Policy & Socio-Economics
Deep Decarbonization of the Indian Economy: 2050 Prospects for Wind, Solar, and Green Hydrogen
May 2022
Publication
The paper explores options for a 2050 carbon free energy future for India. Onshore wind and solar sources are projected as the dominant primary contributions to this objective. The analysis envisages an important role for so-called green hydrogen produced by electrolysis fueled by these carbon free energy sources. This hydrogen source can be used to accommodate for the intrinsic variability of wind and solar complementing opportunities for storage of power by batteries and pumped hydro. The green source of hydrogen can be used also to supplant current industrial uses of grey hydrogen produced in the Indian context largely from natural gas with important related emissions of CO2. The paper explores further options for use of green hydrogen to lower emissions from otherwise difficult to abate sectors of both industry and transport. The analysis is applied to identify the least cost options to meet India’s zero carbon future.
Benefits of an Integrated Power and Hydrogen Offshore Grid in a Net-zero North Sea Energy System
Jun 2022
Publication
The North Sea Offshore Grid concept has been envisioned as a promising alternative to: 1) ease the integration of offshore wind and onshore energy systems and 2) increase the cross-border capacity between the North Sea region countries at low cost. In this paper we explore the techno-economic benefits of the North Sea Offshore Grid using two case studies: a power-based offshore grid where only investments in power assets are allowed (i.e. offshore wind HVDC/HVAC interconnectors); and a power-and-hydrogen offshore grid where investments in offshore hydrogen assets are also permitted (i.e. offshore electrolysers new hydrogen pipelines and retrofitted natural gas pipelines). In this paper we present a novel methodology in which extensive offshore spatial data is analysed to define meaningful regions via data clustering. These regions are incorporated to the Integrated Energy System Analysis for the North Sea region (IESA-NS) model. In this optimization model the scenarios are run without any specific technology ban and under open optimization. The scenario results show that the deployment of an offshore grid provides relevant cost savings ranging from 1% to 4.1% of relative cost decrease (2.3 bn € to 8.7 bn €) in the power-based and ranging from 2.8% to 7% of relative cost decrease (6 bn € to 14.9 bn €) in the power-and-hydrogen based. In the most extreme scenario an offshore grid permits to integrate 283 GW of HVDC connected offshore wind and 196 GW of HVDC meshed interconnectors. Even in the most conservative scenario the offshore grid integrates 59 GW of HVDC connected offshore wind capacity and 92 GW of HVDC meshed interconnectors. When allowed the deployment of offshore electrolysis is considerable ranging from 61 GW to 96 GW with capacity factors of around 30%.
Global Hydrogen Review 2022
Sep 2022
Publication
The Global Hydrogen Review is an annual publication by the International Energy Agency that tracks hydrogen production and demand worldwide as well as progress in critical areas such as infrastructure development trade policy regulation investments and innovation.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals this year’s Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry.
This year’s report includes a special focus on how the global energy crisis sparked by Russia’s invasion of Ukraine has accelerated the momentum behind hydrogen and on the opportunities that it offers to simultaneously contribute to decarbonisation targets and enhance energy security.
The report can be found on their website.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals this year’s Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry.
This year’s report includes a special focus on how the global energy crisis sparked by Russia’s invasion of Ukraine has accelerated the momentum behind hydrogen and on the opportunities that it offers to simultaneously contribute to decarbonisation targets and enhance energy security.
The report can be found on their website.
Value of Green Hydrogen When Curtailed to Provide Grid Balancing Services
Aug 2022
Publication
This paper evaluates the potential of grid services in France Italy Norway and Spain to provide an alternative income for electrolysers producing hydrogen from wind power. Grid services are simulated with each country's data for 2017 for energy prices grid services and wind power profiles from relevant wind parks. A novel metric is presented the value of curtailed hydrogen which is independent from several highly uncertain parameters such as electrolyser cost or hydrogen market price. Results indicate that grid services can monetise the unused spare capacity of electrolyser plants improving their economy in the critical deployment phase. For most countries up-regulation yields a value of curtailed hydrogen above 6 V/kg over 3 times higher than the EU's 2030 price target (without incentives). However countries with large hydro power resources such as Norway yield far lower results below 2 V/kg. The value of curtailed hydrogen also decreases with hydrogen production corresponding to the cases of symmetric and down-regulation.
Techno-Economic Analysis of Solar Thermal Hydrogen Production in the United Arab Emirates
Oct 2022
Publication
Solar thermal technology can provide the United Arab Emirates and the Middle East region with abundant clean electricity to mitigate the rising levels of carbon dioxide and satisfy future demand. Hydrogen can play a key role in the large-scale application of solar thermal technologies such as concentrated solar plants in the region by storing the surplus electricity and exporting it to needed countries for profit placing the Middle East and the United Arab Emirates as major future green hydrogen suppliers. However a hydrogen supply chain comparison between hydrogen from CSP and other renewable under the UAE’s technical and economic conditions for hydrogen export is yet to be fully considered. Therefore in this study we provide a techno-economic analysis for well-to-ship solar hydrogen supply chain that compares CSP and PV technologies with a solid oxide water electrolyzer for hydrogen production assuming four different hydrogen delivery pathways based on the location of electrolyzer and source of electricity assuming the SOEC can be coupled to the CSP plant when placed at the same site or provided with electric heaters when placed at PV plant site or port sites. The results show that the PV plant achieves a lower levelized cost of electricity than that of the CSP plant with 5.08 ¢/kWh and 8.6 ¢/kWh respectively. Hydrogen production results show that the scenario where SOEC is coupled to the CSP plant is the most competitive scenario as it achieves the payback period in the shortest period compared to the other scenarios and also provides higher revenues and a cheaper LCOH of 7.85 $/kgH2.
Agreement for the Low Carbon Hydrogen Production Business Model
Dec 2022
Publication
The Heads of Terms for the Low Carbon Hydrogen Agreement sets out the government’s proposal for the final hydrogen production business model design. It will form the basis of the Low Carbon Hydrogen Agreement the business model contract between the government appointed counterparty and a low carbon hydrogen producer.<br/>The business model will provide revenue support to hydrogen producers to overcome the operating cost gap between low carbon hydrogen and high carbon fuels. It has been designed to incentivise investment in low carbon hydrogen production and use and in doing so deliver the government’s ambition of up to 10GW of low carbon hydrogen production capacity by 2030.
Hydrogen Strategy Update to the Market: July 2022
Jul 2022
Publication
Low carbon hydrogen is our new home-grown super-fuel which will be vital for our energy security and to meet our legally binding commitment to achieve net zero by 2050. The UK Hydrogen Strategy published in August 2021 outlined a comprehensive roadmap for the development of a thriving UK hydrogen economy over the coming decade. In the British Energy Security Strategy published in April this year the government doubled the UK’s hydrogen production ambition to up to 10GW by 2030. This increased ambition cements our place firmly at the forefront of the global race to develop hydrogen as a secure low carbon replacement for fossil fuels in the transition to greater energy security and net zero. Since the publication of the UK Hydrogen Strategy we have continued to deliver on our commitments setting out new policy and funding for hydrogen across the value chain and bringing together the international community around shared hydrogen objectives to rapidly develop a global hydrogen economy. Hydrogen was a key component of the Net Zero Strategy COP26 and the British Energy Security Strategy. The Hydrogen Investment Package and opening of the £240 million Net Zero Hydrogen Fund in April marked a major step forward in delivering government support to drive further private investment into hydrogen production in the UK. To keep industry informed on the government’s ongoing work to develop the hydrogen economy we committed in the UK Hydrogen Strategy to producing regular updates to the market as our policy develops. In addition to offering an accessible ‘one stop shop’ of government policy development and support schemes these updates will provide industry and investors with further clarity on the direction of travel of hydrogen policy across the value chain so that government and industry can work together most effectively and with the necessary pace to build a world-leading low carbon hydrogen sector in the UK.
Place-based Allocation of R&D Funding: Directing the German Innovation System for Hydrogen Technologies in Space
Jul 2024
Publication
The geographical understanding of directionality in the literature on mission-oriented innovation systems is still underdeveloped. Therefore this article reflects on whether the allocation of funding for R&D activities to different places can direct innovation systems in space. A placebased approach to the allocation of funding and its effects on innovation systems is developed to analyze how the German national government allocates funding to the national innovation system for hydrogen technologies. The results show that the allocation of funding considers placebased characteristics and has a range of systemic outcomes encompassing the clustering of research activities the specialization of certain places in certain market segments and the in crease of the spatial reach of the national innovation system by integrating left behind places. However the funding contributes insufficiently to market formation at the local and regional scale and is contested due to existing alternative routes that the innovation system could take.
Industrial Boilers: Study to Develop Cost and Stock Assumptions for Options to Enable or Require Hydrogen-ready Industrial Boilers
Dec 2022
Publication
This study aims to help the Department for Business Energy and Industrial Strategy (BEIS) determine whether the government should intervene to enable or require hydrogen-ready industrial boiler equipment. It will do this based on information from existing literature along with qualitative and quantitative information from stakeholder engagement. The study draws on evidence gathered through BEIS’ Call for Evidence (CfE) on hydrogen-ready industrial boilers. The assessment will advance the overall understanding of hydrogen-ready industrial boilers based on four outputs: definitions of hydrogen-readiness comparisons of the cost and resource requirement to install and convert hydrogen-ready industrial boiler equipment supply chain capacity for conversion to hydrogen and estimates of the UK industrial boiler population.
Towards a Low-Carbon Society via Hydrogen and Carbon Capture and Storage: Social Acceptance from a Stakeholder Perspective
Apr 2020
Publication
Transformation concepts towards a low-carbon society often require new technology and infrastructure that evoke protests in the population. Therefore it is crucial to understand positions and conflicts in society to achieve social acceptance. This paper analyses these positions using the example of implementing hydrogen and carbon capture and storage infrastructure to decarbonise the German energy system. The empirical basis of the study are explorative stakeholder interviews which were conducted with experts from politics economics civil society and science and analysed within a discursive and attitudinal framework using qualitative content analysis. These stakeholder positions are assumed to represent dominant social perceptions and reflect chances and risks for acceptance. The results indicate different positions while pursuing the common goal of addressing climate change. The general conflict concerns strategies towards a low-carbon society especially the speed of phasing-out fossil energies. Regarding the combination of hydrogen and carbon capture and storage as instrument in the context of the energy transition the stakeholder interviews indicate controversial as well as consensual perceptions. The assessments range from rejection to deeming it absolutely necessary. Controversial argumentations refer to security of supply competitiveness and environmental protection. In contrast consensus can be reached by balancing ecological and economic arguments e.g. by linking hydrogen technologies with renewable and fossil energy sources or by limiting the use of carbon capture and storage only to certain applications (industry bioenergy). In further decisions this balancing of arguments combined with openness of technology transparency of information and citizen participation need to be considered to achieve broad acceptance.
Influences on Hydrogen Production at a Wind Farm
Dec 2022
Publication
If an affordable infrastructure for low-carbon-intensity hydrogen can be developed then hydrogen is expected to become a key factor in decarbonizing the atmosphere. This research focuses on factors an existing wind farm operator would consider when weighing participating in the electricity market the hydrogen market or both. The solutions depend on the state of technology which is changing rapidly the local market structures the local natural resources and the local pre-existing infrastructure. Consequently this investigation used an assessment approach that examined the variation of net present value. The investigation identified profitability conditions under three different scenarios: 1) Make and sell what makes economic sense at the time of production 2) Use electrolyzer and fuel cell to consume power from the grid at times of low net demand and to produce electricity at times of high net demand 3) Same as #2 but also market hydrogen directly when profitable.
Mapping Local Green Hydrogen Cost-potentials by a Multidisciplinary Approach
Sep 2024
Publication
S. Ishmam,
Heidi Heinrichs,
C. Winkler,
B. Bayat,
Amin Lahnaoui,
Solomon Nwabueze Agbo,
E.U. Pena Sanchez,
David Franzmann,
N. Oijeabou,
C. Koerner,
Y. Michael,
B. Oloruntoba,
C. Montzka,
H. Vereecken,
H. Hendricks Franssen,
J. Brendt,
S. Brauner,
S. Venghaus,
Daouda Kone,
Bruno Korgo,
Kehinde Olufunso Ogunjobi,
V. Chiteculo,
Jane Olwoch,
Z. Getenga,
Jochen Linßen,
Detlef Stolten and
Wilhelm Kuckshinrichs
For fast-tracking climate change response green hydrogen is key for achieving greenhouse gas neutral energy systems. Especially Sub-Saharan Africa can benefit from it enabling an increased access to clean energy through utilizing its beneficial conditions for renewable energies. However developing green hydrogen strategies for Sub-Saharan Africa requires highly detailed and consistent information ranging from technical environmental economic and social dimensions which is currently lacking in literature. Therefore this paper provides a comprehensive novel approach embedding the required range of disciplines to analyze green hydrogen costpotentials in Sub-Saharan Africa. This approach stretches from a dedicated land eligibility based on local preferences a location specific renewable energy simulation locally derived sustainable groundwater limitations under climate change an optimization of local hydrogen energy systems and a socio-economic indicator-based impact analysis. The capability of the approach is shown for case study regions in Sub-Saharan Africa highlighting the need for a unified interdisciplinary approach.
Determining the Spanish Public’s Intention to Adopt Hydrogen Fuel-Cell Vehicles
Aug 2025
Publication
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy such as hydrogen fuel-cell vehicles (HFCVs) is a key factor in their deployment. To analyse the direct and indirect effects of key attitudinal variables that could influence the intention to use HFCVs in Spain an online questionnaire was administered to a representative sample of the Spanish population (N = 1000). A path analysis Structural Equation Model (SEM) was applied to determine the effect of different attitudinal variables. A high intention to adopt HFCVs in Spain was found (3.8 out of 5) assuming their wider availability in the future. The path analysis results indicated that general acceptance of hydrogen technology and perception of its benefits had the greatest effect on the public’s intention to adopt HFCVs. Regarding indirect effects the role of trust in hydrogen technology was notable having significant mediating effects not only through general acceptance of hydrogen energy and local acceptance of hydrogen refuelling stations (HRS) but also through positive and negative emotions and benefits perception. The findings will assist in focusing the future hydrogen communication strategies of both the government and the private (business) sector.
A Critical Analysis of Morocco’s Green Hydrogen Roadmap: A Modelling Approach to Assess Country Readiness from the Energy Trilemma Perspective
Apr 2024
Publication
Morocco despite its heavy reliance on imported fossil fuels which made up 68% of electricity generation in 2020 has recognised its significant renewable energy potential. The Nationally Determined Contribution (NDC) commitment is to reduce emissions by 45.5% from baseline levels with international assistance and abstain from constructing new coal plants. Moreover the Green Hydrogen Roadmap aims to export 10 TWh of green hydrogen by 2030 as well as use it for local electricity storage. This paper critically analyses this Roadmap and Morocco’s readiness to reach its ambitious targets focusing specifically on an energy trilemma perspective and using OSeMOSYS (Open-Source energy Modelling System) for energy modelling. The results reveal that the NDC scenario is only marginally more expensive than the least-cost scenario at around 1.3% (approximately USD 375 million) and facilitates a 23.32% emission reduction by 2050. An important note is the continued reliance on existing coal power plants across all scenarios which challenges both energy security and emissions. The assessment of the Green Hydrogen Scenarios highlights that it could be too costly for the Moroccan government to fund the Green Hydrogen Roadmap at this scale which leads to increased imports of polluting fossil fuels for cost reduction. In fact the emission levels are 39% higher in the green hydrogen exports scenario than in the least-cost scenario. Given these findings it is recommended that the Green Hydrogen Roadmap be re-evaluated with a suggestion for a postponement and reduction in scope.
Palm Trees, Energy Security and Green Hydrogen Futures: Tourists' Views on Mallorca's Low Carbon Transition
Jan 2025
Publication
The development of green hydrogen can provide a welcome boost in energy security particularly for island nations that may be reliant on energy imports or intermittent renewables as part of their energy transition. However the expansion of a green hydrogen economy may have social environmental and economic impacts on tourism-reliant islands which may not be accounted for using typical market assessments. In this study focus groups and an online choice experiment survey are conducted with recent international tourists to Mallorca Spain to elicit preferences for green hydrogen infrastructure including the visual and biodiversity impacts potential for export and the value for the provision of additional local and tourism benefits. The results indicate generally positive attitudes to the development of green hydrogen in Mallorca however respondents indicate significant disutility associated with high visual impact of green hydrogen infrastructure with the exception of respondents that have previous experience with hydrogen transport. In general respondents favour policies that do not negatively impact biodiversity value restrictions on exports to enhance energy security on the island and are willing to pay to support green hydrogen development in Mallorca which provides benefits to tourism and local residents.
Strategic Optimization and Design of Cost-effective and Sustainable Hydrogen Supply Chain Networks - Qatar Case Study
Jan 2025
Publication
This study introduces a multi-period integrated optimization model for designing a strategic hydrogen supply chain (HSC) network concentrating on the post-production stages of conditioning storage transportation and post-conditioning. Qatar serves as the case study for evaluating three HSC pathways—ammonia (as a hydrogen carrier) liquefied hydrogen and compressed hydrogen—across pre-conditioning storage shipping and postconditioning stages. The optimization framework spans a 20-year plan supporting strategic long-term hydrogen export infrastructure planning. Economic and environmental factors are incorporated to analyze HSC performance under various scenarios accounting for realistic constraints such as investment limits and emission caps. Key findings reveal trade-offs between pathways and design strategies that must account for balancing costs with environmental impacts. Results indicate that the ammonia pathway is preferred in scenarios without emission penalties but becomes less favorable with increased penalties shifting preference toward the liquified hydrogen pathway. With stringent emission limits short- and mid-range markets are prioritized underscoring the importance of emissions-conscious strategies. This study demonstrates the utility of optimi zation tools in balancing economic and environmental objectives offering policymakers and industry stake holders a robust framework for developing sustainable and efficient HSC networks.
Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential
Dec 2023
Publication
This review article provides a comprehensive analysis of the hydrogen landscape outlining the imperative for enhanced hydrogen production implementation and utilisation. It places the question of how to accelerate hydrogen adoption within the broader context of sustainable energy transitions and international commitments to reduce carbon emissions. It discusses influencing factors and policies for best practices in hydrogen energy application. Through an in-depth exploration of key factors affecting hydrogen implementation this study provides insights into the complex interplay of both technical and logistical factors. It also discusses the challenges of planning constructing infrastructure and overcoming geographical constraints in the transition to hydrogen-based energy systems. The drive to achieve net-zero carbon emissions is contingent on accelerating clean hydrogen development with blue and green hydrogen poised to complement traditional fuels. Public–private partnerships are emerging as catalysts for the commercialisation of hydrogen and fuel-cell technologies fostering hydrogen demonstration projects worldwide. The anticipated integration of clean hydrogen into various sectors in the coming years signifies its importance as a complementary energy source although specific applications across industries remain undefined. The paper provides a good reference on the gradual integration of hydrogen into the energy landscape marking a significant step forward toward a cleaner greener future.
Regime-driven Niches and Institutional Entrepreneurs: Adding Hydrogen to Regional Energy Systems in Germany
Nov 2023
Publication
In recent years production and supply of hydrogen has gained significant attention within the German energy transition. This is due to increasingly urgent pressures to mitigate climate change and geopolitical imperatives to substitute natural gas. Hydrogen is seen as an important cross-sectoral energy carrier serving multiple functions including heat production for industry and households fuel for transportation and energy storage for stabilization of electricity supply. In the context of various funding mechanisms on several administrative levels regional value chains for green hydrogen supply are emerging. To date however few studies analyzing regional hydrogen systems exist. Due to its high projected demand of energy sources for heating industrial processes and mobility Germany appears to be a very relevant research area in this emerging field. Situated within the concept of the multi-level perspective this article examines the way how regional “niches” of green hydrogen evolve and how they are organized. The study takes an evolutionary perspective in analyzing processes of embedding green hydrogen infrastructures in regional energy regimes which entered “re-configuration”-pathways. It argues that the congruence of available resources for renewable electricity established networks of institutional entrepreneurs and access to higher level funding are conditions which put incumbent regime-actors in favorable positions to implement green hydrogen niches. Conversely the embedding of green hydrogen infrastructures in regional energy systems is a case in point of how the attributes of niches in particular technological domains can be used to explain the transition pathway entered by a surrounding energy regime.
Hydrogen Europe Podcast Episode 6 - Exploring Opportunities for EU-Canada Hydrogen Cooperation
Dec 2023
Publication
In the sixth episode titled Exploring Opportunities for EU-Canada Hydrogen Cooperation our CEO Jorgo Chatzimarkakis discusses with John Risley Charmain and CEO of CFFI Ventures and Stefan Kaufmann former Innovation Commissioner for Green Hydrogen of the German government and now adviser to Thyssenkrupp. In the discussion about hydrogen market and technology's development in Canada and in Germany the businessman and the policy advisor bring two different geographical and expertise perspectives about the topic. Taking into consideration the US' IRA Canada's investments in the hydrogen sector and the European plans regarding H2Global and the Hydrogen Bank our guests compare North America and the EU. They debate over the economic and financial support the industry needs to invest in the green energy transition and the role global cooperation and competition play.
A Novel Hydrogen Supply Chain Optimization Model - Case Study of Texas and Louisiana
Jun 2024
Publication
The increasing political momentum advocating for decarbonization efforts has led many governments around the world to unveil national hydrogen strategies. Hydrogen is viewed as a potential enabler of deep decarbonization notably in hard-to-abate sectors such as the industry. A multi-modal hourly resolved linear programming model was developed to assess the infrastructure requirements of a low-carbon supply chain over a large region. It optimizes the deployment of infrastructure from 2025 up to 2050 by assessing four years: 2025 2030 2040 and 2050 and is location agnostic. The considered infrastructure encompasses several technologies for production transmission and storage. Model results illustrate supply chain requirements in Texas and Louisiana. Edge cases considering 100% electrolytic production were analyzed. Results show that by 2050 with an assumed industrial demand of 276 TWh/year Texas and Louisiana would require 62 GW of electrolyzers 102 GW of onshore wind and 32 GW of solar panels. The resulting levelized cost of hydrogen totaled $5.6–6.3/kgH2 in 2025 decreasing to $3.2–3.5/ kgH2 in 2050. Most of the electricity production occurs in Northwest Texas thanks to high capacity factors for both renewable technologies. Hydrogen is produced locally and transmitted through pipelines to demand centers around the Gulf Coast instead of electricity being transmitted for electrolytic production co-located with demand. Large-scale hydrogen storage is highly beneficial in the system to provide buffer between varying electrolytic hydrogen production and constant industrial demand requirements. In a system without low-cost storage liquid and compressed tanks are deployed and there is a significant renewable capacity overbuild to ensure greater electrolyzer capacity factors resulting in higher electricity curtailment. A system under carbon constraint sees the deployment of natural gas-derived hydrogen production. Lax carbon constraint target result in an important reliance on this production method due to its low cost while stricter targets enforce a great share of electrolytic production.
Economic Analysis of Supply Chain for Offshore Wind Hydrogen Production for Offshore Hydrogen Refueling Stations
Jan 2025
Publication
In order to solve the problem of large-scale offshore wind power consumption the development of an offshore wind power hydrogen supply chain has become one of the trends. In this study 10 feasible options are proposed to investigate the economics of an offshore wind hydrogen supply chain for offshore hydrogen refueling station consumption from three aspects: offshore wind hydrogen production storage and transportation and application. The study adopts a levelized cost analysis method to measure the current and future costs of the hydrogen supply chain. It analyses the suitable transport modes for delivering hydrogen to offshore hydrogen refueling stations at different scales and distances as well as the profitability of offshore hydrogen refueling stations. The study draws the following key conclusions: (1) the current centralised wind power hydrogen production method is economically superior to the distributed method; (2) gas-hydrogen storage and transportation is still the most economical method at the current time with a cost of CNY 32.14/kg which decreases to CNY 13.52/kg in 2037 on a par with the cost of coal-based hydrogen production using carbon capture technology; and (3) at the boundaries of an operating load factor of 70% and a selling price of CNY 25/kg the offshore hydrogen refueling station. The internal rate of return (IRR) is 21% showing good profitability; (4) In terms of the choice of transport mode for supplying hydrogen to the offshore hydrogen refueling station gas-hydrogen ships and pipeline transport will mainly be used in the near future while liquid organic hydrogen carriers and synthetic ammonia ships can be considered in the medium to long term.
Does the Public Want Green Hydrogen in Industry? Local and National Acceptance of Methanol and Steel Transitions in Germany
Feb 2025
Publication
Public perceptions might determine the ease of the transition from a fossil-based to a green hydrogen-based production pathway in the industrial sector. The primary objective of this paper is to empirically identify the antecedents of the acceptance of two relevant industrial applications of green hydrogen: green methanol and green steel. The analysis relying on linear regression models utilises survey data from samples of residents near a chemical park and a steel plant (509 and 502 participants respectively) contrasting them with a representative sample of 1502 individuals in Germany. The findings suggest that acceptance of the transitions to green methanol and green steel is high both locally and nationally. In all surveys >59 % of the participants are in favour while the share of those who are opposed to the respective transitions is below 9 %. Key antecedents of acceptance which are conducive in all models relate to individuals’ attitudes towards green hydrogen and perceptions of the legitimacy of the industry actors involved with varying results across legitimacy types. In general the findings were similar across industrial applications and across levels of observation but varied across regions. This study highlights the importance of civil society perceptions and suggests that relationship management efforts aimed at maintaining positive perceptions of industrial hydrogen applications should consider their broader physical and social contexts.
Exploring Economic Expansion of Green Hydrogen Production in South Africa
Jan 2025
Publication
Hydrogen is a crucial energy carrier for the Clean Energy Sustainable Development Goals and the just transition to low/zero-carbon energy. As a top CO2-emitting country hydrogen (especially green hydrogen) production in South Africa has gained momentum due to the availability of resources such as solar energy land wind energy platinum group metals (as catalysts for electrolysers) and water. However the demand for green hydrogen in South Africa is insignificant which implies that the majority of the production must be exported. Despite the positive developments there are unclear matters such as dependence on the national electricity grid for green hydrogen production and the cost of transporting it to Asian and European markets. Hence this study aims to explore opportunities for economic expansion for sustainable production transportation storage and utilisation of green hydrogen produced in South Africa. This paper uses a thematic literature review methodology. The key findings are that the available renewable energy sources incentivizing the green economy carbon taxation and increasing the demand for green hydrogen in South Africa and Africa could decrease the cost of hydrogen from 3.54 to 1.40 €/kgH2 and thus stimulate its production usage and export. The appeal of green hydrogen lies in diversifying products to green hydrogen as an energy carrier clean electricity synthetic fuels green ammonia and methanol green fertilizers and green steel production with the principal purpose of significant energy decarbonisation and economic and foreign earnings. These findings are expected to drive the African hydrogen revolution in agreement with the AU 2063 agenda.
Considering Hydrogen Policies with a Focus on Incentive Compatibility Towards Electricity Grids
Sep 2025
Publication
A lot of countries have recently published updated hydrogen strategies with many of them increasing and renewing their commitment. In parallel corresponding policy mechanisms are increasingly coming into focus with the first ones already having awarded funding contracts to projects and construction being underway. However these policies are usually translated from renewable energy policy without considering the specific risks and uncertainties spillovers and positive externality of operating grid-conducive electrolyzers in electricity grids which are increasingly subjected to electricity supply volatility from renewables. This article details how different aspects of a dedicated hydrogen policy can address the technology’s specific issues from an economic perspective namely funding provision market and technology risk mitigation and the complex relationship with further actors in electricity markets. Results show that compared to renewable energy policy mechanisms need to emphasize the input side more strongly as price risks and intermittency from electricity markets are more prominent than from hydrogen markets. Also it proposes a targeted mechanism to capture the positive externality of mitigating excess electricity in the grid while keeping investment security high. Economic policy should consider such approaches before scaling support and avoiding the design shortcomings experienced with early RE policy.
A Pan-Asian Energy Transition? The New Rationale for Decarbonization Policies in the World’s Largest Energy Exporting Countries: A Case Study of Qatar and Other GCC Countries
Jul 2024
Publication
Climate change has become a major agenda item in international relations and in national energy policy-making circles around the world. This review studies the surprising evolution of the energy policy and more particularly the energy transition currently happening in the Arabian Gulf region which features some of the world’s largest exporters of oil and gas. Qatar Saudi Arabia and other neighboring energy exporters plan to export blue and green hydrogen across Asia as well as towards Europe in the years and decades to come. Although poorly known and understood abroad this recent strategy does not threaten the current exports of oil and gas (still needed for a few decades) but prepares the evolution of their national energy industries toward the future decarbonized energy demand of their main customers in East and South Asia and beyond. The world’s largest exporter of Liquefied Natural Gas Qatar has established industrial policies and projects to upscale CCUS which can enable blue hydrogen production as well as natural carbon sinks domestically via afforestation projects.
Economic and Environmental Impact Assessment of Renewable Energy Integration: A Review and Future Research Directions
Nov 2024
Publication
This review article critically examines papers on renewable energy integration (REI) with a specific focus on the economic and environmental impact assessments across multiple sectors including agriculture transportation electricity production buildings and biofuel production. A total of 111 articles from the Web of Science Core Collection database were reviewed using a systematic literature review methodology and content analysis techniques. The results indicate that evaluation-type studies particularly those employing optimization and simulation-based methods such as techno-economic analysis (TEA) (28 papers) and lifecycle assessment (LCA) (20 papers) were the most prominent approaches used for economic and environmental analyses. Optimization techniques such as mixed-integer linear programming (6 papers) genetic algorithms (GA) (5 papers) and particle swarm optimization (PSO) (4 papers) were widely applied. The quantitative analysis of impact assessment indicators shows that REI has yielded significant long-term positive results across multiple RE sources sectors and regions. A detailed examination of mathematical models (e.g. optimization techniques) and simulation modeling combined with lifecycle assessment (LCA) will assist future researchers in optimizing energy systems and enhancing sustainability in sectors such as agriculture and water desalination. The conceptual inclusion of circular economy within the research field needs to be more present among researchers and most of the studies focused on technical aspects of RE integration and assessing impacts rather than identifying a systemic change across the sectors. Several future research directions have been identified across sectors offering opportunities to advance the field. Policymakers will find this paper valuable for informed decision-making and the development of robust policy frameworks.
Hydrogen Energy Horizon: Balancing Opportunities and Challenges
Jun 2023
Publication
The future of energy is of global concern with hydrogen emerging as a potential solution for sustainable energy development. This paper provides a comprehensive analysis of the current hydrogen energy landscape its potential role in a decarbonized future and the hurdles that need to be overcome for its wider implementation. The first elucidates the opportunities hydrogen energy presents including its potential for decarbonizing various sectors in addition addresses the challenges that stand in the way of hydrogen energy large-scale adoption. The obtained results provide a comprehensive overview of the hydrogen energy horizon emphasizing the need to balance opportunities and challenges for its successful integration into the global energy landscape. It highlights the importance of continued research development and collaboration across sectors to realize the full potential of hydrogen as a sustainable and low-carbon energy carrier.
Innovations in Clean Energy Technologies: A Comprehensive Exploration of Research at the Clean Energy Technologies Research Institute, University of Regina
Nov 2024
Publication
The Clean Energy Technology Research Institute (CETRI) at the University of Regina Canada serves as a collaborative hub where a dynamic team of researchers industry leaders innovators and educators come together to tackle the urgent challenges of climate change and the advancement of clean energy technologies. Specializing in low-carbon and carbon-free clean energy research CETRI adopts a unique approach that encompasses feasibility studies bench-scale and pilot-plant testing and pre-commercial demonstrations all consolidated under one roof. This holistic model distinguishes CETRI fostering a diverse and inclusive environment for technical scientific and hands-on learning experiences. With a CAD 3.3 million pre-commercial carbon capture demonstration plant capable of capturing 1 tonne of CO2 per day and a feed-flexible hydrogen demonstration pilot plant producing 6 kg of hydrogen daily CETRI emerges as a pivotal force in advancing innovative reliable and cost-competitive clean energy solutions essential for a safe prolific and sustainable world. This paper provides a comprehensive overview of the diverse and impactful research carried out in the center spanning various areas including decarbonization zeroemission hydrogen technologies carbon (CO2 ) capture utilization and storage the conversion of waste into renewable fuels and chemicals and emerging technologies such as small modular nuclear reactors and microgrids.
Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges
Dec 2023
Publication
The use of hydrogen as an energy carrier within the scope of the decarbonisation of the world’s energy production and utilisation is seen by many as an integral part of this endeavour. However the discussion around hydrogen technologies often lacks some perspective on the currently available technologies their Technology Readiness Level (TRL) scope of application and important performance parameters such as energy density or conversion efficiency. This makes it difficult for the policy makers and investors to evaluate the technologies that are most promising. The present study aims to provide help in this respect by assessing the available technologies in which hydrogen is used as an energy carrier including its main challenges needs and opportunities in a scenario in which fossil fuels still dominate global energy sources but in which renewables are expected to assume a progressively vital role in the future. The production of green hydrogen using water electrolysis technologies is described in detail. Various methods of hydrogen storage are referred including underground storage physical storage and material-based storage. Hydrogen transportation technologies are examined taking into account different storage methods volume requirements and transportation distances. Lastly an assessment of well-known technologies for harnessing energy from hydrogen is undertaken including gas turbines reciprocating internal combustion engines and fuel cells. It seems that the many of the technologies assessed have already achieved a satisfactory degree of development such as several solutions for high-pressure hydrogen storage while others still require some maturation such as the still limited life and/or excessive cost of the various fuel cell technologies or the suitable operation of gas turbines and reciprocating internal combustion engines operating with hydrogen. Costs below 200 USD/kWproduced lives above 50 kh and conversion efficiencies approaching 80% are being aimed at green hydrogen production or electricity production from hydrogen fuel cells. Nonetheless notable advances have been achieved in these technologies in recent years. For instance electrolysis with solid oxide cells may now sometimes reach up to 85% efficiency although with a life still in the range of 20 kh. Conversely proton exchange membrane fuel cells (PEMFCs) working as electrolysers are able to sometimes achieve a life in the range of 80 kh with efficiencies up to 68%. Regarding electricity production from hydrogen the maximum efficiencies are slightly lower (72% and 55% respectively). The combination of the energy losses due to hydrogen production compression storage and electricity production yields overall efficiencies that could be as low as 25% although smart applications such as those that can use available process or waste heat could substantially improve the overall energy efficiency figures. Despite the challenges the foreseeable future seems to hold significant potential for hydrogen as a clean energy carrier as the demand for hydrogen continues to grow particularly in transportation building heating and power generation new business prospects emerge. However this should be done with careful regard to the fact that many of these technologies still need to increase their technological readiness level before they become viable options. For this an emphasis needs to be put on research innovation and collaboration among industry academia and policymakers to unlock the full potential of hydrogen as an energy vector in the sustainable economy.
OIES Podcast - Key Energy Themes for 2024
Jan 2024
Publication
In this latest OIES podcast James Henderson talks to Bill Farren-Price the new Head of the Gas Programme about some of Key Themes identified by OIES research fellows for 2024. After a review of the outcomes from 2023 we look at the oil and gas markets and discuss a common theme around the contrast between the fundamental tightness in both markets compared with the relative softness of prices. We then move onto a number of energy transition issues starting with some of the key actions from COP28 that need to be implemented in 2024 and following with a review of the outlook for carbon markets hydrogen developments and offshore wind. We also consider the impact of emerging competition between regions over green industrial policy. Finally we consider some of the key geopolitical drivers for 2024 with the influence of China being the most critical. However in an election year for so many countries it will be critical to follow the key policy announcements of the main candidates and of most critically the outcome of the US election in November.
The podcast can be found on their website
The podcast can be found on their website
Multilateral Governance in a Global Hydrogen Economy: An Overview of Main Actors and Institutions, Key Challenges and Future Pathways
Nov 2024
Publication
This paper explores the current scope and direction of the emerging global governance of hydrogen within the broader context of the energy transition where technological innovation and institutional change intersect. Hydrogen as a critical yet complex energy vector requires coordinated governance efforts to navigate its development effectively. To this end we critically engage with key challenges facing the hydrogen sector and examine how institutional frameworks are addressing these issues. Departing from the broader scholarship on global energy governance we conceptually leverage the socio-technical transition and innovation system liter ature to understand the complexities underpinning the development of the global hydrogen economy. We identify three overarching issue areas pertaining to the nature and role of hydrogen in the global energy system: end-use sector development infrastructure and trade and environmental and socio-economic sustainability. Each of these areas presents distinct challenges to hydrogen’s global governance from stimulating supply and demand to managing geo-economic challenges and establishing comprehensive certification and standards. Through mapping multilateral institutions at the global and regional levels and their main objectives we offer insights into the emerging institutional architecture related to hydrogen and identify potential gaps in current governance. Our findings suggest that while newer hydrogen-specific institutions complement the broader agenda of the main established international organizations the overall global hydrogen structure remains a patchwork of diverse actors and frameworks each addressing hydrogen-related challenges to varying degrees. Our research contributes to a nuanced understanding of global governance in the hydrogen sector and advances scholarly discussions on how institutional and actor dynamics shape the emergence and development of new technologies.
Stability, Change, Formation: Insights into the Media's Role in Shaping Attitudes Toward Green Hydrogen in Germany
Nov 2024
Publication
This study uses a multi-method design to investigate the media’s role in shaping Germans’ attitudes toward green hydrogen. It combines an automatized content analysis of 7649 German newspaper articles published between July 2021 and June 2024 and a three-wave panel survey of the German population conducted between June 2023 and June 2024 with an initial sample of 2701 participants. The findings show that the intensity of media reporting on hydrogen was low compared to other energy-related topics. Nevertheless participants’ assessments of relative topic presence are rather accurate (rho: 0.50–0.80). A considerable number of participants were unable to position themselves toward the potential and challenges of hydrogen (23%–35%). Overall the results indicate that media and communication tend to stabilize or change existing attitudes rather than contribute to the formation or loss of attitudes leading to implications for the communication of relevant stakeholders.
Hydrogen Import and Export: Unlocking the UK's Hydrogen Trade Potential
May 2024
Publication
Hydrogen trade is an emerging area of interest for hydrogen developers end-users traders and governments around the world. It can enhance system flexibility energy security and clean growth enabling decarbonisation at a lower cost and faster pace. Thanks to its competitive advantage in existing ports terminals and interconnectors the UK is well placed to be the European trade hub for hydrogen and its carriers. With its access to world leading offshore wind generation capacity and geological storage the UK will almost certainly be a net exporter of hydrogen in the future delivering economic value and creating jobs. However hydrogen trade will not be a one-way process. In order to best position the UK as a future hydrogen trade hub there could be value in investing in small scale hydrogen imports and exports to ‘wet the pipes’ and stimulate investment in infrastructure. Imports could also enhance our energy security as a part of a diverse energy mix and support demand whilst domestic production gets up to speed. Both imports and exports will be key to build supply chains and skills and enhance clean growth. With major European economies having established their hydrogen trade strategy there is growing uncertainty as to how the United Kingdom will capitalise on its competitive advantage and position itself in the global hydrogen market. This is the first qualitative report released by Hydrogen UK’s Import and Export Taskforce. This report aims to provide a high-level overview of Hydrogen UK’s vision and recommendations with subsequent reports exploring this topic in further detail.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
UK Hydrogen Roadmap: Financial and Strategic Insights into Oil and Gas Industry’s Transition
Dec 2024
Publication
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021 this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and energy reports. Four oil and gas companies involved in hydrogen projects in the UK were selected as case studies. The responses from the companies were collected using the content analysis research strategy in 2019–2021. A steady increase was observed based on the code frequency reflecting the increasing discussions and actions the companies took regarding this hydrogen pathway. Although only one company appears to be at the forefront of this transition progress with a score of almost 90% based on the strategy management analysis other companies continue to demonstrate their commitment to supporting the national target.
Impact of Large-scale Hydrogen Electrification and Retrofitting of Natural Gas Infrastructure on the European Power System
Nov 2023
Publication
In this paper we aim to analyse the impact of hydrogen production decarbonisation and electrification scenarios on the infrastructure development generation mix CO2 emissions and system costs of the European power system considering the retrofit of the natural gas infrastructure. We define a reference scenario for the European power system in 2050 and use scenario variants to obtain additional insights by breaking down the effects of different assumptions. The scenarios were analysed using the European electricity market model COMPETES including a proposed formulation to consider retrofitting existing natural gas networks to transport hydrogen instead of methane. According to the results 60% of the EU’s hydrogen demand is electrified and approximately 30% of the total electricity demand will be to cover that hydrogen demand. The primary source of this electricity would be non-polluting technologies. Moreover hydrogen flexibility significantly increases variable renewable energy investment and production and reduces CO2 emissions. In contrast relying on only electricity transmission increases costs and CO2 emissions emphasising the importance of investing in an H2 network through retrofitting or new pipelines. In conclusion this paper shows that electrifying hydrogen is necessary and cost-effective to achieve the EU’s objective of reducing long-term emissions.
A SWOT Analysis of the Green Hydrogen Market
Jun 2024
Publication
Since the Industrial Revolution humanity has heavily depended on fossil fuels. Recognizing the negative environmental impacts of the unmoderated consumption of fossil fuels including global warming and consequent climate change new plans and initiatives have been established to implement renewable and sustainable energy sources worldwide. This has led to a rapid increase in the installed solar and wind energy capacity. However considering the fluctuating nature of these renewable energy sources green hydrogen has been proposed as a suitable energy carrier to improve the efficiency of energy production and storage. Thus green hydrogen produced by water electrolysis using renewable electricity is a promising solution for the future energy market. Moreover it has the potential to be used for the decarbonization of the heavy industry and transportation sectors. Research and development (R&D) on green hydrogen has grown considerably over the past few decades aiming to maximize production and expand its market share. The present work uses a SWOT (strengths weaknesses opportunities and threats) analysis to evaluate the current status of the green hydrogen market. The external and internal factors that affect its market position are assessed. The results show that green hydrogen is on the right track to becoming a competitive alternative to fossil fuels soon. Supported by environmental benefits government incentives and carbon taxes roadmaps to position green hydrogen on the energy map have been outlined. Nevertheless increased investments are required for further R&D as costs must be reduced and policies enforced. These measures will gradually decrease global dependency on fossil fuels and ensure that roadmaps are followed through.
Country Risks Analysis for the Development of Green Hydrogen and Synthetic Fuel Sectors in the MENA Region
Nov 2024
Publication
Hydrogen plays a pivotal role in global efforts to decarbonize energy and industrial sectors. The European Union particularly Germany anticipate a significant reliance on hydrogen imports in the medium to long term identifying the Middle East and North Africa (MENA) region as a key potential producer and exporter of green hydrogen and its downstream products. Yet investment risks pose significant challenges to advancing the region’s green hydrogen and synthetic fuel industries. However systematic comparative risk analyses for these sectors across MENA countries remain limited. This study addresses the research gap by conducting a comparative risk assessment for renewable energy and green hydrogen and synthetic fuel development in 17 MENA countries. A comprehensive framework evaluating macro and micro risks was applied along with two contrasting risk scenarios to explore future developments under different risk conditions. The findings reveal that while MENA countries hold promise most face at least moderate risks underscoring the complexity of fostering these industries regionally.
Renewable Hydrogen for the Energy Transition in Australia - Current Trends, Challenges and Future Directions
Sep 2024
Publication
Hydrogen is viewed as a potential energy solution for the 21st century with capabilities to tackle issues relating to environmental emissions sustainability energy shortages and security. Even though there are potential benefits of renewable hydrogen towards transitioning to net-zero emissions there is a limited study on the current use ongoing development and future directions of renewable hydrogen in Australia. Thus this study conducts a systematic review of studies for exploring Australia’s renewable hydrogen energy transition current trends strategies developments and future directions. By using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines earlier studies from 2005 to 2024 from two major databases such as ProQuest and Web of Science are gathered and analyzed. The study highlights significant issues relating to hydrogen energy technologies and opportunities/challenges in production storage distribution utilization and environmental impacts. The study found that Australia’s ambition for a strong hydrogen economy is made apparent with its clear strategic actions to develop a clean technology-based hydrogen production storage and distribution system. This study provides several practical insights on Australia’s hydrogen energy transition hydrogen energy technologies investments and innovation as well as strategies/recommendations for achieving a more environment friendly secure affordable and sustainable energy future.
An Assessment of Current Hydrogen Supply Chains in the Gulf Cooperation Council (GCC)
May 2024
Publication
The Gulf Cooperation Council (GCC) comprising: Saudi Arabia United Arab Emirates Kuwait Qatar Oman and Bahrain is home to an abundant number of resources including natural gas and solar and wind energy (renewables). Because of this the region is favourably positioned to become a significant player in both blue and green hydrogen production and their export. Current dependence on fossil fuels and ambitious national targets for decarbonisation have led the region and world to research the feasibility of switching to a hydrogen economy. This literature review critically examines the current advantages and strategies adopted by the GCC to expedite the implementation of hydrogen supply chains as well as investigation into the methodologies employed in current research for the modelling and optimisation of hydrogen supply chains. Insight into these endeavours is critical for stakeholders to assess the inherent challenges and opportunities in establishing a sustainable hydrogen economy. Despite a substantial global effort establishing a solid hydrogen supply chain presently faces various obstacles including the costs of clean hydrogen production. Scaling-up storage and transport methods is an issue that affects all types of hydrogen including carbon-intensive (grey) hydrogen. However the current costs of green hydrogen production mostly via the process of electrolysis is a major obstacle hindering the widescale deployment of clean hydrogen. Research in this literature review found that compressed gas and cryogenic liquid options have the highest storage capacities for hydrogen of 39.2 and 70.9 kg/m3 respectively. Meanwhile for hydrogen transportation pipelines and cryogenic tankers are the most conventional and efficient options with an efficiency of over 99 %. Cryogenic ships to carry liquid hydrogen also show potential due to their large storage capacities of 10000 tonnes per shipment However costs per vessel are currently still very expensive ranging between $ 465 and $620 million.
Hydrogen UK Manifesto
Jul 2024
Publication
Hydrogen presents the UK with a substantial opportunity to drive economic growth and secure skilled jobs by leveraging our natural geological and geographical advantages robust supply chain and existing energy expertise. Hydrogen UK’s most recent Economic Impact Assessment estimates that the hydrogen sector in the UK could support approximately 30000 direct jobs and contribute more than £7 billion gross value added annually by 2030. On a global scale the hydrogen market is projected to be worth $2.5 trillion by 2050.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
Geothermal Energy Prospect for Decarbonization, EWF Nexus and Energy Poverty Mitigation in East Africa; The Role of Hydrogen Production
Aug 2023
Publication
The affordability and availability of water and energy have a huge impact on food production. Research has shown that there exists a direct and indirect link between power production and clean water generation. Hence the inclusion/importance given to the energy-water-food (EWF) nexus in the United Nations’ sustainable development goals. Acknowledging the importance of decarbonization to the global future there exists a gap in literature on the development of models that can enhance the EWF nexus reduce energy poverty and achieve 100% renewable energy in the electricity sector. Therefore the technical and economic prospect of geothermal energy for bridging the aforementioned gaps in existing works of literature is presented in this study. The energy poverty/wealthy status of a country has been confirmed to have a significant impact on economic development as economic development is largely reflected in the food-water availability. Ditto this study is focused on the interconnectivity of the EWF nexus while incorporating global decarbonization targets. Geothermal energy is of the utmost significance in East Africa due to its abundant potential and distinctive geological features. Located in the Great Rift Valley the region has an abundance of geothermal reservoirs making it an ideal location for geothermal power generation. This study is novel as a comprehensive assessment framework for energy poverty is developed and innovative models utilizing primarily the geothermal resource in the East African region to mitigate this problem are proposed and analyzed. The role of hydrogen generation from critical excess electricity production is also analyzed. The East Africa region is considered the case study for implementing the models developed. A central renewable energy grid is proposed/modelled to meet the energy demand for seven East African countries namely; Ethiopia Tanzania Uganda Djibouti Comoros Eritrea and Rwanda. This study considers 2030 2040 and 2050 as the timestamp for the implementation of the proposed models. The hybrid mix of the biomass power plant solar photovoltaic (PV) pumped hydro storage system and onshore wind power is considered to furthermore show the potency of renewable energy resources in this region. Results showed that the use of geothermal energy to meet energy demands in the case study will mitigate energy poverty and enhance the region’s EWF.
Economic Impact Assessment for the Hydrogen Sector to 2030
Apr 2024
Publication
Hydrogen is one of the key solutions to decarbonising the UK economy along with other carbon abatement solutions such as electrification CCUS biofuels and energy efficiency. It provides a low carbon alternative to fossil fuels that has many of the same desirable features such as burning with a high temperature flame without producing carbon emissions during combustion. Hydrogen will be particularly valuable in hard-to-decarbonise sectors that have few cost-effective alternatives including elements of industry heavy transport and dispatchable power generation. However it’s use could be much more widespread depending on how costs preferences and policy for different low carbon solutions develop. The Government’s Hydrogen Strategy estimates that based on analysis from the Climate Change Committee (CCC) in 2050 between 20% and 35% of the UK’s final energy demand could be met with low carbon hydrogen1 . While hydrogen provides a promising solution to reducing emissions current deployment of low carbon hydrogen is low with almost all hydrogen in the UK produced from unabated fossil fuels resulting in high emissions. In the UK hydrogen production must meet the Low Carbon Hydrogen Standard (LCHS) to access government support. This is currently set at 20g CO2 e/MJ(LHV) and will ensure that future deployment will deliver significant emissions reductions when switching from fossil fuels2. The period to 2030 will be a critical time for the UK to seize the economic opportunity presented by low carbon hydrogen sector. Internationally increasing attention has been placed on hydrogen as a solution to global emissions. In the USA the Inflation Reduction Act (IRA) has provided fixed rate tax credits of up to $3/kg (£2.4/kgII) for clean hydrogen production3. Closer to home the EU is targeting 10 million tonnes of domestic electrolytic production and an additional 10 million tonnes of electrolytic hydrogen imports by 20304. This will be achieved through a variety of policy levers including an auction for fixed price subsidy support for electrolytic production with a ceiling of €4.5/kg5 (£3.84/kgIII). In the UK Government have set an ambitious target of up to 10 GW of low carbon hydrogen production by 2030 with at least half of this from electrolytic sources6. This will be supported by the Hydrogen Production Business Model (HPBM) a two-way variable CfD which could potentially provide hydrogen for a price as low as the natural gas price7 . As global supply chains investment and skills are in international competition the UK must continue its ambitious hydrogen aspirations to ensure the decarbonisation and economic opportunity presented by low carbon hydrogen is captured. This study estimates the economic impact of the low carbon hydrogen sector in the UK by 2030. The impact is assessed by estimating the costs of hydrogen deployment and applying employment and GVA multipliers to these costs based on historic economic activity. These estimates are broken down by different forms of low carbon hydrogen production and end use as well as the enabling infrastructure required to connect production and demand namely hydrogen networks and storage. Both the employment and GVA are estimated for each of these value chain elements for every year between 2024 and 2030. Employment and economic growth from the hydrogen sector will be created across the UK with many benefits arising in regions that have faced historic underinvestment such as the industrial clusters and Scotland. Beyond the high-level economic benefits estimated in this study the hydrogen sector creates an opportunity for the hundreds of thousands oil and gas sector jobs in the UK to transition to a low carbon alternative.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Key Influencing Factors on Hydrogen Storage and Transportation Costs: A Systematic Literature Review
Jan 2025
Publication
Cost-effective hydrogen supply chains are crucial for accelerating hydrogen deployment and decarbonizing economies with the storage and transportation sectors representing major challenges. This study presents a systematic literature review of 81 papers to identify and analyze the main influencing factors on hydrogen storage and transportation costs with the aim of improving transparency across the hydrogen supply chain. The review identifies and assesses 25 technical nine economic and two environmental factors highlighting capital expenditure and capacity of storage and transport facilities as the primary drivers of storage and transportation costs. Furthermore transport distance for trucks and ships as well as the discount rate for pipelines are iden tified as additional critical cost-determining factors for the transportation sector.
The UK Hydrogen Innovation Opportunity: Sectors and Scenarios
Sep 2024
Publication
This report explores how hydrogen could be taken up in the UK and how this in turn translates to each sector from both global and UK perspectives to understand the practical implications of global and UK targets and projections on hydrogen innovation opportunities:
♦ Assessing demand for hydrogen sets out the context and the approach taken in the assessment of global and UK sector hydrogen needs including the development of specific UK scenarios for hydrogen deployment and innovation across the energy system and supply chain.
♦ Key insights discusses the insights and an overview of the outputs from the implementation of the UK deployment scenarios in whole energy system modelling.
♦ Hydrogen production storage and distribution and demand explore these areas in more detail setting out the current state and potential trajectories for hydrogen in each sector both globally and in the UK up to 2050.
This report can also be downloaded free on the Hydrogen Innovation Initative website.
♦ Assessing demand for hydrogen sets out the context and the approach taken in the assessment of global and UK sector hydrogen needs including the development of specific UK scenarios for hydrogen deployment and innovation across the energy system and supply chain.
♦ Key insights discusses the insights and an overview of the outputs from the implementation of the UK deployment scenarios in whole energy system modelling.
♦ Hydrogen production storage and distribution and demand explore these areas in more detail setting out the current state and potential trajectories for hydrogen in each sector both globally and in the UK up to 2050.
This report can also be downloaded free on the Hydrogen Innovation Initative website.
Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future
Aug 2024
Publication
In recent years global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind solar photovoltaics (PVs) hydro and geothermal. Concurrently green hydrogen produced via water electrolysis using these RESs has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress the hydrogen economy remains nascent with ongoing developments and persistent uncertainties in economic technological and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain encompassing production transportation logistics storage methodologies and end-use applications while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.
Great Britain's Hydrogen Infrastructure Development - Investment Priorities and Locational Flexibility
Aug 2024
Publication
Future pathways for Great Britain’s energy system decarbonization have highlighted the importance of lowcarbon hydrogen as an energy carrier and demand flexibility support. However the potential application within various sectors (heating industry transport) and production capacity through different technologies (methane reformation with carbon capture biomass gasification electrolysis) is highly varying introducing substantial uncertainties for hydrogen infrastructure development. This study sets out infrastructure priorities and identifies locational flexibility for hydrogen supply and demand options. Advances on limitations of previous research are made by developing an open-source model of the hydrogen system of Great Britain based on three Net Zero scenarios set out by National Grid in their Future Energy Scenarios in high temporal and spatial resolution. The model comprehensively covers demand sectors and supply options in addition to extending the locational considerations of the Future Energy Scenarios. This study recommends prioritizing the establishment of green hydrogen hubs in the near-term aligning with demands for synthetic fuels production industry and power which can facilitate the subsequent roll out of up to 10GW of hydrogen production capacity by 2050. The analysis quantifies a high proportion of hydrogen supply and demand which can be located flexibly.
Renewable Hydrogen Trade, in a Global Decarbonised Energy System
Jan 2025
Publication
Renewable hydrogen has emerged as a potentially critical energy carrier for achieving climate change mitigation goals. International trade could play a key role in meeting hydrogen demand in a globally decarbonized energy system. To better understand this role we have developed a modelling framework that incorporates hydrogen supply and demand curves and a market equilibrium model to maximize social welfare. Applying this framework we investigate two scenarios: an unrestricted trade scenario where hydrogen trade is allowed between all regions globally and a regional independence scenario where trade is restricted to be intra-regional only. Under the unrestricted trade scenario global hydrogen demand could reach 234 Mt by 2050 with 31.2% met through international trade. Key trade routes identified include North Africa to Europe the Middle East to Developing Asia and South America to Japan and South Korea. In the regional independence scenario most regions could meet their demand domestically except for Japan and South Korea due to self-insufficiency. Finally this analysis reveals that producers in North Africa and South America are likely to gain more economic value from international trade compared to other producing regions. The results offer key insights for policymakers and investors for shaping future hydrogen trade policies and investment decisions.
The Geopolitics of Hydrogen, Volume 1: European Strategies in Global Perspective
Jan 2024
Publication
Rainer Quitzow,
Yana Zabanova,
Almudena Nunez,
Ines Bouacida,
Michał Smoleń,
Wojciech Żelisko,
John Szabo,
Ignacio Urbasos,
Gonzalo Escribano,
Andrea Prontera,
Roelof Stam,
Coby van der Linder,
Pier Stapersma,
Stefan Ćetković,
Janek Stockburger,
Jon Birger Skjærseth,
Per Ove Eikeland,
Tor Håkon Jackson Inderberg and
Mari Lie Larsen
Chapters:<br/>♦ Introduction by Rainer Quitzow and Yana Zabanova<br/>♦ The EU in the Global Hydrogen Race: Bringing Together Climate Action Energy Security and Industrial Policy by Yana Zabanova<br/>♦ Germany’s Hydrogen Strategy: Securing Industrial Leadership in a Carbon–Neutral Economy by Almudena Nunez and Rainer Quitzow<br/>♦ France’s Hydrogen Strategy: Focusing on Domestic Hydrogen Production to Decarbonise Industry and Mobility by Ines Bouacida<br/>♦ International Dimension of the Polish Hydrogen Strategy. Conditions and Potential for Future Development by Michał Smoleń and Wojciech Żelisko<br/>♦ Hydrogen Affairs in Hungary’s Politically Confined Ambition byJohn Szabo<br/>♦ Spain’s Hydrogen Ambition: Between Reindustrialisation and Export-Led Energy Integration with the EU by Ignacio Urbasos and Gonzalo Escribano<br/>♦ Italian Hydrogen Policy: Drivers Constraints and Recent Developments by Andrea Prontera<br/>♦ Hydrogen Policy in the Netherlands: Laying the Foundations for a Scalable Hydrogen Value Chain by Roelof Stam Coby van der Linde and Pier Stapersma<br/>♦ Hydrogen Strategy of Sweden: Unpacking the Multiple Drivers and Potential Barriers to Hydrogen Development by Stefan Ćetković and Janek Stockburger<br/>♦ Norway’s Hydrogen Strategy: Unveiling Green Opportunities and Blue Export Ambitions by Jon Birger Skjærseth Per Ove Eikeland Tor Håkon Jackson Inderberg and Mari Lie Larsen<br/>♦ The Geopolitics of Hydrogen in Europe: The Interplay between EU and Member State Policies by Rainer Quitzow and Yana Zabanova
Modeling Critical Enablers of Hydrogen Supply Chains for Decarbonization: Insights from Emerging Economies
Mar 2025
Publication
The current global energy environment is experiencing a substantial shift towards minimizing carbon emissions and enhancing sustainability due to persistent problems. Demand for sustainable end-to-end energy solutions has boosted green hydrogen as the solution to decarbonize the world. The current study has identified and evaluated 7 main criteria of 27 sub-criteria for enabling the hydrogen supply Chains for decarbonization using the Fuzzy DEMATEL technique. The results show that the most prominent enablers criteria under causal factors are: cluster-based approach for developing a green hub Cost and investment decisions Hydrogen trade policy and regulatory actions and Technology. The effect group factors include: Assessment of ecological concerns- Ecology effect Availability of Energy sources and Awareness and public outreach. This study offers insights to understand the dynamics of the hydrogen supply chains and its way ahead towards decarbonization and transition towards a low-carbon economy. This research helps various academic and industrial stakeholders to give pace to green hydrogen uptake as a vital decarbonization tool and act as a base for strategic and collaborative decisions for a resilient and responsible energy landscape.
Shifting to Low-carbon Hydrogen Production Supports Job Creation but Does Not Gurantee a Just Transition
Nov 2024
Publication
Transitioning from carbon-intensive steam methane reforming to low-carbon hydrogen production is essential for decarbonizing the European industrial sector. However the employment impact of such a transition remains unclear. Here we estimate the effects using a transition pathways optimization model and industrial survey data. The results show that an electrolysis-based hydrogen sector transition would create 40000 jobs in the hydrogen sector by 2050. However these jobs are not equally distributed with Western Europe hosting the largest share (40%) and 20% of current hydrogen-producing regions experiencing net job decreases. Even after accounting for renewable energy jobs created by electrolysis-driven electricity demand growth the 2050 low-carbon hydrogen workforce would provide only 10% of the jobs currently offered by European fossil fuel production. Numerous uncertainties and regional development inequities suggest the need for sector-diversified workforce transition plans and training programs to foster skills suited to multiple low-carbon opportunities.
The Current Status of Hydrogen Energy: An Overview
Sep 2023
Publication
Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the world's energy in the future replacing the present fossil fuel-based energy infrastructure. Hydrogen is expected to solve the problem of energy shortages in the near future especially in complex geographical areas (hills arid plateaus etc.) and harsh climates (desert ice etc.). Thus in this report we present a current status of achievable hydrogen fuel based on various scopes including production methods storage and transportation techniques the global market and the future outlook. Its objectives include analyzing the effectiveness of various hydrogen generation processes and their effects on the economy society and environment. These techniques are contrasted in terms of their effects on the environment manufacturing costs energy use and energy efficiency. In addition hydrogen energy market trends over the next decade are also discussed. According to numerous encouraging recent advancements in the field this review offers an overview of hydrogen as the ideal renewable energy for the future society its production methods the most recent storage technologies and transportation strategies which suggest a potential breakthrough towards a hydrogen economy. All these changes show that this is really a profound revolution in the development process of human society and has been assessed as having the same significance as the previous industrial revolution.
Analysing the Prospects of Grid-connected Green Hydrogen Production in Predominantly Fossil-based Countries - A Case Study of South Africa
Aug 2024
Publication
Importing substantial amount of green hydrogen from countries like South Africa which have abundant solar and wind potentials to replace fossil fuels has attracted interest in developed regions. This study analyses South African strategies for improving and decarbonizing the power sector while also producing hydrogen for export. These strategies include the Integrated Resource Plan the Transmission Development Plan Just Energy Transition and Hydrogen Society Roadmap for grid connected hydrogen production in 2030. Results based on an hourly resolution optimisation in Plexos indicate that annual grid-connected hydrogen production of 500 kt can lead to a 20–25% increase in the cost of electricity in scenarios with lower renewable energy penetration due to South African emission constraints by 2030. While the price of electricity is still in acceptable range and the price of hydrogen can be competitive on the international market (2–3 USD/kgH2 for production) the emission factor of this hydrogen is higher than the one of grey hydrogen ranging from 13 to 24 kgCO2/kgh2. When attempting to reach emission factors based on EU directives the three policy roadmaps become unfeasible and free capacity expansion results in significant sixteen-fold increase of wind and seven-fold increase in solar installations compared to 2023 levels by 2030 in South Africa.
Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments
Aug 2024
Publication
This paper navigates the critical role of hydrogen in catalyzing a sustainable energy transformation. This review delves into hydrogen production methodologies spotlighting green and blue hydrogen as pivotal for future energy systems because of their potential to significantly reduce greenhouse gas emissions. Through a comprehensive literature review and a bibliometric analysis this study underscores the importance of technological advancements policy support and market incentives in promoting hydrogen as a key energy vector. It also explores the necessity of expanding renewable energy sources and international cooperation to secure a sustainable low-carbon future. The analysis highlights the importance of scalable and cost-effective hydrogen production methods such as solar-thermochemical and photo-electrochemical processes and addresses the challenges posed by resource availability and geopolitical factors in establishing a hydrogen economy. This paper serves as a guide for policy and innovation toward achieving global sustainability goals illustrating the essential role of hydrogen in the energy transition.
New Development Paths through Green Hydrogen? An Ex-ante Assessment of Structure and Agency in Chile and Namibia
Jan 2025
Publication
Many developing countries seek to participate in the emerging global green hydrogen industry not only as exporters of green hydrogen and its derivatives to Europe and the Far East but also to use it for their own energy security and green transition. They hope that new development paths will lead to late-comer industrialisation. This article assesses corresponding prospects in Chile and Namibia two countries that pursue particularly ambitious plans on green hydrogen. To better understand the chances for path creation ex ante the authors draft an innovative framework that refers to context factors – that is structure – and three types of transformative agency. Against the backdrop of information from secondary sources and a series of expert interviews they uncover sound institutional reforms and initiatives of place-based leadership to promote the green hydrogen industry. However Chile and Namibia lack Schumpeterian entrepreneurship. It therefore remains to be seen whether new development paths will be inclusive contributing to in-country development. Typical downsides of extractive industries in resource peripheries might occur.
Life-cycle Carbon-intensity Mapping for Hydrogen-driven Energy and Economy
Aug 2024
Publication
Innovative approaches on clean alternative energy sources are important for future decarbonization. Electrification and hydrogen energy are crucial pathways for decarbonization in both transportation and buildings. However life-cycle stage-wise carbon intensity is still unclear for both hydrogen- and electricity-driven energy. Furthermore systematic evaluation on low-carbon transition pathways is insufficient specifically within the Internet of Energy that interfaces hydrogen and electricity. Here a generic approach is proposed for quantifying life-cycle stage-wise carbon intensity of both hydrogen- and electricity-driven energy internets. Life-cycle decarbonization effects on vehicle pathways are compared with traditional vehicles with internal-combustion engines. Techno-economic and environmental feasibility of the future advanced hydrogen-driven Internet of Energy is analyzed based on net present value. The region-wise carbon-intensity map and associated decarbonization strategies will help researchers and policymakers in promoting sustainable development with the hydrogen economy.
The UK Hydrogen Innovation Opportunity: Hydrogen Technology Roadmaps
Apr 2024
Publication
This report lays out roadmaps for the nine technology families identified in the UK Hydrogen Innovation Opportunity. The content in these roadmaps has been developed through a combination of extensive industrial engagement and aggregation of existing sector and technology roadmaps. This document also signposts to reports that highlight innovation challenges and opportunities for two underpinning technology families - materials and digital. The technology roadmaps in this document each include the following:
♦ UK and global market forecast for 2030 and 2050 for the respective technology family.
♦ Key technologies that make up the technology family.
♦ The associated innovation opportunities associated with each key technology together with development and industrialisation timelines and the sectors that will benefit from the innovation.
The list of innovation opportunities on each roadmap is by no means exhaustive but they are a sample that were selected because they highlighted some key innovation actions for the UK. To make this selection a range of factors were considered including global and UK economic demand the UK political imperative and UK potential to win market share. The development and industrialisation timelines are recommendations only and do not signify that this work is already planned or funded.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
♦ UK and global market forecast for 2030 and 2050 for the respective technology family.
♦ Key technologies that make up the technology family.
♦ The associated innovation opportunities associated with each key technology together with development and industrialisation timelines and the sectors that will benefit from the innovation.
The list of innovation opportunities on each roadmap is by no means exhaustive but they are a sample that were selected because they highlighted some key innovation actions for the UK. To make this selection a range of factors were considered including global and UK economic demand the UK political imperative and UK potential to win market share. The development and industrialisation timelines are recommendations only and do not signify that this work is already planned or funded.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
Strategic Public Relations Policy for Accelerating Hydrogen Acceptance: Insights from an Expert Survey in South Korea
Aug 2024
Publication
Hydrogen has great growth potential due to its green carbon-neutral nature but public acceptance is low due to negative perceptions of the dangers associated with hydrogen energy. Safety concerns particularly related to its flammability and explosiveness are an obstacle to hydrogen energy policy. In South Korea recent hydrogen-related explosions have exacerbated these concerns undermining public confidence. This study developed public relations (PR) strategies to manage risk perception and promote hydrogen energy acceptance by analyzing the opinions of government officials and experts using SWOT factors the TOWS matrix and the analytic hierarchy process. The findings highlight the importance of addressing weaknesses and threats in PR efforts. Key weaknesses include Korea’s technological lag and the low localization of core hydrogen technologies both of which hinder competitiveness and negatively impact public perception of hydrogen energy. Notable threats include deteriorating energy dependency and expanding global carbon regulations. This information can be used to influence attitudes and foster public acceptance of hydrogen energy policies. Emphasizing weaknesses and threats may result in more effective PR strategies even if they do not directly address the primary concerns of scientific experts. The persuasive insights identified in this study can support future policy communication and PR strategies.
2021 Education & Training Report
Jul 2021
Publication
Purpose: The Training section of the Education and Training module of the FCHO offers a repository of training available in Europe. In addition to the training programmes Educational materials which are publicly accessible online are also available to access on the FCHO. https://www.fchobservatory.eu/observatory/education-and-training Scope: The training courses are displayed by location within a map and users can explore the data by selecting the type of training of interest. Two additional filters on the language and the focus of the training are available to refine the search according to user needs. Users of the online tool can be students professionals and individuals wishing to learn and be trained on FCH. To complement this mapping a repository of online resources is accessible on the FCHO. Users may retrieve reliable materials available for self-learning. Key Findings: Master programmes and professional training courses were the most mapped categories. There is a prevalence of training courses offered by Western European countries in the mapping. The majority of the training courses mapped are targeted at technicians engineers and doctorate. For Bachelor and Master programmes FCH is more often an element integrated in a programme than its main focus. “Hydrogen Production” and “Hydrogen end-uses: transports” were the most selected focus of courses among the 11 categories proposed. “Regulations Codes and Standards” was the least selected focus with only one training out of five tackling these aspects. Professional training is more often focusing on end-uses and safety than Master programmes. Master programmes put a strong emphasis on “Basic electrochemistry” “Hydrogen production”. European projects are the main source for publicly accessible materials to learn on FCH. Most of the materials listed are available in English. “Hydrogen End-Uses” is the focus category the most common in the materials listed.
Everything About Hydrogen Podcast: 'Having Hydrogen for Breakfast, Lunch and Dinner'
Apr 2023
Publication
On today’s show Chris Patrick and Alicia speak with Petra Schwager from UNIDO about her work promoting global green hydrogen development with particular emphasis on the Global South.
The podcast can be found on their website.
The podcast can be found on their website.
2021 Technology & Markets Report
Jul 2021
Publication
Purpose: The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. https://www.fchobservatory.eu/observatory/technology-and-market Scope: Fuel cell shipment data is presented on a global basis. Other sections of the technology and market chapter (HRS data and FCEV data) are presented on a European basis. The report spans January 2020 – December 2020. Key Findings: COVID-19 has without doubt impacted the deployment of fuel cells and hydrogen in 2020 compared to industry expectations: Global Fuel Cell shipments > 1.3 GW Europe Fuel Cell shipments up to 148.6 MW Europe HRS in operation or under construction 162 FCEVs up 41% to 2774
Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia
Oct 2023
Publication
About 95% of current hydrogen production uses technologies involving primary fossil resources. A minor part is synthesized by low-carbon and close-to-zero-carbon-footprint methods using RESs. The significant expansion of low-carbon hydrogen energy is considered to be a part of the “green transition” policies taking over in technologically leading countries. Projects of hydrogen synthesis from natural gas with carbon capture for subsequent export to European and Asian regions poor in natural resources are considered promising by fossil-rich countries. Quality changes in natural resource use and gas grids will include (1) previously developed scientific groundwork and production facilities for hydrogen energy to stimulate the use of existing natural gas grids for hydrogen energy transport projects; (2) existing infrastructure for gas filling stations in China and Russia to allow the expansion of hydrogen-fuel-cell vehicles (HFCVs) using typical “mini-plant” projects of hydrogen synthesis using methane conversion technology; (3) feasibility testing for different hydrogen synthesis plants at medium and large scales using fossil resources (primarily natural gas) water and atomic energy. The results of this study will help focus on the primary tasks for quality changes in natural resource and gas grid use. Investments made and planned in hydrogen energy are assessed.
The Role of Negative Emissions Technologies in the UK's Net-zero Strategy
Jun 2024
Publication
The role of negative emissions technologies (NETs) in climate change mitigation remains contentious. Although numerous studies indicate significant carbon dioxide removal (CDR) requirements for Paris Agreement mitigation goals to be achieved others point out challenges and risks associated with high CDR strategies. Using a multiscale modeling approach we explore NETs’ potential for a single country the United Kingdom (UK). Here we report that the UK has cost-effective potential to remove 79 MtCO2 per year by 2050 rising to 126–134 MtCO2 per year with well-integrated NETs in industrial clusters. Results highlight that biomass gasification for hydrogen generation with CCS is emerging as a key NET despite biomass availability being a limiting factor. Moreover solid DACCS systems utilizing industrial waste heat integration offer a solution to offsetting increases in demand from transportation and industrial sectors. These results emphasize the importance of a multiscale whole-systems assessment for integrating NETs into industrial strategies.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants
Mar 2023
Publication
This paper uses established and recently introduced methods from the applied mathematics and statistics literature to study trends in the end-use sector and the capacity of low-carbon hydrogen projects in recent and upcoming decades. First we examine distributions in plants over time for various end-use sectors and classify them according to metric discrepancy observing clear similarity across all industry sectors. Next we compare the distribution of usage sectors between different continents and examine the changes in sector distribution over time. Finally we judiciously apply several regression models to analyse the association between various predictors and the capacity of global hydrogen projects. Across our experiments we see a welcome exponential growth in the capacity of zero-carbon hydrogen plants and significant growth of new and planned hydrogen plants in the 2020’s across every sector.
Just Trade-offs in a Net-zero Transition and Social Impact Assessment
Apr 2024
Publication
Countries around the world are prioritising net zero emissions to meet their Paris Agreement goals. The demand for social impact assessment (SIA) is likely to grow as this transition will require investments in decarbonisation projects with speed and at scale. There will be winners and losers of these projects because not everyone benefits the same; and hence trade-offs are inevitable. SIAs therefore should focus on understanding how the risks and benefits will be distributed among and within stakeholders and sectors and enable the identification of trade-offs that are just and fair. In this study we used a hypothetical case of large-scale hydrogen production in regional Australia and engaged with multi-disciplinary experts to identify justice issues in transitioning to such an industry. Using Rawlsian theory of justice as fairness we identified several tensions between different groups (national regional local inter and intra-communities) and sectors (environmental and economic) concerning the establishment of a hydrogen industry. These stakeholders and sectors will be disproportionately affected by this establishment. We argue that Rawlsian principles of justice would enable the practice of SIA to identify justice trade-offs. Further we conceptualise that a systems approach will be critical to facilitate a wider participation and an agile process for achieving just trade-offs in SIA.
On the Future Relevance of Green Hydrogen in Europe
Jan 2024
Publication
Hydrogen is among the energy carriers which are most often considered for bringing about a sustainable energy system. Yet so far hydrogen has not delivered as an energy carrier. The core objective of this paper is to provide a comprehensive analysis of the state-of-the-art and the future prospects of green hydrogen in the European energy system from economic energetic and CO2 emissions point-of-view. The analysis shows that there are some increasing opportunities for hydrogen use in industry and in the transport sector when electrification is not possible or is too expensive as well as a storage in the European electricity system. However a hydrogen-based energy system will remain a vision at least over the next decades. The major reason for this is the unfavorable economics mostly due to high investment costs in the whole supply chain. In addition the overall efficiencies in the hydrogen chains are moderate in general. The full environmental benignity of hydrogen as an energy carrier is only provided when renewable energy sources are used for hydrogen production. However in Europe the potentials for green hydrogen are very limited due to the insufficient expansion of renewable electricity generation. For this reason many European countries are considering options for green hydrogen import. The future of hydrogen is highly dependent on the supporting policy framework. To reduce the risk in the investment in hydrogen infrastructure as well as to justify the promotion of green hydrogen it is very important that Europe works out a very clear and realistic long-term implementation strategy.
Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies
Apr 2023
Publication
Green hydrogen is set to become the energy carrier of the future provided that production technologies such as electrolysis and solar water splitting can be scaled to global dimensions. Testing these hydrogen technologies on the MW scale requires the development of dedicated new test facilities for which there is no precedent. This perspective highlights the challenges to be met on the path to implementing a test facility for large-scale water electrolysis photoelectrochemical and photocatalytic water splitting and aims to serve as a much-needed blueprint for future test facilities based on the authors’ own experience in establishing the Hydrogen Lab Leuna. Key aspects to be considered are the electricity and utility requirements of the devices under testing the analysis of the produced H2 and O2 and the safety regulations for handling large quantities of H2 . Choosing the right location is crucial not only for meeting these device requirements but also for improving financial viability through supplying affordable electricity and providing a remunerated H2 sink to offset the testing costs. Due to their lower TRL and requirement for a light source large-scale photocatalysis and photoelectrochemistry testing are less developed and the requirements are currently less predictable.
2021 EU and National Policies Report
Jul 2021
Publication
Purpose: The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. https://www.fchobservatory.eu/observatory/policy-and-rcs/eu-policies https://www.fchobservatory.eu/index.php/observatory/policy-and-rcs/nationalpolicies Scope: While FCHO covers 38 entities around the world due to the unavailability of some data at the time of writing this report covers 34 entities. The report reflects data collected January 2021 – May 2021. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between Member States. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
2021 Standards Report
Jul 2021
Publication
Purpose: The standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. https://www.fchobservatory.eu/observatory/Policy-and-RCS/Standards Scope: This report presents the developments in European and international standards for the year 2020.Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2020; on a European level many standards are still in the process of being drafted. In 2020 12 new standards have been published mainly on the subject of fuel cell technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. Previous Reports The first report was published in September 2020. This report is the 2nd Annual report.
A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades
Dec 2022
Publication
Arguably one of the most important issues the world is facing currently is climate change. At the current rate of fossil fuel consumption the world is heading towards extreme levels of global temperature rise if immediate actions are not taken. Transforming the current energy system from one largely based on fossil fuels to a carbon-neutral one requires unprecedented speed. Based on the current state of development direct electrification of the future energy system alone is technically challenging and not enough especially in hard-to-abate sectors like heavy industry road trucking international shipping and aviation. This leaves a considerable demand for alternative carbon-neutral fuels such as green ammonia and hydrogen and renewable methanol. From this perspective we discuss the overarching roles of each fuel in reaching net zero emission within the next three decades. The challenges and future directions associated with the fuels conclude the current perspective paper.
A Flexible Techno-economic Analysis Tool for Regional Hydrogen Hubs - A Case Study for Ireland
Apr 2023
Publication
The increasing urgency with which climate change must be addressed has led to an unprecedented level of interest in hydrogen as a clean energy carrier. Much of the analysis of hydrogen until this point has focused predominantly on hydrogen production. This paper aims to address this by developing a flexible techno-economic analysis (TEA) tool that can be used to evaluate the potential of future scenarios where hydrogen is produced stored and distributed within a region. The tool takes a full year of hourly data for renewables availability and dispatch down (the sum of curtailment and constraint) wholesale electricity market prices and hydrogen demand as well as other user-defined inputs and sizes electrolyser capacity in order to minimise cost. The model is applied to a number of case studies on the island of Ireland which includes Ireland and Northern Ireland. For the scenarios analysed the overall LCOH ranges from V2.75e3.95/kgH2. Higher costs for scenarios without access to geological storage indicate the importance of cost-effective storage to allow flexible hydrogen production to reduce electricity costs whilst consistently meeting a set demand.
Is Greece Ready for a Hydrogen Energy Transition?—Quantifying Relative Costs in Hard to Abate Industries
Apr 2024
Publication
During the past few years hydrogen use has come to be considered as an alternative energy carrier in a future decarbonized world. Many developed nations are undergoing a shift towards low-carbon energy sources driven by the excessive reliance on fossil fuels and the detrimental effects of climate change. This study aims to investigate the potential for hydrogen deployment in the Greek energy market during the next few decades. In this context green hydrogen’s potential application in the Greek market is being assessed employing an integrated techno-economic model grounded in worldwide trends and localized expenses. The forthcoming years will see an analysis of both the challenges and opportunities surrounding the integration and implementation of hydrogen in new and existing processes within Greece. Many alternative ways to produce hydrogen in Greece are investigated contemplating different production paths. We evaluate how fluctuations in hydrogen oil and carbon prices affect the economics of green hydrogen adoption in oil refining as is detailed in the draft of the European Union delegated act published in May 2022. The Levelized Cost of Hydrogen (LCOH) for different scenarios is calculated for the time frame up until 2050. A sensitivity analysis reveals that investment costs electricity prices electrolyzer efficiency and carbon taxes significantly influence the LCOH ultimately impacting the economic competitiveness of hydrogen production. These findings underscore the importance of aligning public–private partnership agendas in hydrogen production to create optimal conditions for investment attraction and development.
Renewable Heating and Cooling Pathways - Towards Full Decarbonisation by 2050
Feb 2023
Publication
With the adoption of the EU Climate Law in 2021 the EU has set itself a binding target to achieve climate neutrality by 2050 and to reduce greenhouse gas emissions by 55 percent compared to 1990 levels by 2030. To support the increased ambition the EU Commission adopted proposals for revising the key directives and regulations addressing energy efficiency renewable energies and greenhouse gas emissions in the Fit for 55 package. The heating and cooling (H&C) sector plays a key role for reaching the EU energy and climate targets. H&C accounts for about 50 percent of the final energy consumption in the EU and the sector is largely based on fossil fuels. In 2021 the share of renewable energies in H&C reached 23%.
What Does the Public Know About Technological Solutions for Achieving Carbon Neutrality? Citizens' Knowledge of Energy Transition and the Role of Media
Aug 2023
Publication
The present study explores the relation between media use and knowledge in the context of the energy transition. To identify relevant knowledge categories we relied on the expertise of an interdisciplinary research team. Based on this expertise we identified awareness-knowledge of changes in the energy system and principles-knowledge of hydrogen as important knowledge categories. With data obtained from a nationwide online survey of the German-speaking population (n = 2025) conducted in August 2021 we examined the level of knowledge concerning both categories in the German population. Furthermore we studied its associations with exposure to journalistic media and direct communication from non-media actors (e.g. scientists). Our results revealed a considerable lack of knowledge for both categories. Considering the media variables we found only weak and in some cases even negative relations with the use of journalistic media or other actors that spread information online. However we found comparably strong associations between both knowledge categories and the control variables of sex education and personal interest. We use these results to open up a general discussion of the role of the media in knowledge acquisition processes.
Assessment of the Green Hydrogen Value Chain in Cases of the Local Industry in Chile Applying an Optimization Model
May 2024
Publication
This study assessed the feasibility of integrating a green hydrogen value chain into the local industry examining two case studies by comparing four scenarios. The optimization focused on generating electricity from stationary renewable sources such as solar or through Power Purchase Agreements to produce sufficient hydrogen in electrolyzers. Current demand profiles renewable participation targets electricity supply sources levelized costs of energy and hydrogen and technology options were considered. The most cost-effective scenario showed a levelized cost of energy of 0.032 and 0.05 US$/kWh and a hydrogen cost below 1.0 US$/kgH2 for cases 1 and 2 respectively. A sensitivity analysis highlighted the critical influence of fuel cell technology on cost modification underscoring the importance of focusing cost reduction strategies on these technologies to enhance the economic viability of the green hydrogen value chain. Specifically a high sensitivity towards reducing the levelized costs of energy and hydrogen in the port sector with adjustments in fuel cell technology costs was identified indicating the need for specific policies and supports to facilitate their adoption.
The Impact of the Russian War against Ukraine on the German Hydrogen Discourse
Jan 2024
Publication
This contribution delves into the transformative effects of the Russian–Ukrainian war on the discourse surrounding German hydrogen. Employing structural topical modeling (STM) on a vast dataset of 2192 newspaper articles spanning from 2019 to 2022 it aims to uncover thematic shifts attributed to the Russian invasion of Ukraine. The onset of the war in February 2022 triggered a significant pivot in the discourse shifting it from sustainability and climate-change mitigation to the securing of energy supplies through new partnerships particularly in response to Russia’s unreliability. Germany started exploring alternative energy trading partners like Canada and Australia emphasizing green hydrogen development. The study illustrates how external shocks can expedite the uptake of new technologies. The adoption of the “H2 readiness” concept for LNG terminals contributes to the successful implementation of green hydrogen. In summary the Russian–Ukrainian war profoundly impacted the German hydrogen discourse shifting the focus from sustainability to energy supply security underscoring the interconnectedness of energy security and sustainability in Germany’s hydrogen policy.
Impacts of Green Hydrogen for Steel, Ammonia, and Long-distance Transport on the Cost of Meeting Electricity, Heat, Cold, and Hydrogen Demand in 145 Countries Running on 100% Wind-water-solar
May 2023
Publication
As the world moves to clean renewable energy questions arise as to how best to produce and use hydrogen. Here we propose using hydrogen produced only by electrolysis with clean renewable electricity (green hydrogen). We then test the impact of producing such hydrogen intermittently versus continuously for steel and ammonia manufacturing and long-distance transport via fuel cells on the cost of matching electricity heat cold and hydrogen demand with supply and storage on grids worldwide. An estimated 79 32 and 91 Tg-H2/y of green hydrogen are needed in 2050 among 145 countries for steel ammonia and long-distance transport respectively. Producing and compressing such hydrogen for these processes may consume ~12.1% of the energy needed for end-use sectors in these countries after they transition to 100% wind-water-solar (WWS) in all such sectors. This is less than the energy needed for fossil fuels to power the same processes. Due to the variability of WWS electricity producing green hydrogen intermittently rather than continuously thus with electrolyzer use factors significantly below unity (0.2–0.65) may reduce overall energy costs with 100% WWS. This result is subject to model uncertainties but appears robust. In sum grid operators should incorporate intermittent green hydrogen production and use in planning.
Tapping the Conversation on the Meaning of Decarbonization: Discourses and Discursive Agency in EU Politics on Low-Carbon Fuels for Maritime Shipping
Jun 2024
Publication
EU politics on decarbonizing shipping is an argumentative endeavor where different policy actors strive try to influence others to see problems and policy solutions according to their perspectives to gain monopoly on the framing and design of policies. This article critically analyzes by means of argumentative discourse analysis the politics and policy process related to the recent adoption of the FuelEU Maritime regulation the world’s first legislation to set requirements for decarbonizing maritime shipping. Complementing previous research focusing on the roles and agency of policy entrepreneurs and beliefs of advocacy coalitions active in the policy process this paper dives deeper into the politics of the new legislation. It aims to explore and explain the discursive framing and politics of meaning-making. By analyzing the political and social meaning-making of the concept “decarbonizing maritime shipping” this paper helps us understand why the legislation was designed in the way it was. Different narratives storylines and discourses defining different meanings of decarbonization are analyzed. So is the agency of policy actors trying to mutate the different meanings into a new meaning. Two discourses developed in dialectic conversation framed the policy proposals and subsequent debates in the policy process focusing on (i) incremental change and technology neutrality to meet moderate emission reductions and maintain competitiveness and (ii) transformative change and technology specificity to meet zero emissions and gain competitiveness and global leadership in the transition towards a hydrogen economy. Policy actors successfully used discursive agency strategies such as multiple functionality and vagueness to navigate between and resolve conflicts between the two discourses. Both discourses are associated with the overarching ecological modernization discourse and failed to include issue of climate justice and a just transition. The heritage of the ecological modernization discourse creates lock-ins for a broader decarbonization discourse thus stalling a just transition.
Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review
Sep 2023
Publication
Globally a green hydrogen economy rush is underway and many companies investors governments and environmentalists consider it as an energy source that could foster the global energy transition. The enormous potential for hydrogen production for domestic use and export places Africa in the spotlight in the green hydrogen economy discourse. This discourse remains unsettled regarding how natural resources such as land and water can be sustainably utilized for such a resource-intensive project and what implications this would have. This review argues that green hydrogen production (GHP) in Africa has consequences where land resources (and their associated natural resources) are concerned. It discusses the current trends in GHP in Africa and the possibilities for reducing any potential pressures it may put on land and other resource use on the continent. The approach of the review is interpretive and hinges on answering three questions concerning the what why and how of GHP and its land consequences in Africa. The review is based on 41 studies identified from Google Scholar and sources identified via snowballed recommendations from experts. The GHP implications identified relate to land and water use mining-related land stress and environmental ecological and land-related socioeconomic consequences. The paper concludes that GHP may not foster the global energy transition as is being opined by many renewable energy enthusiasts but rather could help foster this transition as part of a greener energy mix. It notes that African countries that have the potential for GHP require the institutionalization of or a change in their existing approaches to land-related energy governance systems in order to achieve success.
How Can Green Hydrogen from North Africa Support EU Decarbonization? Scenario Analyses on Competitive Pathways for Trade
Jul 2024
Publication
The carbon-neutrality target set by the European Union for 2050 drives the increasing relevance of green hydrogen as key player in the energy transition. This work uses the JRC-EU-TIMES energy system model to assess opportunities and challenges for green hydrogen trade from North Africa to Europe analysing to what extent it can support its decarbonization. An important novelty is addressing uncertainty regarding hydrogen economy development. Alternative scenarios are built considering volumes available for import production costs and transport options affecting hydrogen cost-effectiveness. Both pipelines and ships are modelled assuming favourable market conditions and pessimistic ones. From 2040 on all available North African hydrogen is imported regardless of its costs. In Europe this imported hydrogen is mainly converted into synfuels and heat. The study aims to support policymakers to implement effective strategies focusing on the crucial role of green hydrogen in the decarbonization process if new competitive cooperations are developed.
Are Green and Blue Hydrogen Competitive or Complementary? Insights from a Decarbonised European Power System Analysis
Jun 2023
Publication
Hydrogen will be important in decarbonized energy systems. The primary ways to produce low emission hydrogen are from renewable electricity using electrolyzers called green hydrogen and by reforming natural gas and capturing and storing the CO2 known as blue hydrogen. In this study the degrees to which blue and green hydrogen are complementary or competitive are analyzed through a sensitivity analysis on the electrolyzer costs and natural gas price. This analysis is performed on four bases: what is the cost-effective relative share between blue and green hydrogen deployment how their deployment influences the price of hydrogen how the price of CO2 changes with the deployment of these two technologies and whether infrastructure can economically be shared between these two technologies. The results show that the choice of green and blue hydrogen has a tremendous impact where an early deployment of green leads to higher hydrogen costs and CO2 prices in 2030. Allowing for blue hydrogen thus has notable benefits in 2030 giving cheaper hydrogen with smaller wider socioeconomic impacts. In the long term these competitive aspects disappear and green and blue hydrogen can coexist in the European market without negatively influencing one another.
Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering
Apr 2024
Publication
The main results highlighted in this article underline the critical significance of hydrogen technologies in the move towards carbon neutrality. This research focuses on several key areas including the production storage safety and usage of hydrogen alongside innovative approaches for assessing hydrogen purity and production-related technologies. This study emphasizes the vital role of hydrogen storage technology for the future utilization of hydrogen as an energy carrier and the advancement of technologies that facilitate effective safe and cost-efficient hydrogen storage. Furthermore bibliometric analysis has been instrumental in identifying primary research fields such as hydrogen storage hydrogen production efficient electrocatalysts rotary engines utilizing hydrogen as fuel and underground hydrogen storage. Each domain is essential for realizing a sustainable hydrogen economy reflecting the significant research and development efforts in hydrogen technologies. Recent trends have shown an increased interest in underground hydrogen storage as a method to enhance energy security and assist in the transition towards sustainable energy systems. This research delves into the technical economic and environmental facets of employing geological formations for large-scale seasonal and long-term hydrogen storage. Ultimately the development of hydrogen technologies is deemed crucial for meeting sustainable development goals particularly in terms of addressing climate change and reducing greenhouse gas emissions. Hydrogen serves as an energy carrier that could substantially lessen reliance on fossil fuels while encouraging the adoption of renewable energy sources aiding in the decarbonization of transport industry and energy production sectors. This in turn supports worldwide efforts to curb global warming and achieve carbon neutrality.
Economic and Environmental Assessment of Different Hydrogen Production and Transportation Modes
Apr 2024
Publication
Hydrogen is widely considered as the energy carrier of the future but the rather high energy losses for its production are often neglected. The major current hydrogen production technology is steam methane reforming of fossil gas but there is a growing interest in producing hydrogen sustainably from water using electrolysis. This article examines four main hydrogen production chains and two transportation options (pipeline and ship) from North Africa to Europe analyzing the costs and environmental impacts of each. The core objective is to determine the most promising hydrogen provision method and location from an economic and ecological point of view including the required transport. An important finding of this analysis is that both options importing green hydrogen and producing it in Europe may be relevant for a decarbonized energy system. The emphasis should be on green hydrogen to achieve carbon emission reductions. If blue hydrogen is also considered attention should be paid to the often-neglected methane emissions upstream.
Towards a Unified Theory of Domestic Hydrogen Acceptance: An Integrative, Comparative Review
Dec 2023
Publication
Hydrogen energy technologies are envisioned to play a critical supporting role in global decarbonisation. While low-carbon hydrogen is primarily targeted for reducing industrial emissions alongside decarbonising parts of the transport sector environmental benefits could also be achieved in the residential context. Presently gasdependent countries such as Japan and the United Kingdom are assessing the feasibility of deploying hydrogen home appliances as part of their national energy strategies. However prospects for the transition will hinge on consumer acceptance alongside an array of other socio-technical factors. To support potential ambitions for large-scale and sustained technology diffusion this study advances a Unified Theory of Domestic Hydrogen Acceptance. Through an integrative comparative literature review targeting hydrogen and domestic energy studies the paper proposes a novel Domestic Hydrogen Acceptance Model (DHAM) which accounts for the cognitive and emotional dimensions of human perceptions. Through this dual interplay the proposed framework can increase the predictive power of hydrogen acceptance models.
Merging the Green-H2 Production with Carbon Recycling for Stepping Towards the Carbon Cyclic Economy
Jan 2024
Publication
Hydrogen Economy and Cyclic Economy are advocated together with the use of perennial (solar wind hydro geo-power SWHG) and renewable (biomass) energy sources for defossilizing anthropic activities and mitigating climate change. Each option has intrinsic limits that prevent a stand-alone success in reaching the target. Humans have recycled goods (metals water paper and now plastics) to a different extent since very long time. Recycling carbon (which is already performed at the industrial level in the form of CO2 utilization and with recycling paper and plastics) is a key point for the future. The conversion of CO2 into chemicals and materials is carried out since the late 1800s (Solvay process) and is today performed at scale of 230 Mt/y. It is time to implement on a scale of several Gt/y the conversion of CO2 into energy products possibly mimicking Nature which does not use hydrogen. In the short term a few conditions must be met to make operative on a large scale the production of fuels from recycled-C namely the availability of low-cost: i. abundant pure concentrated streams of CO2 ii. non-fossil primary energy sources and iii. non-fossil-hydrogen. The large-scale production of hydrogen by Methane Steam Reforming with CO2 capture (Blue-H2) seems to be a realistic and sustainable solution. Green-H2 could in principle be produced on a large scale through the electrolysis of water powered by perennial primary sources but hurdles such as the availability of materials for the construction of long-living robust electrochemical cells (membranes electrodes) must be abated for a substantial scale-up with respect to existing capacity. The actual political situation makes difficult to rely on external supplies. Supposed that cheap hydrogen will be available its direct use in energy production can be confronted with the indirect use that implies the hydrogenation of CO2 into fuels (E-fuels) an almost ready technology. The two strategies have both pros and cons and can be integrated. E-Fuels can also represent an option for storing the energy of intermittent sources. In the medium-long term the direct co-processing of CO2 and water via co-electrolysis may avoid the production/transport/ use of hydrogen. In the long term coprocessing of CO2 and H2O to fuels via photochemical or photoelectrochemical processes can become a strategic technology.
Which Is Preferred between Electric or Hydrogen Cars for Carbon Neutrality in the Commercial Vehicle Transportation Sector of South Korea? Implications from a Public Opinion Survey
Feb 2024
Publication
South Korea has drawn up plans to reduce greenhouse gases by 29.7 million tons by supplying 4.5 million electric and hydrogen cars by 2030 to implement the “2050 carbon neutrality” goal. This article gathers data on public preferences for electric cars (ECs) over hydrogen cars (HCs) in the commercial vehicle transportation sector through a survey of 1000 people. Moreover the strength of the preference was evaluated on a five-point scale. Of all respondents 60.0 percent preferred ECs and 21.0 percent HCs the former being 2.86 times greater than the latter. On the other hand the strength of the preference for HCs was 1.42 times greater than that for ECs. Factors influencing the preference for ECs over HCs were also explored through adopting the ordered probit model which is useful in examining ordinal preference rather than cardinal preference. The analyzed factors which are related to respondents’ characteristics experiences and perceptions can be usefully employed for developing strategies of promoting carbon neutrality in the commercial vehicle transportation sector and preparing policies to improve public acceptance thereof.
Life Cycle Costing Approaches of Fuel Cell and Hydrogen Systems: A Literature Review
Apr 2023
Publication
Hydrogen is a versatile energy carrier which can be produced from variety of feedstocks stored and transported in various forms for multi-functional end-uses in transportation energy and manufacturing sectors. Several regional national and supra-national climate policy frameworks emphasize the need value and importance of Fuel cell and Hydrogen (FCH) technologies for deep and sector-wide decarbonization. Despite these multi-faceted advantages familiar and proven FCH technologies such as alkaline electrolysis and proton-exchange membrane fuel cell (PEMFC) often face economic technical and societal barriers to mass-market adoption. There is no single unified standardized and globally harmonized normative definition of costs. Nevertheless the discussion and debates surrounding plausible candidates and/or constituents integral for assessing the economics and value proposition of status-quo as well as developmental FCH technologies are steadily increasing—Life Cycle Costing (LCC) being one of them if not the most important outcome of such exercises.<br/>To that end this review article seeks to improve our collective understanding of LCC of FCH technologies by scrutinizing close to a few hundred publications drawn from representative databases—SCOPUS and Web of Science encompassing several tens of technologies for production and select transportation storage and end-user utilization cases. This comprehensive review forms part of and serves as the basis for the Clean Hydrogen Partnership funded SH2E project whose ultimate goal is the methodical development a formal set of principles and guardrails for evaluating the economic environmental and social impacts of FCH technologies. Additionally the SH2E projects will also facilitate the proper comparison of different FCH technologies whilst reconciling range of technologies methodologies modelling assumptions and parameterization found in existing literature.
The Industry Transformation from Fossil Fuels to Hydrogen will Reorganize Value Chains: Big Picture and Case Studies for Germany
Jan 2024
Publication
In many industries low-carbon hydrogen will substitute fossil fuels in the course of the transformation to climate neutrality. This paper contributes to understanding this transformation. This paper provides an overview of energy- and emission-intensive industry sectors with great potential to defossilize their production processes with hydrogen. An assessment of future hydrogen demand for various defossilization strategies in Germany that rely on hydrogen as a feedstock or as an energy carrier to a different extent in the sectors steel chemicals cement lime glass as well as pulp and paper is carried out. Results indicate that aggregate industrial hydrogen demand in those industries would range between 197 TWh and 298 TWh if production did not relocate abroad for any industry sector. The range for hydrogen demand is mainly due to differences in the extent of hydrogen utilization as compared to alternative transformation paths for example based on electrification. The attractiveness of production abroad is then assessed based on the prospective comparative cost advantage of relocating parts of the value chain to excellent production sites for low-carbon hydrogen. Case studies are provided for the steel industry as well as the chemical industry with ethylene production through methanol and the production of urea on the basis of ammonia. The energy cost of the respective value chains in Germany is then compared to the case of value chains partly located in regions with excellent conditions for renewable energies and hydrogen production. The results illustrate that at least for some processes – as ammonia production – relocation to those favorable regions may occur due to substantial comparative cost advantages.
Coupling Green Hydrogen Production to Community Benefits: A Pathway to Social Acceptance?
Feb 2024
Publication
Hydrogen energy technologies are forecasted to play a critical supporting role in global decarbonisation efforts as reflected by the growth of national hydrogen energy strategies in recent years. Notably the UK government published its Hydrogen Strategy in August 2021 to support decarbonisation targets and energy security ambitions. While establishing techno-economic feasibility for hydrogen energy systems is a prerequisite of the prospective transition social acceptability is also needed to support visions for the ‘hydrogen economy’. However to date societal factors are yet to be embedded into policy prescriptions. Securing social acceptance is especially critical in the context of ‘hydrogen homes’ which entails replacing natural gas boilers and hobs with low-carbon hydrogen appliances. Reflecting the nascency of hydrogen heating and cooking technologies the dynamics of social acceptance are yet to be explored in a comprehensive way. Similarly public perceptions of the hydrogen economy and emerging national strategies remain poorly understood. Given the paucity of conceptual and empirical insights this study develops an integrated acceptance framework and tests its predictive power using partial least squares structural equation modelling. Results highlight the importance of risk perceptions trust dynamics and emotions in shaping consumer perceptions. Foremost prospects for deploying hydrogen homes at scale may rest with coupling renewable-based hydrogen production to local environmental and socio-economic benefits. Policy prescriptions should embed societal factors into the technological pursuit of large-scale sustainable energy solutions to support socially acceptable transition pathways.
Strategic Analysis of Hydrogen Market Dynamics Across Collaboration Models
Oct 2024
Publication
The global energy landscape is experiencing a transformative shift with an increasing emphasis on sustainable and clean energy sources. Hydrogen remains a promising candidate for decarbonization energy storage and as an alternative fuel. This study explores the landscape of hydrogen pricing and demand dynamics by evaluating three collaboration scenarios: market-based pricing cooperative integration and coordinated decision-making. It incorporates price-sensitive demand environmentally friendly production methods and market penetration effects to provide insights into maximizing market share profitability and sustainability within the hydrogen industry. This study contributes to understanding the complexities of collaboration by analyzing those structures and their role in a fast transition to clean hydrogen production by balancing economic viability and environmental goals. The findings reveal that the cooperative integration strategy is the most effective for sustainable growth increasing green hydrogen’s market share to 19.06 % and highlighting the potential for environmentally conscious hydrogen production. They also suggest that the coordinated decision-making approach enhances profitability through collaborative tariff contracts while balancing economic viability and environmental goals. This study also underscores the importance of strategic pricing mechanisms policy alignment and the role of hydrogen hubs in achieving sustainable growth in the hydrogen sector. By highlighting the uncertainties and potential barriers this research offers actionable guidance for policymakers and industry players in shaping a competitive and sustainable energy marketplace.
Brazil’s New Green Hydrogen Industry: An Assessment of Its Macroeconomic Viability Through an Input–Output Approach
Dec 2024
Publication
This manuscript explores the role of green hydrogen produced through ethanol reforming in accelerating Brazil’s transition to a low-carbon economic framework. Despite ongoing efforts to lessen carbon dependence Brazil’s reliance on biofuels and other renewable energy sources remains inadequate for fully achieving its decarbonization objectives. Green hydrogen presents a vital opportunity to boost energy sustainability especially in sectors that are challenging to decarbonize such as industry and transportation. By analyzing Brazil’s input–output (I-O) table using data from the Brazilian Institute of Geography and Statistics (IBGE) this study evaluates the macroeconomic potential of green hydrogen focusing on GDP growth and employment generation. Furthermore the research explores green hydrogen systems’ economic feasibility and potential impact on future energy policies offering valuable insights for stakeholders and decision-makers. In addition this investigation highlights Brazil’s abundant renewable resources and identifies the infrastructural investments necessary to support a green hydrogen economy. The findings aim to strengthen Brazil’s national decarbonization strategy and serve as a model for other developing nations transitioning to clean energy.
Optimal RES Integration for Matching the Italian Hydrogen Strategy Requirements
Oct 2023
Publication
In light of the Italian Hydrogen Roadmap goals the 2030 national RES installation targets need to be redefined. This work aims to propose a more appropriate RES installation deployment on national scale by matching the electrolysers capacity and the green hydrogen production goals. The adopted approach envisages the power-to-gas value chain priority for the green hydrogen production as a means of balancing system. Thus the 2030 Italian energy system has been modelled and several RES installation scenarios have been simulated via EnergyPLAN software. The simulation outputs have been integrated with a breakdown model for the overgeneration RES share detection in compliance with the PV dispatching priority of the Italian system. Therefore the best installation solutions have been detected via multi-objective optimization model based on the green hydrogen production additional installation cost critical energy excess along with the Levelized Cost of Hydrogen (LCOH). Higher wind technology installations provide more competitive energy and hydrogen costs. The most suitable scenarios show that the optimal LCOH and hydrogen production values respectively equal to 3.6 €/kg and 223 ktonH2 arise from additional PV/wind installations of 35 GW on top of the national targets.
Techno-economic and Environmental Assessment of Renewable Hydrogen Import Routes from Overseas in 2030
Dec 2024
Publication
Converting renewable electricity via water electrolysis into green hydrogen and hydrogen-based products will shape a global trade in power-to-x (PtX) products. The European Union's renewable hydrogen import target of 10 million tonnes by 2030 reflects the urgent need for PtX imports by sea to early high-demand countries like Germany. This study evaluates the cost efficiency and greenhouse gas (GHG) emissions of four hydrogen carrier ship import options considering a reconversion to H2 at the import terminal for a final delivery to offtakers via a H2 pipeline network in 2030. This includes ammonia a liquid organic hydrogen carrier (LOHC) system based on benzyltoluene (BT) and a novel CO2/e-methane and CO2/e-methanol cycle where CO2 is captured at the reconversion plant and then shipped back to the PtX production site in a nearly closed carbon loop. The GHG emission accounting includes well-to-wake emissions of the marine fuels and direct emissions of the carbon capture plant. Two GW-scale case studies reveal the impact of a short and long-distance route from Tunisia and Australia to Germany whereas the specific PtX carriers are either fuelled by its PtX cargo as a renewable marine fuel or by conventional heavy fuel oil (HFO). Ammonia outperforms the other PtX routes as the total hydrogen supply cost range between 5.07 and 7.69 for Australia (low: NH3 HFO high: LOHC HFO) and 4.78–6.21 € per kg H2 for Tunisia (low: NH3 HFO high: CH4 HFO) respectively. The ammonia routes achieve thereby GHG intensities of 31 % and 86 % below the EU threshold of 3.4 kg CO2(e) per kg H2 for renewable hydrogen. LOHC though unless switching to low-emission fuels and the CO2/e-methanol cycle exceed the GHG threshold at shipping distances of 12300 and 16600 km. The hydrogen supply efficiencies vary between 57.9 and 78.8 %LHV (low: CH4 PtX-fuelled high: NH3 HFO) with a PtX marine fuel consumption of up to 15 % LHV for the Australian methanol route whereas high uncertainties remain for the ammonia and methanol reconversion plant efficiencies. The CO2 cyle enables a cost-efficient CO2 supply easing the near-term shortage of climate-neutral CO2 sources at the cost of high GHG emissions for long-distance routes.
2022 Hydrogen Supply Capacity and Demand
Mar 2022
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to provide an overview of the hydrogen market in Europe and to track industry’s progress in deploying clean hydrogen technologies. Scope: Data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2020. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by refining and ammonia industries with four countries (DE NL PL ES) responsible for more than half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.42% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe
Apr 2023
Publication
This work investigates how to balance the electricity supply and demand in a carbon-neutral northern Europe. Applying a cost-minimizing electricity system model including options to invest in eleven different flexibility measures and cost-efficient combinations of strategies to manage variations were identified. The results of the model were post-processed using a novel method to map the net load before and after flexibility measures were applied to reveal the contribution of each flexibility measure. The net load was mapped in the space spanned by the amplitude duration and number of occurrences. The mapping shows that depending on cost structure flexibility measures contribute to reduce the net load in three different ways; (1) by reducing variations with a long duration but low amplitude (2) by reducing variations with a high amplitude but short duration and low occurrence or (3) by reducing variations with a high amplitude short duration and high occurrence. It was found that cost-efficient variation management was achieved by combining wind and solar power and by combining strategies (1–3) to manage the variations. The cost-efficient combination of strategies depends on electricity system context where electricity trade flexible hydrogen and heat production (1) manage the majority of the variations in regions with good conditions for wind power while stationary batteries (3) were the main contributors in regions with good conditions for solar power.
Establishment of Austria’s First Regional Green Hydrogen Economy: WIVA P&G HyWest
Apr 2023
Publication
The regional parliament of Tyrol in Austria adopted the climate energy and resources strategy “Tyrol 2050 energy autonomous” in 2014 with the aim to become climate neutral and energy autonomous. “Use of own resources before others do or have to do” is the main principle within this long-term strategic approach in which the “power on demand” process is a main building block and the “power-to-hydrogen” process covers the intrinsic lack of a long-term large-scale storage of electricity. Within this long-term strategy the national research and development (R&D) flagship project WIVA P&G HyWest (ongoing since 2018) aims at the establishment of the first sustainable business-case-driven regional green hydrogen economy in central Europe. This project is mainly based on the logistic principle and is a result of synergies between three ongoing complementary implementation projects. Among these three projects to date the industrial research within “MPREIS Hydrogen” resulted in the first green hydrogen economy. One hydrogen truck is operational as of January 2023 in the region of Tyrol for food distribution and related monitoring studies have been initiated. To fulfil the logistic principle as the main outcome another two complementary projects are currently being further implemented.
A Cost Comparison of Various Hourly-reliable and Net-zero Hydrogen Production Pathways in the United States
Nov 2023
Publication
Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors but to maximize emission reductions supplied hydrogen must be reliable low-emission and low-cost. Here we build a model that enables direct comparison of the cost of producing net-zero hourly-reliable hydrogen from various pathways. To reach net-zero targets we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California Texas and New York) model results indicate nextdecade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/ kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However when omitting the net-zero emission constraint and considering the U.S. regulatory environment electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.
U.S. National Clean Hydrogen Strategy and Roadmap
Jun 2023
Publication
The U.S. National Clean Hydrogen Strategy and Roadmap explores opportunities for clean hydrogen to contribute to national decarbonization goals across multiple sectors of the economy. It provides a snapshot of hydrogen production transport storage and use in the United States today and presents a strategic framework for achieving large-scale production and use of clean hydrogen examining scenarios for 2030 2040 and 2050.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
Multi-option Analytical Modeling of Levelised Costs Across Various Hydrogen Supply Chain Nodes
May 2024
Publication
Hydrogen is envisioned to become a fundamental energy vector for the decarbonization of energy systems. Two key factors that will define the success of hydrogen are its sustainability and competitiveness with alternative solutions. One of the many challenges for the proliferation of hydrogen is the creation of a sustainable supply chain. In this study a methodology aimed at assessing the economic feasibility of holistic hydrogen supply chains is developed. Based on the designed methodology a tool which calculates the levelized cost of hydrogen for the different stages of its supply chain: production transmission & distribution storage and conversion is proposed. Each stage is evaluated individually combining relevant technical and economic notions such as learning curves and scaling factors. Subsequently the findings from each stage are combined to assess the entire supply chain as a whole. The tool is then applied to evaluate case studies of various supply chains including large-scale remote and small-scale distributed green hydrogen supply chains as well as conventional steam methane reforming coupled with carbon capture and storage technologies. The results show that both green hydrogen supply chains and conventional methods can achieve a competitive LCOH of around €4/kg in 2030. However the key contribution of this study is the development of the tool which provides a foundation for a comprehensive evaluation of hydrogen supply chains that can be continuously improved through the inputs of additional users and further research on one or more of the interconnected stages.
Potential Economic Benefits of Carbon Dioxide (CO2) Reduction Due to Renewable Energy and Electrolytic Hydrogen Fuel Deployment Under Current and Long Term Forecasting of the Social Carbon Cost (SCC)
May 2019
Publication
The 2016 Paris Agreement (UNFCCC Authors 2015) is the latest of initiative to create an international consensus on action to reduce GHG emissions. However the challenge of meeting its targets lies mainly in the intimate relationship between GHG emissions and energy production which in turn links to industry and economic growth. The Middle East and North African region (MENA) particularly those nations rich oil and gas (O&G) resources depend on these as a main income source. Persuading the region to cut down on O&G production or reduce its GHG emissions is hugely challenging as it is so vital to its economic strength. In this paper an alternative option is established by creating an economic link between GHG emissions measured as their CO2 equivalent (CO2e) and the earning of profits through the concept of Social Carbon Cost (SCC). The case study is a small coastal city in Libya where 6% of electricity is assumed to be generated from renewable sources. At times when renewable energy (RE) output exceeds the demand for power the surplus is used for powering the production of hydrogen by electrolysis thus storing the energy and creating an emission-free fuel. Two scenarios are tested based on short and long term SCCs. In the short term scenario the amount of fossil fuel energy saved matches the renewable energy produced which equates to the same amount of curtailed O&G production. The O&G-producing region can earn profits in two ways: (1) by cutting down CO2 emissions as a result of a reduction in O&G production and (2) by replacing an amount of fossil fuel with electrolytically-produced hydrogen which creates no CO2 emissions. In the short term scenario the value of SCC saved is nearly 39% and in the long term scenario this rose to 83%.
The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading
May 2024
Publication
A key building block of the European Green Deal is the development of a hydrogen commodity market which requires a suitable hydrogen market design and the timely introduction of related policy measures. Using exploratory interviews with five expert groups we contribute to this novel research field by outlining the core market design criteria and proposing suitable regulations for the future European hydrogen market. We identify detailed recommendations along three core market design focus areas: Market development policy measures infrastructure regulations as well as hydrogen and certificate trading. Our findings provide an across-industry view of current policy-related key challenges in the hydrogen commodity market development and mitigation approaches. We therefore support policymakers within the EU in the ongoing detailing of their regulatory hydrogen and green energy packages. Further we promote hydrogen market development by assisting current and future industry players in finding a common understanding of the future hydrogen market design.
No more items...