Safety
Uncertainties in Risk Assessment of Hydrogen Discharges from Pressurized Storage Vessels Ranging from Cryogenic to Ambient Temperatures
Sep 2013
Publication
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modelled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations.
The Mitigation of Hydrogen Explosions Using Water Fog, Nitrogen Dilution and Chemical Additives
Sep 2013
Publication
This paper describes research work that has been performed at LSBU using both a laminar burning velocity rig and a small scale cylindrical explosion vessel to explore the use of very fine water fog nitrogen dilution and sodium hydroxide additives in the mitigation of hydrogen deflagrations. The results of the work suggest that using a combination of the three measures together produces the optimal mitigation performance and can be extremely effective in: inhibiting the burning velocity reducing the rate of explosion overpressure rise and narrowing the flammability limits of hydrogen-oxygen-nitrogen mixtures.
CFD Based Simulation of Hydrogen Release Through Elliptical Orifices
Sep 2013
Publication
Computational Fluid Dynamics (CFD) is applied to investigate the near exit jet behavior of high pressure hydrogen release into quiescent ambient air through different types of orifices. The size and geometry of the release hole can affect the possibility of auto-ignition. Therefore the effect of release geometry on the behavior and development of hydrogen jet issuing from non-axisymmetric (elliptical) and expanding orifices is investigated and compared with their equivalent circular orifices. A three-dimensional in-house code is developed using the MPI library for parallel computing to simulate the flow based on an inviscid approximation. Convection dominates viscous effects in strongly underexpanded supersonic jets in the vicinity of release exit justifying the use of the Euler equations. The transport (advection) equation is applied to calculate the concentration of hydrogen-air mixture. The Abel-Nobel equation of state is used because high pressure hydrogen flow deviates from the ideal gas assumption. This work effort is conducted to fulfill two objectives. First two types of circular and elliptic orifices with the same cross sectional area are simulated and the flow behavior of each case is studied and compared during the initial stage of release. Second the comparative study between expanding circular exit and its fixed counterpart is carried out. This evaluation is conducted for different sizes of nozzle with different aspect ratios.
Validation Strategy for CFD Models Describing Safety-relevant Scenarios Including LH2/GH2 Release and the Use of Passive Autocatalytic Recombiners
Sep 2013
Publication
An increase in use of hydrogen for energy storage and clean energy supply in a future energy and mobility market will strengthen the focus on safety and the safe handling of hydrogen facilities. The ability to simulate the whole chain of physical phenomena that may occur during an accident is mandatory for future safety studies on an industrial or urban scale. Together with the RWTH Aachen University Forschungszentrum Jülich (JÜLICH) develops numerical methods to predict safety incidents connected with the release of either LH2 or GH2 using the commercial CFD code ANSYS CFX. The full sequence from the release distribution or accumulation of accidentally released hydrogen till the mitigation of accident consequences by safety devices is considered. For specific phenomena like spreading and vaporization of LH2 pools or the operational behavior of passive auto-catalytic recombiners (PAR) in-house sub-models are developed and implemented. The paper describes the current development status gives examples of the validation and concludes with future work to provide the full range of hydrogen release and recombination simulation.
Influence of the Location of a Buoyant Gas Release in Several Configurations Varying the Height of the Release and the Geometry of the Enclosure
Sep 2013
Publication
The present work proposes a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated enclosure. Several configurations were experimentally addressed in order to improve knowledge on dispersion considering conditions close to hydrogen energy systems in terms of operating characteristics and design. Thus the varying parameters of the study were mainly the height of the release and also the releasing flow rate the volume and the geometry of the enclosure. Experimental results were compared to existing analytical models and considered through model improvements allowing a better approach of these specific cases for hydrogen systems risk assessment.
Deploying Fuel Cell Systems, What Have We Learned
Sep 2013
Publication
The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial government and academic sectors to help advise the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office through its work in hydrogen safety codes and standards. The Panel's initiatives in reviewing safety plans conducting safety evaluations identifying safety-related technical data gaps and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration. The Panel's recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refuelling material handling equipment backup power for warehouses and telecommunication sites and portable power devices. This paper summarizes the work and learnings from the Panel's early efforts the transition to its current focus and the outcomes and conclusions from recent work on the deployment of hydrogen and fuel cell systems.
Visualization of Auto-ignition Phenomenon Under the Controlled Burst Pressure
Oct 2015
Publication
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon called spontaneous ignition is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism but such ignition has not yet been well clarified. In this study the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall followed by multiple ignitions as the shock wave propagates with the ignitions eventually combining to form a flame.
Safety and Risk Management in Nuclear-Based Hydrogen Production with Thermal Water Splitting
Sep 2013
Publication
The challenges and approaches of the safety and risk management for the hydrogen production with nuclear-based thermochemical water splitting have been far from sufficiently reported as the thermochemical technology is still at a fledgling stage and the linkage of a nuclear reactor with a hydrogen production plant is unprecedented. This paper focuses on the safety issues arising from the interactions between the nuclear heat source and thermochemical hydrogen production cycle as well between the proximate individual processes in the cycle. As steam is utilized in most thermochemical cycles for the water splitting reaction and heat must be transferred from the nuclear source to hydrogen production plant this paper particularly analyzes and quantifies the heat hazard for the scenarios of start-up and shutdown of the hydrogen production plant. Potential safety impacts on the nuclear reactor are discussed. It is concluded that one of the main challenges of safety and risk management is efficient rejection of heat in a shutdown accident. Several options for the measures to be taken are suggested. Copper-chlorine and sulphur-iodine thermochemical cycles are taken as two representative examples for the hazard analysis. It is expected that these newly reported challenges and approaches could help build the future safety and risk management codes and standards for the infrastructure of the thermochemical hydrogen production.
Trends in Gas Sensor Development for Hydrogen Safety
Sep 2013
Publication
Gas sensors are applied for facilitating the safe use of hydrogen in for example fuel cell and hydrogen fuelled vehicles. New sensor developments aimed at meeting the increasingly stringent performance requirements in emerging applications are presented based on in-house technical developments and a literature study. The strategy of combining different detection principles i.e. sensors based on electrochemical cells semiconductors or field effects in combination with thermal conductivity sensor or catalytic combustion elements in one new measuring system is reported. This extends the dynamic measuring range of the sensor while improving sensor reliability to achieve higher safety integrity through diverse redundancy. The application of new nanoscaled materials nano wires carbon tubes and graphene as well as the improvements in electronic components of field-effect resistive-type and optical systems are evaluated in view of key operating parameters such as sensor response time low energy consumption and low working temperature.
Safety Issues of the Liquefaction, Storage and Transportation of Liquid Hydrogen
Sep 2013
Publication
The objectives of the IDEALHY project which receives funding from the European Union’s 7th Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement No. 278177 are to design a novel process that will significantly increase the efficiency of hydrogen liquefaction and be capable of delivering liquid hydrogen at a rate that is an order of magnitude greater than current plants. The liquid hydrogen could then be delivered to refueling stations in road tankers. As part of the project the safety management of the new large scale process and the transportation of liquid hydrogen by road tanker into urban areas are being considered. Effective safety management requires that the hazards are identified and well understood. This paper describes the scope of the safety work within IDEALHY and presents the output of the work completed so far. Initially a review of available experimental data on the hazards posed by releases of liquid hydrogen was undertaken which identified that generally there is a dearth of data relevant to liquid hydrogen releases. Subsequently HAZIDs have been completed for the new liquefaction process storage of liquid hydrogen and its transportation by road. This included a review of incidents relevant to these activities. The principal causes of the incidents have been analysed. Finally the remaining safety work for the IDEALHY project is outlined.
3D Risk Management for Hydrogen Installations (HY3DRM)
Oct 2015
Publication
This paper introduces the 3D risk management (3DRM) concept with particular emphasis on hydrogen installations (Hy3DRM). The 3DRM framework entails an integrated solution for risk management that combines a detailed site-specific 3D geometry model a computational fluid dynamics (CFD) tool for simulating flow-related accident scenarios methodology for frequency analysis and quantitative risk assessment (QRA) and state-of-the-art visualization techniques for risk communication and decision support. In order to reduce calculation time and to cover escalating accident scenarios involving structural collapse and projectiles the CFD-based consequence analysis can be complemented with empirical engineering models reduced order models or finite element analysis (FEA). The paper outlines the background for 3DRM and presents a proof-of-concept risk assessment for a hypothetical hydrogen filling station. The prototype focuses on dispersion fire and explosion scenarios resulting from loss of containment of gaseous hydrogen. The approach adopted here combines consequence assessments obtained with the CFD tool FLACS-Hydrogen from Gexcon and event frequencies estimated with the Hydrogen Risk Assessment Models (HyRAM) tool from Sandia to generate 3D risk contours for explosion pressure and radiation loads. For a given population density and set of harm criteria it is straightforward to extend the analysis to include personnel risk as well as risk-based design such as detector optimization. The discussion outlines main challenges and inherent limitations of the 3DRM concept as well as prospects for further development towards a fully integrated framework for risk management in organizations.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
Vented Hydrogen Deflagrations in an ISO Container
Sep 2017
Publication
The commercial deployment of hydrogen will often involve housing portable hydrogen fuel cell power units in 20-foot or 40-foot shipping containers. Due to the unique properties of hydrogen hazards identification and consequence analysis is essential to safe guard the installations and design measures to mitigate potential hazards. In the present study the explosion of a premixed hydrogen-air cloud enclosed in a 20-foot container of 20’ x 8’ x 8’.6” is investigated in detail numerically. Numerical simulations have been performed using HyFOAM a dedicated solver for vented hydrogen explosions developed in-house within the frame of the open source computational fluid dynamics (CFD) code OpenFOAM toolbox. The flame wrinkling combustion model is used for modelling turbulent deflagrations. Additional sub-models have been added to account for lean combustion properties of hydrogen-air mixtures. The predictions are validated against the recent experiments carried out by Gexcon as part of the HySEA project supported by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) under the Horizon 2020 Framework Programme for Research and Innovation. The effects of congestion within the containers on the generated overpressures are also investigated.
Helios- A New Method for Hydrogen Permeation Test
Sep 2013
Publication
Hydrogen induced cracking is still a severe and current threat for several industrial applications. With the aim of providing a simple and versatile device for hydrogen detection a new instrument was designed based on solid state sensor technology. New detection technique allows to execute hydrogen permeation measurement in short time and without material surface preparation. Thanks to this innovation HELIOS offers a concrete alternative to traditional experimental methods for laboratory permeability tests. In addition it is proposed as a new system for Non Destructive Testing of components in service in hydrogenating environment. Hydrogen flux monitoring is particularly relevant for risk mitigation of elements involved in hydrogen storage and transportation. Hydrogen permeation tests were performed by means of HELIOS instruments both on a plane membrane and on the wall of a gas cylinder. Results confirmed the extreme sensitivity of the detection system and its suitability to perform measurements even on non metallic materials by means of an easy-to-handle instrument.
Influence of Doping Element in Distributed Hydrogen Optical Fiber Densors with Brillouin Scattering
Sep 2013
Publication
Distributed hydrogen optical fiber sensor with Brillouin scattering is an innovative solution to measure hydrogen in harsh environment as nuclear industry. Glass composition is the key point to enhance the sensing parameter of the fiber in the target application. Several optical fiber with different doping element were used for measuring hydrogen saturation. Permeability of optical plays a major role to the kinetic of hydrogen diffusion. Fluorine doped fiber increase the sorption and the desorption of hydrogen.
Study on Behavior of Ambient Hydraulic Cycling Test for 70 MPA Type-3 Hydrogen Composite Cylinder
Sep 2013
Publication
Hydrogen used in hydrogen fuel cell vehicles is the flammable gas which has wide flammable range and flame propagation speed is very fast. This fuel cell vehicle equipped with high-pressure vessel in the form of fuel to supply the high pressure hydrogen storage system needs to be checked carefully about a special safety design and exact weak point for high pressure repeated fatigue. 70 L liner and 70 MPa Type-3 vessel were tested using the equipments which can perform ambient hydraulic cycling test and burst test in the Korea Gas Safety Corporation. And it was performed to identify the internal external behaviour through the Finite Element Analysis (FEA) and real leakage mode for high pressure repeated fatigue when subjected to be pressurized in vessel. 70 L liner and 70 MPa Type-3 vessel were tested using the equipments which can perform ambient hydraulic cycling test and burst test in the Korea Gas Safety Corporation. And it was performed to identify the internal external behaviour through the Finite Element Analysis (FEA) and real leakage mode for high pressure repeated fatigue when subjected to be pressurized in vessel. Through this study liner of type-3 hydrogen vessel is ruptured first on cylindrical (body) part than Dome part in 8.5 MPa. Also the same Phenomena are confirmed through the Finite Element Analysis (FEA). External composite leakage mode in ambient hydraulic cycling test was occurred in different area such as the Dome Dome knuckle and cylindrical (body) parts. But cracks of inner liner for gas tight were occurred in only cylindrical (body) parts. Also in FEA results when vessel is pressurized Dome knuckle and cylindrical (body) parts is weakest among all parts because of expansion of cylindrical (body) parts.
Hydrogen Risk Analysis for a Generic Nuclear Containment Ventilation System
Oct 2015
Publication
Hydrogen safety issue in a ventilation system of a generic nuclear containment is studied. In accidental scenarios a large amount of burnable gas mixture of hydrogen with certain amount of oxygen is released into the containment. In case of high containment pressure the combustible mixture is further ventilated into the chambers and the piping of the containment ventilation system. The burnable even potentially detonable gas mixture could pose a risk to the structures of the system once being ignited unexpectedly. Therefore the main goal of the study is to apply the computational fluid dynamics (CFD) computer code – GASFLOW to analyze the distribution of the hydrogen in the ventilation system and to find how sensitive the mixture is to detonation in different scenarios. The CFD simulations manifest that a ventilation fan with sustained power supply can extinguish the hydrogen risk effectively. However in case of station blackout with loss of power supply to the fan hydrogen/oxygen mixture could be accumulated in the ventilation system. A further study proves that steam injection could degrade the sensitivity of the hydrogen mixture significantly.
Analysis of Acoustic Pressure Oscillation During Vented Deflagration
Oct 2015
Publication
In industrial buildings explosion relief panels or doors are often used to reduce damages caused by gas explosion. Decades of research produced a significant contribution to the understanding of the phenomena involved nevertheless among the aspects that need further research interaction between acoustic oscillation and the flame front is one of the more important. Interaction between the flame front and acoustic oscillation has raised technical problem in lots of combustion applications as well and had been studied theoretically and experimentally in such cases. Pressure oscillation had been observed in vented deflagration and in certain cases they are responsible for the highest pressure peak generated during the event. At Scalbatraio laboratory of Pisa University CVE test facility was built in order to investigate vented hydrogen deflagration. This paper is aimed to present an overview of the results obtained during several experimental campaigns which tests are analysed with the focus on the investigation of flame acoustic interaction phenomenon. Qualitative and quantitative analysis is presented and the possible physic generating the phenomenon investigated.
Self-ignition and Flame Propagation of Pressurized Hydrogen Released Through Tubes
Sep 2019
Publication
The spontaneous ignition of hydrogen released from the high pressure tank into the downstream pipes with different lengths varied from 0.3m to 2.2m has been investigated experimentally. In this study the development of shock wave was recorded by pressure sensors and photoelectric sensors were used to confirm the presence of a flame in the pipe. In addition the development of jet flame was recorded by high-speed camera and IR camera. The results show that the minimal release pressure in different tube when self-ignition of hydrogen occurred could decrease first and then increase with the increase of the aspect of pipe. And the minimum release pressure of hydrogen self-ignition was 3.87MPa. When the flame of self-ignition hydrogen spouted out of the tube Mach disk was observed. The method of CFD was adopted. The development of shock wave at the tube exit was reproduced and structures as barrel shock the reflected shock and the Mach disk are presented. Because of these special structures the flame at the nozzle is briefly extinguished and re-ignited. At the same time the complete development process of the jet flame was recorded including the formation and separation of the spherical flame. The flame structure exhibits three typical levels before the hemispherical flame separation.
Hydrogen-air Vented Explosions- New Experimental Data
Sep 2013
Publication
The use of hydrogen as an energy carrier is a real perspective in Europe since a number of breakthroughs obtained in the last decades open the possibility to envision a deployment at the industrial scale if safety issues are duly accounted. However on this particular aspects experimental data are still lacking especially about the explosion dynamics in realistic dimensions. The purpose of this paper is to provide a set of totally new and well instrumented hydrogen - air vented explosions. Experiments were performed in a large explosion chamber within the scope of the DIMITRHY project (sponsored by the National French Agency for Research). The 4 m3 rectangular experimental chamber (2 m height 2 m width and 1 m depth) is equipped with transparent walls and is vented (0.25 and 0.5 m2 square vents).. Six pressure gauges were used to measure the overpressure evolution inside and outside the chamber. Six concentration gauges were used to control the hydrogen repartition in the vessel. The hydrogen-air cloud was seeded with micro particles of ammonium chloride to see the propagation of the flame the movement of the cloud inside and outside the chamber. The incidence of reactivity vent size ignition position and non homogenous repartition of hydrogen received a particular attention.
No more items...