Safety
Threshold Stress Intensity Factor for Hydrogen Assisted Cracking of Cr-Mo Steel Used as Stationary Storage Buffer of a Hydrogen Refueling Station
Oct 2015
Publication
In order to determine appropriate value for threshold stress intensity factor for hydrogen-assisted cracking (KIH) constant-displacement and rising-load tests were conducted in high-pressure hydrogen gas for JIS-SCM435 low alloy steel (Cr-Mo steel) used as stationary storage buffer of a hydrogen refuelling station with 0.2% proof strength and ultimate tensile strength equal to 772 MPa and 948 MPa respectively. Thresholds for crack arrest under constant displacement and for crack initiation under rising load were identified. The crack arrest threshold under constant displacement was 44.3 MPa m1/2 to 44.5 MPa m1/2 when small-scale yielding and plane-strain criteria were satisfied and the crack initiation threshold under rising load was 33.1 MPa m1/2 to 41.1 MPa m1/2 in 115 MPa hydrogen gas. The crack arrest threshold was roughly equivalent to the crack initiation threshold although the crack initiation threshold showed slightly more conservative values. It was considered that both test methods could be suitable to determine appropriate value for KIH for this material.
Applying Risk Management Strategies Prudently
Sep 2011
Publication
During the current global financial crisis the term “Risk Management” is often heard. Just as the causes for the financial problems are elusive so is a complete definition of what Risk Management means. The answer is highly dependent upon your perceptions of “risk” and your appetite for assuming risks. The proposed paper will explore these issues with some brief case studies as they apply to hydrogen industrial applications hydrogen refuelling stations and fuel cell technologies for distributed generation.
Specifically the paper will identify the various risk exposures from the perspective of the project developers original equipment suppliers end users project funding sources and traditional insurance providers. What makes this evaluation intriguing is that it is a mixed bag of output capacities Combine Heat & Power (CHP) potential and technology maturity. Therefore the application considerations must be part of any overall Risk Management program.
Specifically the paper will identify the various risk exposures from the perspective of the project developers original equipment suppliers end users project funding sources and traditional insurance providers. What makes this evaluation intriguing is that it is a mixed bag of output capacities Combine Heat & Power (CHP) potential and technology maturity. Therefore the application considerations must be part of any overall Risk Management program.
Risk Reduction Potential of Accident Prevention and Mitigation Features
Sep 2011
Publication
Quantitative Risk Assessment (QRA) can help to establish a set of design and operational requirements in hydrogen codes and standards that will ensure safe operation of hydrogen facilities. By analyzing a complete set of possible accidents in a QRA the risk drivers for these facilities can be identified. Accident prevention and mitigation features can then be analyzed to determine which are the most effective in addressing these risk drivers and thus reduce the risk from possible accidents. Accident prevention features/methods such as proper material selection and preventative maintenance are included in the design and operation of facilities. Accident mitigation features are included to reduce or terminate the potential consequences from unintended releases of hydrogen. Mitigation features can be either passive or active in nature. Passive features do not require any component to function in order to prevent or mitigate a hydrogen release. Examples of passive mitigation features include the use of separation distances barriers and flow limiting orifices. Active mitigation features initiate when specific conditions occur during an accident in order to terminate an accident or reduce its consequences. Examples of active mitigation features include detection and isolation systems fire suppression systems and purging systems. A concept being pursued by the National Fire Protection Association (NFPA) hydrogen standard development is to take credit for prevention and mitigation features as a means to reduce separation distances at hydrogen facilities. By utilizing other mitigation features the risk from accidents can be decreased and risk-informed separation distances can be reduced. This paper presents some preliminary QRA results where the risk reduction potential for several active and passive mitigation features was evaluated. These measures include automatic leak detection and isolation systems the use of flow limiting orifices and the use of barriers. Reducing the number of risk-significant components in a system was also evaluated as an accident prevention method. In addition the potential reduction in separation distances if such measures were incorporated at a facility was also determined.
Ignitability and Mixing of Underexpanded Hydrogen Jets
Sep 2011
Publication
Reliable methods are needed to predict ignition boundaries that result from compressed hydrogen bulk storage leaks without complex modelling. To support the development of these methods a new high-pressure stagnation chamber has been integrated into Sandia National Laboratories’ Turbulent Combustion Laboratory so that relevant compressed gas release scenarios can be replicated. For the present study a jet with a 10:1 pressure ratio issuing from a small 0.75 mm radius nozzle has been examined. Jet exit shock structure was imaged by Schlieren photography while quantitative Planar Laser Rayleigh Scatter imaging was used to measure instantaneous hydrogen mole fractions downstream of the Mach disk. Measured concentration statistics and ignitable boundary predictions compared favorably to analytic reconstructions of downstream jet dispersion behaviour. Model results were produced from subsonic jet dispersion models and by invoking self-similarity jet scaling arguments with length scaling by experimentally measured effective source radii. Similar far field reconstructions that relied on various notional nozzle models to account for complex jet exit shock phenomena failed to satisfactorily predict the experimental findings. These results indicate further notional nozzle refinement is needed to improve the prediction fidelity. Moreover further investigation is required to understand the effect of different pressure ratios on measured virtual origins used in the jet dispersion model.
Simulation of the Efficiency of Hydrogen Recombiners as Safety Devices
Sep 2011
Publication
Passive auto-catalytic recombiners (PARs) are used as safety devices in the containments of nuclear power plants (NPPs) for the removal of hydrogen that may be generated during specific reactor accident scenarios. In the presented study it was investigated whether a PAR designed for hydrogen removal inside a NPP containment would perform principally inside a typical surrounding of hydrogen or fuel cell applications. For this purpose a hydrogen release scenario inside a garage – based on experiments performed by CEA in the GARAGE facility (France) – has been simulated with and without PAR installation. For modelling the operational behaviour of the PAR the in-house code REKO-DIREKT was implemented in the CFD code ANSYS-CFX. The study was performed in three steps: First a helium release scenario was simulated and validated against experimental data. Second helium was replaced by hydrogen in the simulation. This step served as a reference case for the unmitigated scenario. Finally the numerical garage setup was enhanced with a commercial PAR model. The study shows that the PAR works efficiently by removing hydrogen and promoting mixing inside the garage. The hot exhaust plume promotes the formation of a thermal stratification that pushes the initial hydrogen rich gas downwards and in direction of the PAR inlet. The paper describes the code implementation and simulation results.
Numerical Study on Detailed Mechanism of H2-Air Flame Jet Ignition
Sep 2013
Publication
Jet ignition was recognized in the 1970s and has since been applied to automobile engines such as the Honda CVCC. In the 1990s jet ignition was observed in explosions and was seen as a problem that may relate to jet ignition. Our group presented jet ignition experimentally and numerically in 1999 and later using LIF measurements with the same experimental vessel as used in 1999. However the detailed mechanism of jet ignition was not clarified at that time. The target of this study is to clarify how jet ignition happens and to understand the detailed mechanism of flame jet ignition.
Ignition of Flammable Hydrogen & Air Mixtures by Controlled Glancing Impacts in Nuclear Waste Decommissioning
Sep 2013
Publication
Conditions are examined under which mechanical stimuli produced by striking controlled blows can result in sparking and ignition of hydrogen in air mixtures. The investigation principally concerns magnesium thermite reaction as the ignition source and focuses on the conditions and thermomechanical parameters that are involved in determining the probability of ignition. It is concluded that the notion of using the kinetic energy of impact as the main criterion in determining whether an ignition event is likely or not is much less useful than considering the parameters which determine the maximum temperature produced in a mechanical stimuli event. The most influential parameter in determining ignition frequency or probability is the velocity of sliding movement during mechanical stimuli. It is also clear that the kinetic energy of a moving hammer head is of lesser importance than the normal force which is applied during contact. This explains the apparent discrepancy in previous studies between the minimum kinetic energy thought to be necessary to allow thermite sparking and gas ignition to occur with drop weight impacts and glancing blow impacts. In any analysis of the likelihood of mechanical stimuli to cause ignition the maximum surface temperature generated should be determined and considered in relation to the temperatures that would be required to initiate hot surface reactions sufficient to cause sparking and ignition.
Real-size Calculation of High-pressure Hydrogen Flow and its Auto-ignition in Cylindrical Tube
Sep 2013
Publication
A real-size calculation is performed for high-pressure hydrogen release in a tube using the axisymmetric Navier–Stokes equations with the full hydrogen chemistry. A Harten–Yee-type total variation diminishing scheme and point-implicit method are used to integrate the governing equations. The calculated real-size results show that the leading shock wave velocity is similar to that calculated using a smaller tube. The mixing process and ignition behaviour of high-pressure hydrogen are explained in detail; the velocity shear layer and Kelvin–Helmholtz instability are the main causes of mixing of hydrogen with air and ignition in the high-temperature region behind the leading shock wave.
Hydrogen Self-Ignition In Pressure Relief Devices
Sep 2009
Publication
In future pressure relief devices (PRDs) should be installed on hydrogen vehicles to prevent a hydrogen container burst in the event of a nearby fire. Weakening of the container at elevated temperature could result in such burst. In this case the role of a PRD is to release some or all of the system fluid in the event of an abnormally high pressure. The paper analyzes the possibility of hydrogen self-ignition at PRD operation and ways of its prevention.
Safety Distances: Comparison of the Methodologies for Their Determination
Sep 2011
Publication
In this paper a study on the comparison between the different methodologies for the determination of the safety distances proposed by Standard Organizations and national Regulations is presented. The application of the risk-informed approach is one of the methodologies used for the determination of safety distances together with the risk-based approach. One of the main differences between the various methodologies is the risk criterion chosen. In fact a critical point is which level of risk should be used and then which are the harm events that must be considered. The harm distances are evaluated for a specified leak diameter that is a consequence of some parameters used in the various methodologies. The values of the safety distances proposed by Standard Organizations and national Regulations are a demonstration of the different approaches of the various methodologies especially in the choice of the leak diameter considered.
The Crucial Role of the Lewis Number in Jet Ignition
Sep 2011
Publication
During the early phase of the transient process following a hydrogen leak into the atmosphere a contact surface appears separating hot air from cold hydrogen. Locally the interface is approximately planar. Diffusion occurs potentially leading to ignition. This process was analyzed by Lin˜a´n and Crespo (1976) for Lewis number unity and Lin˜a´n and Williams (1993) for Lewis number less than unity. In addition to conduction these processes are affected by expansion due to the flow which leads to a temperature drop. If chemistry is very temperature-sensitive then the reaction rate peaks close to the hot region where relatively little fuel is present. Indeed the Arrhenius rate drops rapidly as temperature drops much more so than fuel concentration. However the small fuel concentration present close to the airrich side depends crucially upon the balance between fuel diffusion and heat diffusion hence the fuel Lewis number. For Lewis number unity the fuel concentration present due to diffusion is comparable to the rate of consumption due to chemistry. If the Lewis number is less than unity fuel concentration brought in by diffusion is large compared with temperature-controlled chemistry. For a Lewis number greater than unity diffusion is not strong enough to bring in as much fuel as chemistry would be able to burn and combustion is controlled by fuel diffusion. In the former case combustion occurs faster leading to a localized ignition at a finite time determined by the analysis. As long as the temperature drop due to the expansion associated with the multidimensional nature of the jet does not lower significantly the reaction rate up to that point ignition in the jet takes place. For fuel Lewis number greater than unity first the reaction rate is much lower. Second chemistry does not lead to a defined ignition. Eventually expansion will affect the process and ignition does not take place. In summary it appears that the reason why hydrogen is the only fuel for which jet ignition has been observed is a Lewis number effect coupled with a high speed of sound hence a high initial temperature discontinuity.
Detection of Hydrogen Released In a Full-Scale Residential Garage
Sep 2011
Publication
Experiments were conducted to assess detectability of a low-level leak of hydrogen gas and the uniformity of hydrogen concentration at selected sensor placement locations in a realistic setting. A 5%2hydrogen/95%2nitrogen gas mixture was injected at a rate of 350 L/min for about 3/4 hour into a 93m3 residential garage space through a 0.09 m2 square open-top dispersion box located on the floor. Calibrated catalytic sensors were placed on ceiling and wall locations and the sensors detected hydrogen early in the release and continued to measure concentrations to peak and diminishing levels. Experiments were conducted with and without a car parked over the dispersion box. The results show that a car positioned over the dispersion box tends to promote dilution of the hydrogen cause a longer time for locations to reach a fixed threshold and produce lower peak concentrations than with no car present.
RBD-fast Based Sensitivity and Uncertainty Analysis on a Computational Hydrogen Recombiner Test Case
Sep 2017
Publication
Deflagration-to-Detonation Transition Ratio (DDTR) is an important parameter in measuring the hazard of hydrogen detonation at given thermodynamic conditions. It’s among the major tasks to evaluate DDTR in the study of hydrogen safety in a nuclear containment. With CFD tools detailed distribution of thermodynamic parameters at each instant can be simulated with considerable reliability. Then DDTR can be estimated using related CFD output. Forstochastic or epistemic reasons uncertainty always exists in input parameters during computations. This lack of accuracy can finally be reflected in the uncertainty of computation results e.g. DDTR in our consideration. The analysis of the influence of the input uncertainty is therefore a key step to understand the model’s response on the output and possibly to improve the accuracy. The increase of computational power makes it possible to perform statistics-based sensitivity and uncertainty (SU) analysis on CFD simulations. This paper aims at presenting some ideas on the procedure in safety analysis on hydrogen in nuclear containment. A hydrogen recombiner case is constructed and simulated with CFD method. DDTR at each instant is computed using a semi-empirical method. RBD-FAST based SU analysis is performed on the result.
A Numerical Simulation of Hydrogen Diffusion for the Hydrogen Leakage from a Fuel Cell Vehicle in an Underground Parking Garage
Sep 2011
Publication
In the present study the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking garage is analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial evolution of the hydrogen concentration as well as the flammable region in the parking garage was predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance to relieve the accumulation of the hydrogen gas. The volume of the flammable region shows a non-linear growth in time and rapidly increases eventually. The present numerical analysis can provide a physical insight and quantitative data for safety of various hydrogen applications.
Regulations, Codes, and Standards (RCS) For Large Scale Hydrogen Systems
Sep 2017
Publication
Hydrogen has potential applications that require larger-scale storage use and handling systems than currently are employed in emerging-market fuel cell applications. These potential applications include hydrogen generation and storage systems that would support electrical grid systems. There has been extensive work evaluating regulations codes and standards (RCS) for the emerging fuel cell market such as the infrastructure required to support fuel cell electric vehicles. However there has not been a similar RCS evaluation and development process for these larger systems. This paper presents an evaluation of the existing RCS in the United States for large-scale systems and identifies potential RCS gaps. This analysis considers large-scale hydrogen technologies that are currently being employed in limited use but may be more widely used as large-scale applications expand. The paper also identifies areas of potential safety research that would need to be conducted to fill the RCS gaps. U.S. codes define bulk hydrogen storage systems but do not define large-scale systems. This paper evaluates potential applications to define a large-scale hydrogen system relative to the systems employed in emerging technologies such as hydrogen fuelling stations. These large-scale systems would likely be of similar size to or larger than industrial hydrogen systems.
Non-adiabatic Blowdown Model: A Complimentary Tool for the Safety Design of Tank-TPRD System
Sep 2017
Publication
Previous studies have demonstrated that while blowdown pressure is reproduced well by both adiabatic and isothermal analytical models the dynamics of temperature cannot be predicted well by either model. The reason for the last is heat transfer to cooling during expansion gas from the vessel wall. Moreover when exposed to an external fire the temperature inside the vessel increases i.e. when a thermally activated pressure relief device (TPRD) is still closed with subsequent pressure increase that may lead to a catastrophic rupture of the vessel. The choice of a TPRD exit orifice size and design strategy are challenges: to provide sufficient internal pressure drop in a fire when the orifice size is too small; to avoid flame blow off expected with the decrease of pressure during the blowdown; to decrease flame length of subsequent jet fire as much as possible by the decrease of the orifice size under condition of sufficient fire resistance provisions to avoid pressure peaking phenomenon etc. The adiabatic model of blowdown [1] was developed using the Abel-Nobel equation of state and the original theory of underexpanded jet [2]. According to experimental observations e.g. [3] heat transfer plays a significant role during the blowdown. Thus this study aims to modify the adiabatic blowdown model to include the heat transfer to non-ideal gas. The model accounts for a change of gas temperature inside the vessel due to two “competing” processes: the decrease of temperature due to gas expansion and the increase of temperature due to heat transfer from the surroundings e.g. ambience or fire through the vessel wall. This is taken into account in the system of equations of adiabatic blowdown model through the change of energy conservation equation that accounts for heat from outside. There is a need to know the convective heat transfer coefficient between the vessel wall and the surroundings and wall size and properties to define heat flux to the gas inside the vessel. The non-adiabatic model is validated against available experimental data. The model can be applied as a new engineering tool for the inherently safer design of hydrogen tank-TPRD system.
PIV-measurements of Reactant Flow in Hydrogen-air Explosions
Sep 2017
Publication
The paper present the work on PIV-measurements of reactant flow velocity in front of propagating flames in hydrogen-air explosions. The experiments was performed with hydrogen-air mixture at atmospheric pressure and room temperature. The experimental rig was a square channel with 45 × 20 mm2 cross section 300 mm long with a single cylindrical obstacle of blockage ratio 1/3. The equipment used for the PIV-measurements was a Firefly diode laser from Oxford lasers Photron SA-Z high-speed camera and a particle seeder producing 1 μm droplets of water. The gas concentrations used in the experiments was 14 and 17 vol% hydrogen in air. The resulting explosion can be characterized as slow since the maximum flow velocity of the reactants was 13 m/s in the 14% mixture and 23 m/s in the 17% mixture. The maximum flow velocities was measured during the flame-vortex interaction and at two obstacle diameters behind the obstacle. The flame-vortex interaction contributed to the flame acceleration by increasing the overall reaction rate and the flow velocity. The flame area as a function of position is the same for both concentrations as the flame passes the obstacle.
Monte-Carlo-analysis of Minimum Load Cycle Requirements for Composite Cylinders for Hydrogen
Sep 2017
Publication
Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3 UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition the probability of acceptance for potentially unsafe design types is determined.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
Effectiveness Evaluation of Facilities Protecting from Hydrogen-air Explosion Overpressure
Sep 2011
Publication
The physical processes of the explosion of the hydrogen cloud which is formed as a result of the instantaneous destruction of high-pressure cylinder in the fuelling station are investigated. To simulate the formation of hydrogen-air mixture and its combustion a three-dimensional model of an instantaneous explosion of the gas mixture based on the Euler equations supplemented by the conservation laws of mixture components solved by Godunov method is used. To reduce the influence of the overpressure effects in the shock wave on the surrounding environment it is proposed to use a number of protective measures. An estimation of the efficiency of safety devices is carried out by monitoring the overpressure changes in several critical points. To reduce the pressure load on the construction of protective devices a range of constructive measures is also offered.
No more items...