Projects & Initiatives
HyDeploy Project - Second Project Progress Report
Dec 2018
Publication
The HyDeploy project seeks to address a key issue for UK customers: how to reduce the carbon they emit in heating their homes. The UK has a world class gas grid delivering heat conveniently and safely to over 83% of homes. Emissions can be reduced by lowering the carbon content of gas through blending with hydrogen. This delivers carbon savings without customers requiring disruptive and expensive changes in their homes. It also provides the platform for deeper carbon savings by enabling wider adoption of hydrogen across the energy system.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
HyDeploy: The UK’s First Hydrogen Blending Deployment Project
Mar 2019
Publication
The HyDeploy project is the UK’s first practical project to demonstrate that hydrogen can be safely blended into the natural-gas distribution system without requiring changes to appliances and the associated disruption. The project is funded under Ofgem’s Network Innovation Competition and is a collaboration between Cadent Gas Northern Gas Networks Progressive Energy Ltd Keele University (Keele) Health & Safety Laboratory and ITM Power. Cadent and Northern Gas Networks are the Gas Distribution Network sponsors of the project. Keele University is the host site providing the gas-distribution network which will receive the hydrogen blend. Keele University is the largest campus university in the UK. Health & Safety Laboratory provides the scientific laboratories and experimental expertise. ITM Power provides the electrolyser that produces the hydrogen. Progressive Energy Ltd is the project developer and project manager. HyDeploy is structured into three distinct phases. The first is an extensive technical programme to establish the necessary detailed evidence base in support of an application to the Health & Safety Executive for Exemption to Schedule 3 of the Gas Safety (Management) Regulations (GS(M)R) to permit the injection of hydrogen at 20 mol%. This is required to allow hydrogen to be blended into a natural-gas supply above the current British limit of 0.1 mol%.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Achievements of The EC Network of Excellence Hysafe
Sep 2009
Publication
In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to facilitate the safe introduction of hydrogen as an energy carrier by removing the safety related obstacles. The prioritisation of the HySafe internal project activities was based on a phenomena identification and ranking exercise (PIRT) and expert interviews. The identified research headlines were “Releases in (partially) confined areas” “Mitigation” and “Quantitative Risk Assessment”. Along these headlines existing or planned research work was re-orientated and slightly modified to build up three large internal research projects “InsHyde” “HyTunnel” and “HyQRA”. In InsHyde realistic indoor hydrogen leaks and associated hazards have been investigated to provide recommendations for the safe use of indoor hydrogen systems including mitigation and detection means. The appropriateness of available regulations codes and standards (RCS) has been assessed. Experimental and numerical work was conducted to benchmark simulation tools and to evaluate the related recommendations. HyTunnel contributed to the understanding of the nature of the hazards posed by hydrogen vehicles inside tunnels and its relative severity compared to other fuels. In HyQRA quantitative risk assessment strategies were applied to relevant scenarios in a hydrogen refuelling station and the performance was compared to derive also recommendations. The integration provided by the network is manifested by a series of workshops and benchmarks related to experimental and numerical work. Besides the network generated the following products: the International Conference on Hydrogen Safety the first academic education related to hydrogen safety and the Safety Handbook. Finally the network initiated the founding of the International Association for Hydrogen Safety which will open up the future networking to all interested parties on an international level. The indicated results of this five years integration activity will be described in short.
HyDeploy Webinar - Unlocking the Deployment of Hydrogen in the Grid
May 2020
Publication
A project overview of HyDeploy project led by Cadent Gas and supported by Northern Gas Networks Progressive Energy Ltd Keele University HSE – Science Division and ITM Power.
First Phase:
HyDeploy at Keele is the first stage of this three stage programme. In November 2019 the UK Health & Safety Executive gave permission to run a live test of blended hydrogen and natural gas on part of the private gas network at Keele University campus in Staffordshire. HyDeploy is the first project in the UK to inject hydrogen into a natural gas network.
Second and Third Phases;
Once the Keele stage has been completed HyDeploy will move to a larger demonstration on a public network in the North East. After that HyDeploy will have another large demonstration in the North West. These are designed to test the blend across a range of networks and customers so that the evidence is representative of the UK as a whole. With HSE approval and success at Keele these phases will go ahead in the early 2020s.
The longer term goal:
Once the evidence has been submitted to Government policy makers we very much expect hydrogen to take its place alongside other forms of zero carbon energy in meeting the needs of the UK population.
First Phase:
HyDeploy at Keele is the first stage of this three stage programme. In November 2019 the UK Health & Safety Executive gave permission to run a live test of blended hydrogen and natural gas on part of the private gas network at Keele University campus in Staffordshire. HyDeploy is the first project in the UK to inject hydrogen into a natural gas network.
Second and Third Phases;
Once the Keele stage has been completed HyDeploy will move to a larger demonstration on a public network in the North East. After that HyDeploy will have another large demonstration in the North West. These are designed to test the blend across a range of networks and customers so that the evidence is representative of the UK as a whole. With HSE approval and success at Keele these phases will go ahead in the early 2020s.
The longer term goal:
Once the evidence has been submitted to Government policy makers we very much expect hydrogen to take its place alongside other forms of zero carbon energy in meeting the needs of the UK population.
HyDeploy Webinar - Public Perceptions
May 2020
Publication
HyDeploy is a pioneering hydrogen energy project designed to help reduce UK CO2 emissions and reach the Government’s net zero target for 2050.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them. It is also confirming initial findings that customers don’t notice any difference when using the hydrogen blend.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them. It is also confirming initial findings that customers don’t notice any difference when using the hydrogen blend.
H2FC SUPERGEN: An Overview of the Hydrogen and Fuel Cell Research Across the UK
Mar 2015
Publication
The United Kingdom has a vast scientific base across the entire Hydrogen and Fuel Cell research landscape with a world class academic community coupled with significant industrial activity from both UK-based Hydrogen and Fuel Cell companies and global companies with a strong presence within the country. The Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub funded by the Engineering and Physical Sciences Research Council (EPSRC) was established in 2012 as a five-year programme to bring the UK's H2FC research community together. Here we present the UK's current Hydrogen and Fuel Cell activities along with the role of the H2FC SUPERGEN Hub.
HyDeploy Project - First Project Progress Report
Dec 2017
Publication
The HyDeploy Project seeks to address a key issue for UK customers: how to reduce the carbon they emit in heating their homes. The UK has a world class gas grid delivering heat conveniently and safely to over 83% of homes. Emissions could be reduced by lowering the carbon content of gas through blending with hydrogen. Compared with solutions such as heat pumps this means that customers would not need disruptive and expensive changes in their homes. This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network.
Under its Smart Energy Network Demonstration innovation programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with potentially up to 20% volume of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Any approval will be given as an exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. The evidence presented to the HSE comprises critically appraised literature combined with the results from a specifically commissioned experimental and testing programme. Based on engagement with all local customers this includes detailed safety checks on the network appliances and installations at Keele. Subject to approval by the HSE the hydrogen production and grid injection units will be installed and an extensive trial programme of blending will be undertaken. If hydrogen were blended at 20% volume with natural gas across the UK it would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of taking 2.5 million cars off the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Under its Smart Energy Network Demonstration innovation programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with potentially up to 20% volume of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Any approval will be given as an exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. The evidence presented to the HSE comprises critically appraised literature combined with the results from a specifically commissioned experimental and testing programme. Based on engagement with all local customers this includes detailed safety checks on the network appliances and installations at Keele. Subject to approval by the HSE the hydrogen production and grid injection units will be installed and an extensive trial programme of blending will be undertaken. If hydrogen were blended at 20% volume with natural gas across the UK it would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of taking 2.5 million cars off the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
H21- Science and Research Centre - HSE Buxton Launch Video
Aug 2019
Publication
The site at the Health and Safety Executive’s Science and Research Centre in Buxton will carry out controlled tests to establish the critical safety evidence proving that a 100% hydrogen gas network is equally as safe as the natural gas grid heating our homes and businesses today. The results will be critical in determining if it is safe to convert millions of homes across the country from natural gas to hydrogen. H21 which is led by Northern Gas Networks (NGN) the gas distributor for the North of England in partnership with Cadent SGN and Wales & West Utilities HSE Science and Research Centre and DNV-GL is part of a number of gas industry projects designed to support conversion of the UK gas networks to carry 100% hydrogen. Currently about 30% of UK carbon emissions are from the heating of homes businesses and industry. H21 states that a large-scale conversion of the gas grid from natural gas to hydrogen is vital to meeting the Government’s Net Zero targets.
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Non-combustion Related Impact of Hydrogen Admixture - Material Compatibility
Jun 2020
Publication
The present document is part of a larger literature survey of this WP aiming to establish the current status of gas utilisation technologies in order to determine the impact of hydrogen (H2) admixture on natural gas (NG) appliances. This part focuses on the non-combustion related aspects of injecting hydrogen in the gas distribution networks within buildings including hydrogen embrittlement of metallic materials chemical compatibility and leakage issues. In the particular conditions of adding natural gas and hydrogen (NG / H2) mixture into a gas distribution network hydrogen is likely to reduce the mechanical properties of metallic components. This is known as hydrogen embrittlement (HE) (Birnbaum 1979). This type of damage takes place once a critical level of stress / strain and hydrogen content coexist in a susceptible microstructure. Currently four mechanisms were identified and will be discussed in detail. The way those mechanisms act independently or together is strongly dependent on the material the hydrogen charging procedure and the mechanical loading type. The main metallic materials used in gas appliances and gas distribution networks are: carbon steels stainless steels copper brass and aluminium alloys (Thibaut 2020). The presented results showed that low alloy steels are the most susceptible materials to hydrogen embrittlement followed by stainless steels aluminium copper and brass alloys. However the relative pressures of the operating conditions of gas distribution network in buildings are low i.e. between 30 to 50 mbar. At those low hydrogen partial pressures it is assumed that a gas mixture composed of NG and up to 50% H2 should not be problematic in terms of HE for any of the metallic materials used in gas distribution network unless high mechanical stress / strain and high stress concentrations are applied. The chemical compatibility of hydrogen with other materials and specifically polyethylene (PE) which is a reference material for the gas industry is also discussed. PE was found to have no corrosion issues and no deterioration or ageing was observed after long term testing in hydrogen gas. The last non-combustion concern related to the introduction of hydrogen in natural gas distribution network is the propensity of hydrogen toward leakage. Indeed the physical properties of hydrogen are different from other gases such as methane or propane and it was observed that hydrogen leaks 2.5 times quicker than methane. This bibliographical report on material deterioration chemical compatibility and leakage concerns coming with the introduction of NG / H2 mixture in the gas distribution network sets the basis for the upcoming experimental work where the tightness of gas distribution network components will be investigated (Task 3.2.3 WP3). In addition tightness of typical components that connect end-user appliances to the local distribution line shall be evaluated as well.
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen Deblending in the GB Network - Feasibility Study Report
Nov 2020
Publication
The UK government has committed to reducing greenhouse gas emissions to net zero by 2050. All future energy modelling identifies a key role for hydrogen (linked to CCUS) in providing decarbonised energy for heat transport industry and power generation. Blending hydrogen into the existing natural gas pipeline network has already been proposed as a means of transporting low carbon energy. However the expectation is that a gas blend with maximum hydrogen content of 20 mol% can be used without impacting consumers’ end use applications. Therefore a transitional solution is needed to achieve a 100% hydrogen future network.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
- Cryogenic separation
- Membrane separation
- Pressure Swing Adsorption (PSA)
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Purity - Work Package 2
Feb 2020
Publication
The report makes a recommendation for a minimum hydrogen purity standard to be used by manufacturers developing prototype hydrogen appliances and during their subsequent demonstration as part of the Hy4Heat programme. It makes a recommendation for a hydrogen purity level with the aim that it is reasonable and practicable and considers implications related to hydrogen production the gas network and cost.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
FutureGrid: Project Progress Report
Dec 2021
Publication
The facility will be built from a range of decommissioned transmission assets to create a representative whole-network which will be used to trial hydrogen and will allow for accurate results to be analysed. Blends of hydrogen up to 100% will then be tested at transmission pressures to assess how the assets perform.<br/>The hydrogen research facility will remain separate from the main National Transmission System allowing for testing to be undertaken in a controlled environment with no risk to the safety and reliability of the existing gas transmission network.<br/>Ofgem’s Network Innovation Competition will provide £9.07m of funding with the remaining amount coming from the project partners.<br/>The aim is to start construction in 2021 with testing beginning in 2022.
Progressing the Gas Goes Green Roadmap to Net Zero Webinar
Dec 2021
Publication
The Gas Goes Green Programme developed by the gas networks and the Energy Networks Association (ENA) describes a viable pathway to the injection of hydrogen and biomethane as a practical step towards the decarbonisation of the UK gas sector and will play a key role in the UK’s Net Zero energy strategy. It therefore follows that technical and management teams in the supply chain and related industries will need a sound understanding of the issues surrounding this deployment. This video shares the industry’s progress towards implementing the Gas Goes Green programme. Presenters including Oliver Lancaster CEO IGEM Dr Thomas Koller Programme Lead Gas Goes Green at the Energy Network Association (ENA) and Ian McCluskey CEng FIMechE FIGEM Head of Technical and Policy IGEM share their views on what has already been achieved and explain what they feel still needs to be done to develop the decarbonised gas network of tomorrow.
Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
Jul 2016
Publication
This document provides guidance on the commercial and strategic elements of a heat network project to support completion of a project business case.
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
- Strategic
- Economic
- Commercial
- Financial
- Management
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
Flow Loop Test for Hydrogen
Jul 2020
Publication
National Grid (NG) needs to understand the implications that a hydrogen rich gas mix may have on the existing pipeline network. The primary network consists extensively of X52 steel pipe sections welded together using girth welds. Different welding specifications that have been used in the past 40 years and girth welds with different specifications may behave differently when coming into contact with hydrogen gas.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
H21- Strategic Modelling Major Urban Centres
Aug 2019
Publication
This report summarises the results of an independent audit carried out by DNV GL on the model conversions from natural gas to hydrogen for the models being used as a benchmark for the wider UK proposed hydrogen conversion of the natural gas network. The detailed model conversion process was derived from the H21 modelling meetings and the detailed notes were put together by NGN as a basic guide which has been included in Appendix A and is summarised as follows:
- Current 5 year planning model is updated and then used to generate a Replacement Expenditure (REPEX) natural gas model which would remove metallic pipes from the networks by insertion where possible
- Merging models together to form larger networks where required
- Preparation for conversion to hydrogen which would include the District Governor (DG) capacity increases to run the additional model flows
- Conversion of the models to hydrogen by changing demands to thermal and the gas characteristics to those of hydrogen
- Applying reinforcement to remove pressure failures.
Impact of Hydrogen Admixture on Combustion Processes – Part I: Theory
Jun 2020
Publication
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2 ) a greenhouse gas. However the transformation of the gas sector with its broad variety of technologies and end-use applications is a challenge as a fuel switch is related to changing physical properties. Today the residential and commercial sector is the biggest end user sector for natural gas in the EU both in terms of consumption and in the number of installed appliances. Natural gas is used to provide space heating as well as hot water and is used in cooking and catering appliances with in total about 200 million gas-fired residential and commercial end user appliances installed. More than 40 % of the EU gas consumption is accounted for by the residential and commercial sector. The most promising substitutes for natural gas are biogases and hydrogen. The carbon-free fuel gas hydrogen may be produced e.g. from water and renewable electricity; therefore it can be produced with a greatly lowered carbon footprint and on a very large scale. As a gaseous fuel it can be transported stored and utilised in all end-use sectors that are served by natural gas today: Power plants industry commercial appliances households and mobility. Technologies and materials however need to be suitable for the new fuel. The injection of hydrogen into existing gas distribution for example will impact all gas-using equipment in the grids since these devices are designed and optimized to operate safely efficiently and with low pollutant emissions with natural gas as fuel. The THyGA project1 focusses on all technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end user appliances with hydrogen / natural gas blends. The THyGA deliverables start with theoretical background from material science (D2.4) and combustion theory (this report) and extend to the project’s experimental campaign on hydrogen tolerance tests as well as reports on the status quo and potential future developments on rules and standards as well as mitigation strategies for coping with high levels of hydrogen admixture. By this approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies to which extent and to identify the regime in which a safe efficient and low-polluting operation is possible. As this is in many ways a question of combustion this report focuses on theoretical considerations about the impact of hydrogen admixture on combustion processes. The effects of hydrogen admixture on main gas quality properties as well as combustion temperatures laminar combustion velocities pollutant formation (CO NOx) safety-related aspects and the impact of combustion control are discussed. This overview provides a basis for subsequent steps of the project e.g. for establishing the testing program. A profound understanding of the impact on hydrogen on natural gas combustion is also essential for the development of mitigation strategies to reduce potential negative consequences of hydrogen admixture on appliances.
This is part one. Part two of this project can be found at this link
This is part one. Part two of this project can be found at this link
No more items...