based on Solar Energy for Clean Hydrogen, Cooling, and Electricity Production
Jan 2024
Publication
In an effort to encourage industries to switch from fossil fuels to renewable energy resources for supplying their energy demands the exergy and financial aspects of a thermodynamic energy generation system were studied. The suggested system was modeled by MATLAB commercial software to assess the decision-making parameters affecting power generation cooling capacity and to produce hydrogen. The objective functions of this study were exergy efficiency and cost rate while the temperatures at the inlet of the turbine and the evaporator irradiated solar energy mass flow rate and surface area of the collector were the decision-making variables. The model was optimized via MOPSO and its results were compared with two widely utilized algorithms namely NSGA-II and SPEA-II. The comparison results indicated that MOPSO surpassed other two optimization algorithm resulting in exergy efficiency and cost rate of 2.11 % and 21.14 $/h respectively. According to this method the optimum generated power was equal to 21.01 kW. Eventually this system was utilized and evaluated in the city of Semnan Iran. The performance results of the system in Semnan showed that the annual power output taking into account the changes in radiation and ambient temperature is between 316667.4 and 428080.5 kW. Also the amount of hydrogen production is between 1503.66 and 1534.997 kg.
Development and Testing of a 100 kW Fuel-flexible Micro Gas Turbine Running on 100% Hydrogen
Jun 2023
Publication
Hydrogen as a carbon-free energy carrier has emerged as a crucial component in the decarbonization of the energy system serving as both an energy storage option and fuel for dispatchable power generation to mitigate the intermittent nature of renewable energy sources. However the unique physical and combustion characteristics of hydrogen which differ from conventional gaseous fuels such as biogas and natural gas present new challenges that must be addressed. To fully integrate hydrogen as an energy carrier in the energy system the development of low-emission and highly reliable technologies capable of handling hydrogen combustion is imperative. This study presents a ground-breaking achievement - the first successful test of a micro gas turbine running on 100% hydrogen with NOx emissions below the standard limits. Furthermore the combustor of the micro gas turbine demonstrates exceptional fuel flexibility allowing for the use of various blends of hydrogen biogas and natural gas covering a wide range of heating values. In addition to a comprehensive presentation of the test rig and its instrumentation this paper illuminates the challenges of hydrogen combustion and offers real-world operational data from engine operation with 100% hydrogen and its blends with methane.
A Review on the Kinetics of Iron Ore Reduction by Hydrogen
Dec 2021
Publication
A clean energy revolution is occurring across the world. As iron and steelmaking have a tremendous impact on the amount of CO2 emissions there is an increasing attraction towards improving the green footprint of iron and steel production. Among reducing agents hydrogen has shown a great potential to be replaced with fossil fuels and to decarbonize the steelmaking processes. Although hydrogen is in great supply on earth extracting pure H2 from its compound is costly. Therefore it is crucial to calculate the partial pressure of H2 with the aid of reduction reaction kinetics to limit the costs. This review summarizes the studies of critical parameters to determine the kinetics of reduction. The variables considered were temperature iron ore type (magnetite hematite goethite) H2/CO ratio porosity flow rate the concentration of diluent (He Ar N2 ) gas utility annealing before reduction and pressure. In fact increasing temperature H2/CO ratio hydrogen flow rate and hematite percentage in feed leads to a higher reduction rate. In addition the controlling kinetics models and the impact of the mentioned parameters on them investigated and compared concluding chemical reaction at the interfaces and diffusion of hydrogen through the iron oxide particle are the most common kinetics controlling models.
Hydrogen Energy and Fuel Cells: A Vision of our Future
Jan 2003
Publication
This report of the High Level Group for Hydrogen and Fuel Cell Technologies sets out a vision for these technologies in future sustainable energy systems - improving energy security of supply and air quality whilst mitigating climate change. The report recommends actions for developing world-class European hydrogen technologies and fostering their commercial exploitation.
Analysis of the Use of Recycled Aluminum to Generate Green Hydrogen in an Electric Bicycle
Feb 2023
Publication
This article proposes using recycled aluminum generating hydrogen in situ at low pressure to power a 250 W electric bicycle with a fuel cell (FC) to increase the average speed and autonomy compared to a conventional electric bicycle with a battery. To generate hydrogen the aluminum–water reaction with a 6 M NaOH solution is used as a catalyst. This article details the parts of the generation system the electronic configuration used the aluminum- and reagent-loading procedure and the by-products obtained as well as the results of the operation without pedaling with a resistance equivalent to a flat terrain and at maximum power of the accelerator for one and two loads of about 100 g of aluminum each. This allows us to observe different hybrid strategies with a low-capacity battery in each case. The goal is to demonstrate that it is possible to store energy in a long-lasting transportable low-pressure and sustainable manner using recycled-aluminum test tubes and to apply this to mobility
Resilience-oriented Operation of Microgrids in the Presence of Power-to-hydrogen Systems
Jul 2023
Publication
This study presents a novel framework for improving the resilience of microgrids based on the power-to-hydrogen concept and the ability of microgrids to operate independently (i.e. islanded mode). For this purpose a model is being developed for the resilient operation of microgrids in which the compressed hydrogen produced by power-to-hydrogen systems can either be used to generate electricity through fuel cells or sold to other industries. The model is a bi-objective optimization problem which minimizes the cost of operation and resilience by (i) reducing the active power exchange with the main grid (ii) reducing the ohmic power losses and (iii) increasing the amount of hydrogen stored in the tanks. A solution approach is also developed to deal with the complexity of the bi-objective model combining a goal programming approach and Generalized Benders Decomposition due to the mixed-integer nonlinear nature of the optimization problem. The results indicate that the resilience approach although increasing the operation cost does not lead to load shedding in the event of main grid failures. The study concludes that integrating distributed power-to-hydrogen systems results in significant benefits including emission reductions of up to 20 % and cost savings of up to 30 %. Additionally the integration of the decomposition method improves computational performance by 54 % compared to using commercial solvers within the GAMS software.
Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success
May 2021
Publication
Many initiatives and policies attempt to make our air cleaner by reducing the carbon foot imprint on our planet. Most of the existing and planned initiatives have as their objectives the reduction of carbon dependency and the enhancement of newer or better technologies in the near future. However numerous policies exist for electric vehicles (EVs) and only some policies address specific issues related to fuel cell electric vehicles (FCEV). The lack of a distinction between the policies for EVs and FCEVs provides obstacles for the advancement of FCEV-related technologies that may otherwise be successful and competitive in the attempt to create a cleaner planet. Unfortunately the lack of this distinction is not always based on intellectual or scientific evidence. Therefore governments may need to introduce clearer policy distinctions in order to directly address FCEV-related challenges that may not pertain to other EVs. Unfortunately lobbyism continues to exist that supports the maintenance of the status quo as new technologies may threaten traditional less sustainable approaches to provide opportunities for a better environment. This lobbyism has partially succeeded in hindering the advancement of new technologies partially because the development of new technologies may reduce profit and business opportunities for traditionalists. However these challenges are slowly overcome as the demand for cleaner air and lower carbon emissions has increased and a stronger movement toward newer and cleaner technologies has gained momentum. This paper will look at policies that have been either implemented or are in the process of being implemented to address the challenge of overcoming traditional obstacles with respect to the automobile industry. The paper reviewed synthesized and discussed policies in the USA Japan and the European Union that helped implement new technologies with a focus on FCEVs for larger mass markets. These regions were the focus of this paper because of their particular challenges. South Korea and China were not included in this discussion as these countries already have equal or even more advanced policies and initiatives in place.
A Power Dispatch Allocation Strategy to Produce Green Hydrogen in a Grid-integrated Offshore Hybrid Energy System
Mar 2024
Publication
A dedicated grid-tied offshore hybrid energy system for hydrogen production is a promising solution to unlock the full benefit of offshore wind and solar energy and realize decarbonization and sustainable energy security targets in electricity and other sectors. Current knowledge of these offshore hybrid systems is limited particularly in the integration component control and allocation aspects. Therefore a grid-integrated analytical model with a power dispatch allocation strategy between the grid and electrolyzer for the co-production of hydrogen from the offshore hybrid energy system is developed in this paper. While producing hydrogen the proposed offshore hybrid energy system supplies a percentage of its capacity to the onshore grid facility and the amount of the electricity is quantified based on the electricity market price and available total offshore generation. The detailed controls of each component are discussed. A case study considers a hypothetical hybrid offshore energy system of 10 MW situated in a potential offshore off the NSW of Australia based on realistic metrological data. A grid-scale proton-exchange membrane electrolyzer stack is used and a model predictive power controller is implemented on the distributed hydrogen generation scheme. The model is helpful for the assessment or optimization of both the economics and feasibility of the dedicated offshore hybrid energy farm for hydrogen production systems.
Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response
Mar 2023
Publication
In recent years the stability of the distribution network has declined due to the large proportion of the uses of distributed generation (DG) with the continuous development of renewable energy power generation technology. Meanwhile the traditional distribution network operation mode cannot keep the balance of the source and load. The operation mode of the active distribution network (ADN) can effectively reduce the decline in operation stability caused by the high proportion of DG. Therefore this work proposes a bi-layer model for the planning of the electricity–hydrogen hybrid energy storage system (ESS) considering demand response (DR) for ADN. The upper layer takes the minimum load fluctuation maximum user purchase cost satisfaction and user comfort as the goals. Based on the electricity price elasticity matrix model the optimal electricity price formulation strategy is obtained for the lower ESS planning. In the lower layer the optimal ESS planning scheme is obtained with the minimum life cycle cost (LCC) of ESS the voltage fluctuation of ADN and the load fluctuation as the objectives. Finally the MOPSO algorithm is used to test the model and the correctness of the proposed method is verified by the extended IEEE-33 node test system. The simulation results show that the fluctuation in the voltage and load is reduced by 62.13% and 37.06% respectively.
Review of Hydrogen-Gasoline SI Dual Fuel Engines: Engine Performance and Emission
Mar 2023
Publication
Rapid depletion of conventional fossil fuels and increasing environmental concern are demanding an urgent carry out for research to find an alternate fuel which meets the fuel demand with minimum environmental impacts. Hydrogen is considered as one of the important fuel in the near future which meets the above alarming problems. Hydrogen–gasoline dual fuel engines use hydrogen as primary fuel and gasoline as secondary fuel. In this review paper the combustion performance emission and cyclic variation characteristics of a hydrogen–gasoline dual fuel engine have been critically analyzed. According to scientific literature hydrogen–gasoline dual fuel engines have a good thermal efficiency at low and partial loads but the performance deteriorates at high loads. Hydrogen direct injection with gasoline port fuel injection is the optimum configuration for dual fuel engine operating on hydrogen and gasoline. This configuration shows superior result in mitigating the abnormal combustion but experiences high NOx emission. Employing EGR showed a maximum reduction of 77.8% of NOx emission with a EGR flowrate of 18% further increment in flowrate leads to combustion instability. An overview on hydrogen production and carbon footprint related with hydrogen production is also included. This review paper aims to provide comprehensive findings from past works associated with hydrogen–gasoline dual fuel approach in a spark ignition engine
Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)
Dec 2022
Publication
In recent years there has been great interest in Wankel-type rotary engines which are one of the most suitable power sources for unmanned aerial vehicle (UAV) applications due to their high power-to-size and power-to-weight ratios. The purpose of the present study was to investigate the potential of a hydrogen enrichment strategy for the improvement of the performance and reduction of the emissions of Wankel engines. The main motivation behind this study was to make Wankel engines which are already very advantageous for UAV applications even more advantageous by applying the hydrogen enrichment technique. In this study hydrogen addition was implemented in a spark-ignition rotary engine model operating at a constant engine speed of 6000 rpm. The mass fraction of hydrogen in the intake gradually increased from 0% to 10%. Simulation results revealed that addition of hydrogen to the fuel accelerated the flame propagation and increased the burning speed of the fuel the combustion temperature and the peak pressure in the working chamber. These phenomena had a very positive effect on the performance and emissions of the Wankel engine. The indicated mean effective pressure (IMEP) increased by 8.18% and 9.68% and the indicated torque increased by 6.15% and 7.99% for the 5% and 10% hydrogen mass fraction cases respectively compared to those obtained with neat gasoline. In contrast CO emissions were reduced by 33.35% and 46.21% and soot emissions by 11.92% and 20.06% for 5% and 10% hydrogen additions respectively. NOx emissions increased with the application of the hydrogen enrichment strategy for the Wankel engine.
Integration of a Multi-Stack Fuel Cell System in Microgrids: A Solution Based on Model Predictive Control
Sep 2020
Publication
This paper proposes a multi-objective model predictive control (MPC) designed for the power management of a multi-stack fuel cell (FC) system integrated into a renewable sources-based microgrid. The main advantage of MPC is the fact that it allows the current timeslot to be optimized while taking future timeslots into account. The multi-objective function solves the problem related to the power dispatch at time that includes criteria to reduce the multi-stack FC degradation operating and maintenance costs as well as hydrogen consumption. Regarding the scientific literature the novelty of this paper lies in the proposal of a generalized MPC controller for a multi-stack FC that can be used independently of the number of stacks that make it up. Although all the stacks that make up the modular FC system are identical their levels of degradation in general will not be. Thus over time each stack can present a different behavior. Therefore the power control strategy cannot be based on an equal distribution according to the nominal power of each stack. On the contrary the control algorithm should take advantage of the characteristics of the multi-stack FC concept distributing operation across all the stacks regarding their capacity to produce power/energy and optimizing the overall performance.
Multi-criteria Optimisation of Fermentative and Solar-driven Electrolytic Hydrogen and Electricity Supply-demand Network with Hybrid Storage System
May 2023
Publication
Harnessing renewable resources such as solar energy and biogenic waste for hydrogen production offers a path toward a carbon-neutral industrial economy. This study suggests the development of a renewable-based hydrogen and power supply facility (HPSF) that relies on fermentation and solar-driven electrolysis technologies to achieve penetration of renewable hydrogen and electricity in the industrial symbiosis. Literature studies reported that the hybrid battery-hydrogen storage system could effectively improve the sustainability and reliability of renewable energy supplies yet its application under diurnal and seasonal renewable resource variations has not been well studied. Hence this work develops a multi-criteria optimisation framework for the configuration design of the proposed HPSF that concurrently targets industrial hydrogen and electrical loads with the consideration of diurnal and seasonal renewable resource variations. Case scenarios with different storage applications are presented to evaluate the role of storage in improving economic and environmental sustainability. The results show that the application of hybrid storage with molten carbonate fuel cell (MCFC) systems is preferred from a comprehensive sustainability standpoint which improves the sustainability-weighted return-on investment metric (SWROIM) score by 4%/yr compared to HPSF without storage application. On the other hand the application of a single-battery system is the most economical solution with a return on investment (ROI) of 0.7%/yr higher than the hybrid storage approach. The research outcome could provide insights into the integration of fermentative and solar-driven electrolytic hydrogen production technologies into the industrial symbiosis to further enhance a sustainable economy.
Optimal Incorporation of Intermittent Renewable Energy Storage Units and Green Hydrogen Production in the Electrical Sector
Mar 2023
Publication
This paper presents a mathematical programming approach for the strategic planning of hydrogen production from renewable energies and its use in electric power generation in conventional technologies. The proposed approach aims to determine the optimal selection of the different types of technologies electrolyzers and storage units (energy and hydrogen). The approach considers the implementation of an optimization methodology to select a representative data set that characterizes the total annual demand. The economic objective aims to determine the minimum cost which is composed of the capital costs in the acquisition of units operating costs of such units costs of production and transmission of energy as well as the cost associated with the emissions generated which is related to an environmental tax. A specific case study is presented in the Mexican peninsula and the results show that it is possible to produce hydrogen at a minimum sale price of 4200 $/tonH2 with a total cost of $5.1687 × 106 and 2.5243 × 105 tonCO2eq. In addition the financial break-even point corresponds to a sale price of 6600 $/tonH2 . The proposed model determines the trade-offs between the cost and the emissions generated.
No more items...