Safety
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Experimental Study on Vented Hydrogen Deflagrations in a Low Strength Enclosure
Oct 2015
Publication
This paper describes an experimental programme on vented hydrogen deflagrations which formed part of the Hyindoor project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking. The purpose of this study was to investigate the validity of analytical models used to calculate overpressures following a low concentration hydrogen deflagration. Other aspects of safety were also investigated such as lateral flame length resulting from explosion venting. The experimental programme included the investigation of vented hydrogen deflagrations from a 31 m3 enclosure with a maximum internal overpressure target of 10 kPa (100 mbar). The explosion relief was provided by lightly covered openings in the roof or sidewalls. Uniform and stratified initial hydrogen distributions were included in the test matrix and the location of the ignition source was also varied. The maximum hydrogen concentration used within the enclosure was 14% v/v. The hydrogen concentration profile within the enclosure was measured as were the internal and external pressures. Infrared video images were obtained of the gases vented during the deflagrations. Findings show that the analytical models were generally conservative for overpressure predictions. Flame lengths were found to be far less than suggested by some guidance. Along with the findings the methodology test conditions and corresponding results are presented.
Safety Criteria for the Transport of Hydrogen in Permanently Mounted Composite Pressure Vessels
Sep 2019
Publication
The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers both in composite pressure vessels. As a transport regulation the ADR is applicable in Europe and adjoined regions and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012 the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan the USA and China. Subsequently the failure consequences of using trailer vehicles the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort.
Hydrogen Storage – Industrial Prospectives
Sep 2011
Publication
The topic of this paper is to give an historical and technical overview of hydrogen storage vessels and to detail the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60 s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70 s. Aluminum cylinders were also used for hydrogen storage since the end of the 60 s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80 s. Because of their low weight they started to be used in for portable applications: for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 850 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Numerical Study on the Influence of Different Boundary Conditions on the Efficiency of Hydrogen Recombiners Inside a Car Garage
Oct 2015
Publication
Passive auto-catalytic recombiners (PARs) have the potential to be used in the future for the removal of accidentally released hydrogen inside confined areas. PARs could be operated both as stand-alone or backup safety devices e.g. in case of active ventilation failure.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
The Dependence of Fatigue Crack Growth on Hydrogen in Warm-rolled 316 Austenitic Stainless Steel
Sep 2019
Publication
The fatigue crack growth rate of warm-rolled AISI 316 austenitic stainless steel was investigated by controlling rolling strain and temperature in argon and hydrogen gas atmospheres. The fatigue crack growth rates of warm-rolled 316 specimens tested in hydrogen decreased with increasing rolling temperature especially 400 °C. By controlling the deformation temperature and strain the influences of microstructure (including dislocation structure deformation twins and α′ martensite) and its evolution on hydrogen-induced degradation of mechanical properties were separately discussed. Deformation twins deceased and dislocations became more uniform with the increase in rolling temperature inhibiting the formation of dynamic α′ martensite during the crack propagation. In the cold-rolled 316 specimens deformation twins accelerated hydrogen-induced crack growth due to the α′ martensitic transformation at the crack tip. In the warm-rolled specimens the formation of α′ martensite around the crack tip was completely inhibited which greatly reduced the fatigue crack growth rate in hydrogen atmosphere.
Towards a Set of Design Recommendations for Pressure Relief Devices On-board Hydrogen Vehicles
Oct 2015
Publication
Commercial use of hydrogen on-board fuel cell vehicles necessitates the compression of hydrogen gas up to 700 bar raising unique safety challenges. Potential hazards to be addressed include jet fires from high-pressure hydrogen on-board storage. Previous studies investigated effects of jet fires that occur when pressure relief devices (PRDs) on hydrogen fuel cell vehicles activate. This investigation examines plane jets’ axis switching and flame length accounting for compressibility effects and turbulent combustion near the point of release. Comparison with experimental data and previous plane jet simulation results reveal that combustion process does not affect flow dynamics in compressible region of jet flow. Furthermore a theoretical design of a variable aperture pressure relief device is examined which would enable the blow-down time to be minimized while reducing deterministic separation distances is examined using Computational Fluid Dynamics (CFD) techniques. Design recommendations are suggested for a novel PRD design.
A Study on Dispersion Resulting From Liquefied Hydrogen Spilling
Oct 2015
Publication
For massive utilization of hydrogen energy it is necessary to transport a large quantity of hydrogen by liquefied hydrogen carriers. However the current rule on ships carrying liquefied hydrogen in bulks do not address the maritime transport of liquefied hydrogen and the safety assessment of liquefied hydrogen carriage is thus very important. In the present study we spilled liquefied hydrogen and LNG (Liquefied Natural Gas) on the surface of various materials and compared the difference of their spread and dispersion. Liquefied hydrogen immediately dispersed upward compared to LNG. Furthermore we also measured the flammability limit of low temperature hydrogen gas. Its range at low temperature was narrower than the range at normal temperature.
Explosion and Fire Risk Analyses of Maritime Fuel Cell Rooms with Hydrogen
Sep 2017
Publication
A methodology for explosion and fire risk analyses in enclosed rooms is presented. The objectives of this analysis are to accurately predict the risks associated with hydrogen leaks in maritime applications and to use the approach to provide decision support regarding design and risk-prevention and risk mitigating measures. The methodology uses CFD tools and simpler consequence models for ventilation dispersion and explosion scenarios as well as updated frequency for leaks and ignition. Risk is then efficiently calculated with a Monte Carlo routine capturing the transient behavior of the leak. This makes it possible to efficiently obtain effects of sensitivities and design options maintaining safety and reducing costs.
Materials Aspects Associated with the Addition of up to 20 mol% Hydrogen into an Existing Natural Gas Distribution Network
Sep 2019
Publication
The introduction of hydrogen into the UK natural gas main has been reviewed in terms of how materials within the gas distribution network may be affected by contact with up to 80% Natural Gas : 20 mol% hydrogen blend at up to 2 barg. A range of metallic polymeric and elastomeric materials in the gas distribution network (GDN) were assessed via a combination of literature review and targeted practical test programmes.
The work considered:
The work considered:
- The effect of hydrogen on metallic materials identified in the network
- The effect of hydrogen on polymeric materials identified in the network
- The effect of hydrogen exposure on polyethylene pipeline techniques (squeeze off and collar electrofusion)
Development of a Hydrogen and Fuel Cell Vehicle Emergency Response National Template
Sep 2013
Publication
The California Fuel Cell Partnership (CaFCP) is currently working with key stakeholders like the US Department of Energy (DOE) and National Fire Protection Association (NFPA) to develop a national template for educating and training first responders about hydrogen fuel cell-powered vehicles (FCV) and hydrogen fuelling infrastructure. Currently there are several existing programs that either have some related FCV/hydrogen material or have plans to incorporate this in the future. To create a robust national emergency responder (ER) program the strongest elements from these existing programs are considered for incorporation into the template. Working with the key stakeholders the national template will be evaluated on a regular basis to ensure accurate and up to date information and resources and effective teaching techniques for the emergency response community. This paper describes the evaluation process discusses elements of the template and reports on the steps and progress to implementation; all in the effort to effectively support the emergency response community as hydrogen infrastructure develops and FCVs are leased or sold.
Hydrogen Wide Area Monitoring of LH2 Releases
Sep 2019
Publication
The characterization of liquid hydrogen (LH2) releases has been identified as an international research priority to expand the safe use of hydrogen as an energy carrier. The elucidation of LH2 release behavior will require the development of dispersion and other models guided and validated by empirical field measurements such as those afforded by Hydrogen Wide Area Monitoring (HyWAM). HyWAM can be defined as the quantitative spatial and temporal three-dimensional monitoring of planned or unintentional hydrogen releases. With support provided through the FCH JU Prenormative Research for the Safe Use of Liquid Hydrogen (PRESLHY) program HSE performed a series of LH2 releases to characterize the dispersion and pooling behavior of cold hydrogen releases. The NREL Sensor Laboratory developed a HyWAM system based upon a distributed array of point sensors that is amenable for profiling cold hydrogen plumes. The NREL Sensor Laboratory and HSE formally committed to collaborate on profiling the LH2 releases. This collaboration included the integration of the NREL HyWAM into the HSE LH2 release hardware. This was achieved through a deployment plan jointly developed by the NREL and HSE personnel. Under this plan the NREL Sensor Laboratory provided multiple HyWAM modules that accommodated 32 sampling points for near-field hydrogen profiling during the HSE PRESLHY LH2 releases. The NREL HyWAM would be utilized throughout the LH2 release study performed under PRESLHY by HSE including Work Package 3 (WP3—Release and Mixing--Rainout) and subsequent work packages (WP4—Ignition and WP5—Combustion). Under the auspices of the PRESLHY WP6 (Implementation) data and findings from the HSE LH2 Releases are to be made available to stakeholders in the hydrogen community. Comprehensive data analysis and dissemination is ongoing but the integration of the NREL HyWAM into the HSE LH2 Release Apparatus and its performance as well as some key outcomes of the LH2 releases in WP3 are presented.
A GIS-based Risk Assessment for Hydrogen Transport: A Case Study in Yokohama City
Sep 2019
Publication
Risk assessment of hazardous material transport by road is critical in considering the spatial features of the transport route. However previous studies that focused on hydrogen transport were unable to reflect the spatial features in their risk assessments. Hence this study aims to assess the risk of hydrogen transport by road considering the spatial features of the transport route based on a geographic information system (GIS). This risk assessment method is conducted through a case study in Yokohama which is an advanced city for hydrogen economy in Japan. In our assessment the risk determined by multiplying the frequency of accidents with the consequence was estimated by road segments that constitute the entire transport route. The effects of the road structure and traffic volumes were reflected in the estimation of the frequency and consequence for each road segment. All estimations of frequency consequence and risk were conducted on a GIS compiled with the information regarding the road network and population. In the case study in Yokohama the route for the transport of compressed hydrogen was virtually set from the near-term perspectives. Based on the case study results the risks of the target transport route were assessed at an acceptable level under the previous risk criteria. The results indicated that the risks fluctuated according to the road segments. This implies that the spatial features of the transport route significantly affect the corresponding risks. This finding corroborates the importance of considering spatial features in the risk assessment of hydrogen transport by road. Furthermore the discussion of this importance leads to the capability of introducing hydrogen energy careers with high transport efficiency and transport routing to avoid high risk road segments as risk countermeasures.
Study of a Post-fire Verification Method for the Activation Status of Hydrogen Cylinder Pressure Relief Devices
Oct 2015
Publication
To safely remove from its fire accident site a hydrogen fuel cell vehicle equipped with a carbon fiber reinforced plastic composite cylinder for compressed hydrogen (CFRP cylinder) and to safely keep the burnt vehicle in a storage facility it is necessary to verify whether the thermally-activated pressure relief device (TPRD) of the CFRP cylinder has already been activated releasing the hydrogen gas from the cylinder. To develop a simple post-fire verification method on TPRD activation the present study was conducted on the using hydrogen densitometer and Type III and Type IV CFRP cylinders having different linings. As the results TPRD activation status can be determined by measuring hydrogen concentrations with a catalytic combustion hydrogen densitometer at the cylinder's TPRD gas release port.
CFD Study of the Unignited and Ignited Hydrogen Releases from TRPD Under a Fuel Cell Car
Oct 2015
Publication
This paper describes a CFD study of a scenario involving the vertical downward release of hydrogen from a thermally-activated pressure relief device (TPRD) under a fuel cell car. The volumetric source model is applied to simulate hydrogen release dynamics during the tank blowdown process. Simulations are conducted for both unignited and ignited releases from onboard storage at 35 MPa and 70 MPa with TPRD orifice 4.2 mm. Results show that after TPRD opening the hazards associated with the release of hydrogen lasts less than two minutes and the most hazardous timeframe occurs within ten seconds of the initiation of the release. The deterministic separation distances for unignited releases are longer than those for ignited releases indicating that the separation distances are dominated by delayed ignition events rather than immediate ignition events. The deterministic separation distances for both unignited and ignited hydrogen downward releases under the car are significantly shorter than those of free jets. To ensure the safety of people a deterministic separation distance of at least 10 m for 35 MPa releases is required. This distance should be increased to 12 m for the 70 MPa release case. To ensure that the concentration of hydrogen is always less than 4% at the location of the air intake of buildings the deterministic separation distance should be at least 11 m for 35 MPa releases and 13 m for 70 MPa releases.
Analysis of the Parametric-Acoustic Instability for Safety Assessment of Hydrogen-Air Mixtures in Closed Volumes
Sep 2011
Publication
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. Two approaches for the investigation of the problem have been considered. The simplified analytical model proposed by Bychkov was selected initially. Its range of applicability resulted to be very restricted and therefore numerical solutions of the problem were taken into account. The results obtained were used to study the existence of spontaneous transition from the acoustic to the parametric instability for different fuel concentrations. Finally the growth rate of the instabilities was numerically calculated for a set of typical mixtures for hydrogen safety.
Hydrogen Emergency Response Training for First Responders
Sep 2011
Publication
The U.S. Department of Energy supports the implementation of hydrogen fuel cell technologies by providing hydrogen safety and emergency response training to first responders. A collaboration was formed to develop and deliver a one-day course that uses a mobile fuel cell vehicle (FCV) burn prop designed and built by Kidde Fire Trainers. This paper describes the development of the training curriculum including the design and operation of the FCV prop; describes the successful delivery of this course to over 300 participants at three training centers in California; and discusses feedback and observations received on the course. Photographs and video clips of the training sessions will be presented.
Low Energy Hydrogen Sensor
Sep 2011
Publication
A new silicon-based hydrogen sensor for measurements at high concentrations near the lower flammable limit of hydrogen (40000 ppm) is presented. Due to operation at room temperature the power consumption of the sensor is smaller than that of other sensors on the market by several orders magnitude. Further development of the sensor system could lead to battery powered or even energy-independent operation. As sensor fabrication is based on semiconductor technology low-cost production can be achieved for the mass market. The sensor investigated showed good long-term stability combined with a fast response on the basis of cyclic thermal activations. This was demonstrated by a stress test that simulated the activation and measurement cycles experienced by the sensor in one year. Finite element method was used to further reduce the power consumption of the thermal activation. This resulted in an average power consumption of 2 × 10−6 W for the sensor activation.
Development of an Italian Fire Prevention Technical Rule For Hydrogen Pipelines
Sep 2011
Publication
This paper summarizes the current results of the theoretical and experimental activity carried out by the Italian Working Group on the fire prevention safety issues in the field of the hydrogen transport in pipelines. From the theoretical point of view a draft document has been produced beginning from the regulations in force on the natural gas pipelines; these have been reviewed corrected and integrated with the instructions suitable to the use of hydrogen. From the experimental point of view an apparatus has been designed and installed at the University of Pisa; this apparatus has allowed the simulation of hydrogen releases from a pipeline with and without ignition of hydrogen-air mixture. The experimental data have helped the completion of the above-mentioned draft document with the instructions about the safety distances. The document has been improved for example pipelines above ground (not buried) are allowed due to the knowledge acquired by means of the experimental campaign. The safety distances related to this kind of piping has been chosen on the base of risk analysis. The work on the text contents is concluded and the document is currently under discussion with the Italian stakeholders involved in the hydrogen applications.
Numerical Study of Spontaneous Ignition in Pressurized Hydrogen Release Through a Length of Tube with Local Contraction
Sep 2011
Publication
Numerical investigations have been conducted on the effect of the internal geometry of a local contraction on the spontaneous ignition of pressurized hydrogen release through a length of tube using a 5th-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The auto-ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. It is found that a local contraction can significantly facilitate the occurrence of spontaneous ignition by producing elevated flammable mixture and enhancing turbulent mixing from shock formation reflection and interaction. The first ignition kernel is observed upstream the contraction. It then quickly propagates along the contact interface and transits to a partially premixed flame due to the enhanced turbulent mixing. The partially premixed flames are highly distorted and overlapped with each other. Flame thickening is observed which is due to the merge of thin flames. The numerical predictions suggested that sustained flames could develop for release pressure as low as 25 bar. For the release pressure of 18 bar spontaneous ignition was predicted but the flame was soon quenched. To some extent this finding is consistent with Dryer et al.'s experimental observation in that the minimum release pressure required to induce a spontaneous ignition for the release through a tube with internal geometries is only 20.4 bar.
No more items...