Transmission, Distribution & Storage
A Review on Underground Hydrogen Storage: Insight into Geological Sites, Influencing Factors and Future Outlook
Dec 2021
Publication
Without remorse fossil fuels have made a huge contribution to global development in all of its forms. However the recent scientific outlooks are currently shifting as more research is targeted towards promoting a carbon-free economy in addition to the use of electric power from renewable sources. While renewable energy sources may be a solution to the anthropogenic greenhouse gas (GHG) emissions from fossil fuel they are yet season-dependent faced with major atmospheric drawbacks which when combined with annually varying but steady energy demand results in renewable energy excesses or deficits. Therefore it is essential to devise a long-term storage medium to balance their intermittent demand and supply. Hydrogen (H2) as an energy vector has been suggested as a viable method of achieving the objectives of meeting the increasing global energy demand. However successful implementation of a full-scale H2 economy requires large-scale H2 storage (as H2 is highly compressible). As such storage of H2 in geological formations has been considered as a potential solution where it can be withdrawn again at the larger stage for utilization. Thus in this review we focus on the potential use of geological formations for large-scale underground hydrogen storage (UHS) where both conventional and non-conventional UHS options were examined in depth. Also insights into some of the probable sites and the related examined criteria for selection were highlighted. The hydrodynamics of UHS influencing factors (including solid fluid and solid–fluid interactions) are summarized exclusively. In addition the economics and reaction perspectives inherent to UHS have been examined. The findings of this study show that UHS like other storage systems is still in its infancy. Further research and development are needed to address the significant hurdles and research gaps found particularly in replaceable influencing parameters. As a result this study is a valuable resource for UHS researchers.
Optimal Hydrogen Carrier: Holistic Evaluation of Hydrogen Storage and Transportation Concepts for Power Generation, Aviation, and Transportation
Oct 2022
Publication
The storage of excess electrical generation enabled through the electrolytic production of hydrogen from water would allow “load-shifting” of power generation. This paves the way for hydrogen as an energy carrier to be further used as a zero‑carbon fuel for land air and sea transportation. However challenges in hydrogen storage and transportation ultimately pose restrictions on its wider adaption along horizontal and vertical vectors. This paper investigates chemical energy carriers ranging from small molecules such as ammonia and methane to formic acid as well as other more complex hydrocarbons in response to this timely engineering problem. The hydrogenation and dehydrogenation of such carrier molecules require energy lowering the effective net heating value of hydrogen up to 32 %. Different carrier approaches are discussed in the light of availability energetics water requirements and suitability for applications in power generation shipping trucking and aviation supplemented by a comprehensive safety review making this study unique in its field. It is found that hydrogen delivered without a carrier is ideal for power generation applications due to the large quantities required. Aviation would benefit from either ammonia or hydrogen and is generally a field challenging to decarbonize. Ammonia appears also to be a good medium for shipping hydrogen between continents and to power container ships due to its high energy density and lower liquid temperature compared with hydrogen. At the same time ammonia can also be used to power the ship's engine. Long-haul trucking would benefit the most from cryogenic or compressed hydrogen due to the lower quantities required and purity requirements of the fuel cells.
Corrosion Cracking of Carbon Steels of Different Structure in the Hydrogen Sulfide Environment Under Static Load
Dec 2018
Publication
Hydrogen sulfide corrosion is one of the main reasons of steels destruction in the oil and gas industry. Damages appear as a result of corrosion and hydrogen embrittlement and corrosion cracking occurs when the load is applied. The influence of the steels structure on its stress corrosion cracking under the loads in hydrogen sulfide environment is insufficiently studied. The aim of the study is to determine the influence of the steels structure on its corrosion hydrogenation and corrosion cracking in the NACE hydrogen sulfide solution.<br/>It was established that the corrosion rate and hydrogenation of steel У8 in the NACE solution grows when the structure dispersion increases from perlite to sorbite troostite and martensite. The corrosion rate and hydrogenation of steel 45 are the greatest in pearlite-ferrite while the smallest - in sorbite.<br/>The corrosion of steels У8 and 45 in the NACE solution is localized: the average size of the ulcers is 50 ... 80 μm on the steel У8 and 45 ... 65 μm on steel 45. The depth of ulcers is maximal on the steel У8 with the martensite structure (~ 260 μm) and on the steel 45 with the troostite structure (~ 210 μm).<br/>Static load (σ = 300 MPa) increases the hydrogenation of steels in the hydrogen sulfide environment. The concentration of hydrogen in steel У8 with troostite structure increases by ~ 1.8 times. The concentration of hydrogen in steel 45 with troostite and martensite structures increases by ~ 1.2...1.3 and by ~ 1.4...1.6 times respectively.<br/>The steel У8 with martensite and perlite structures and steel 45 with troostite structure has the lowest resistance to corrosion cracking. Steels destruction depends on both hydrogen permeation and the corrosion localization which leads to the increase of the microelectrochemical heterogeneity of the surfaces.
Mn-based Borohydride Synthesized by Ball-milling KBH4 and MnCl2 for Hydrogen Storage
Dec 2013
Publication
In this work a mixed-cation borohydride (K2Mn(BH4)4) with P21/n structure was successfully synthesized by mechanochemical milling of the 2KBH4–MnCl2 sample under argon. The structural and thermal decomposition properties of the borohydride compounds were investigated using XRD Raman spectroscopy FTIR TGA-MS and DSC. Apart from K2Mn(BH4)4 the KMnCl3 and unreacted KBH4 compounds were present in the milled 2KBH4–MnCl2. The two mass loss regions were observed for the milled sample: one was from 100 to 160 °C with a 1.6 ± 0.1 wt% loss (a release of majority hydrogen and trace diborane) which was associated with the decomposition of K2Mn(BH4)4 to form KBH4 boron and finely dispersed manganese; the other was from 165 to 260 °C with a 1.9 ± 0.1 wt% loss (only hydrogen release) which was due to the reaction of KBH4 with KMnCl3 to give KCl boron finely dispersed manganese. Simultaneously the formed KCl could dissolve in KBH4 to yield a K(BH4)xCl1−x solid solution and also react with KMnCl3 to form a new compound K4MnCl6.
Hydrogen Trapping in bcc Iron
May 2020
Publication
Fundamental understanding of H localization in steel is an important step towards theoretical descriptions of hydrogen embrittlement mechanisms at the atomic level. In this paper we investigate the interaction between atomic H and defects in ferromagnetic body-centered cubic (bcc) iron using density functional theory (DFT) calculations. Hydrogen trapping profiles in the bulk lattice at vacancies dislocations and grain boundaries (GBs) are calculated and used to evaluate the concentrations of H at these defects as a function of temperature. The results on H-trapping at GBs enable further investigating H-enhanced decohesion at GBs in Fe. A hierarchy map of trapping energies associated with the most common crystal lattice defects is presented and the most attractive H-trapping sites are identified.
Estimation of Filling Time for Compressed Hydrogen Refueling
Mar 2019
Publication
In order to facilitate the application of hydrogen energy and ensure its safety the compressed hydrogen storage tank on board needs to be full of hydrogen gas within 3 minutes. Therefore to meet this requirement the effects of refueling parameters on the filling time need to be investigated urgently. For the purpose of solving this issue a novel analytical solution of filling time is obtained from a lumped parameter model in this paper. According to the equation of state for real gas and dimensionless numbers Nu and Re the function relationships between the filling time and the refueling parameters are presented. These parameters include initial temperature initial pressure inflow temperature final temperature and final pressure. These equations are used to fit the reference data the results of fitting show good agreement. Then the values of fitting parameters are further utilized so as to verify the validity of these formulas. We believe this study can contribute to control the hydrogen filling time and ensure the safety during fast filling process.
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportation distributed heat and power generation and energy storage systems with little or no impact on the environment both locally and globally. However any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Effect of Ternary Transition Metal Sulfide FeNi2S4 on Hydrogen Storage Performance of MgH2
Jan 2022
Publication
Hydrogen storage is a key link in hydrogen economy where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety. Thereinto magnesium-based materials (MgH2) are currently deemed as an attractive candidate due to the potentially high hydrogen storage density (7.6 wt%) however the stable thermodynamics and slow kinetics limit the practical application. In this study we design a ternary transition metal sulfide FeNi2S4 with a hollow balloon structure as a catalyst of MgH2 to address the above issues by constructing a MgH2/Mg2NiH4−MgS/Fe system. Notably the dehydrogenation/hydrogenation of MgH2 has been significantly improved due to the synergistic catalysis of active species of Mg2Ni/Mg2NiH4 MgS and Fe originated from the MgH2-FeNi2S4 composite. The hydrogen absorption capacity of the MgH2-FeNi2S4 composite reaches to 4.02 wt% at 373 K for 1 h a sharp contrast to the milled-MgH2 (0.67 wt%). In terms of dehydrogenation process the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH2 and the dehydrogenation activation energy decreases by 95.7 kJ mol–1 compared with the milled-MgH2 (161.2 kJ mol–1). This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH2 material.
Recent Studies of Hydrogen Embrittlement in Structural Materials
Dec 2018
Publication
Mechanical properties of metals and their alloys are most often determined by interstitial atoms. Hydrogen as one common interstitial element is often found to degrade the fracture behavior and lead to premature or catastrophic failure in a wide range of materials known as hydrogen embrittlement. This topic has been studied for more than a century yet the basic mechanisms of such degradation remain in dispute for many metallic systems. This work attempts to link experimentally and theoretically between failure caused by the presence of hydrogen and second phases lattice distortion and deformation levels.
A Review of Cohesive Zone Modelling as an Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures
Jun 2014
Publication
Simulation of hydrogen embrittlement (HE) requires a coupled approach; on one side the models describing hydrogen transport must account for local mechanical fields while on the other side the effect of hydrogen on the accelerated material damage must be implemented into the model describing crack initiation and growth. This study presents a review of coupled diffusion and cohesive zone modelling as a method for numerically assessing HE of a steel structure. While the model is able to reproduce single experimental results by appropriate fitting of the cohesive parameters there appears to be limitations in transferring these results to other hydrogen systems. Agreement may be improved by appropriately identifying the required input parameters for the particular system under study.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Parametric Studies on LaNi4.7Al0.3 Based Hydrogen Storage Reactor with Embedded Cooling Tubes
Mar 2019
Publication
This study reports the investigative conclusions of parametric studies conducted to understand the effect of operating parameters on absorption and desorption characteristics of LaNi4.7Al0.3 metal hydride system for thermal management applications. Reactor with improved design containing 55 embedded cooling tubes is fabricated and filled with 4 kg of metal hydride alloy. Using water as heat transfer fluid (HTF) effects of supply pressure HTF temperature and HTF flow rate on absorption and desorption characteristics of the reactor are analyzed. Increasing supply pressure leads to prominent improvement in absorption capacity while the increase in HTF temperature enhanced desorption performance. At 20 bar and 20 °C 46.2877 g of hydrogen (1.16 wt%) was absorbed resulting in total energy output of 707.3 kJ for 300 s. During desorption at 80 °C with water flow rate of 8 lpm heat input of 608.1 kJ for 300 s resulted in 28.5259 g of hydrogen desorption.
Effect of Hydrogen on Fatigue Limit of SCM435 Low-Alloy Steel
Dec 2019
Publication
The objective of this study is to gain a basic understanding of the effect of hydrogen on the fatigue limit. The material was a low-alloy steel modified to be sensitive to hydrogen embrittlement by heat treatment. A statistical fatigue test was carried out using smooth and deep-notched specimens at a loading frequency of 20 Hz. The environment was laboratory air and hydrogen gas. The hydrogen gas pressure was 0.1 MPa in gauge pressure. The fatigue limit of the smooth specimen was higher in the hydrogen gas than that in air although the material showed severe hydrogen embrittlement during the SSRT (Slow Strain Rate Test). The fatigue limit of the deep-notched specimen in the hydrogen gas was the same as that in air. For the smooth specimen the fatigue limit was determined by whether or not a crack was initiated. For the deep-notched specimen the fatigue limit was determined by whether or not a crack propagated. The results can be interpreted as that hydrogen has no significant effect on crack initiation in the high-cycle fatigue regime and affected the threshold of the crack propagation.
Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen
Mar 2020
Publication
Titanium-based alloys are susceptible to hydrogen embrittlement (HE) a phenomenon that deteriorates fatigue properties. Ti-6Al-4V is the most widely used titanium alloy and the effect of hydrogen embrittlement on fatigue crack growth (FCG) was investigated by carrying out crack propagation tests in air and high-pressure H2 environment. The FCG test in hydrogen environment resulted in a drastic increase in crack growth rate at a certain Δ K with crack propagation rates up to 13 times higher than those observed in air. Possible reasons for such behaviour were discussed in this paper. The relationship between FCG results in high-pressure H2 environment and microstructure was investigated by comparison with already published results of cast and forged Ti-6Al-4V. Coarser microstructure was found to be more sensitive to HE. Moreover the electron beam melting (EBM) materials experienced a crack growth acceleration in-between that of cast and wrought Ti-6Al-4V
Hydrogen Storage Mechanism in Sodium-Based Graphene Nanoflakes: A Density Functional Theory Study
Jan 2022
Publication
Carbon materials such as graphene nanoflakes carbon nanotubes and fullerene can be widely used to store hydrogen and doping these materials with lithium (Li) generally increases their H2 -storage densities. Unfortunately Li is expensive; therefore alternative metals are required to realize a hydrogen-based society. Sodium (Na) is an inexpensive element with chemical properties that are similar to those of lithium. In this study we used density functional theory to systematically investigate how hydrogen molecules interact with Na-doped graphene nanoflakes. A graphene nanoflake (GR) was modeled by a large polycyclic aromatic hydrocarbon composed of 37 benzene rings with GR-Na-(H2 )n and GR-Na+ -(H2 )n (n = 0–12) clusters used as hydrogen storage systems. Data obtained for the Na system were compared with those of the Li system. The single-H2 GR-Li and GR-Na systems (n = 1) exhibited binding energies (per H2 molecule) of 3.83 and 2.72 kcal/mol respectively revealing that the Li system has a high hydrogen-storage ability. This relationship is reversed from n = 4 onwards; the Na systems exhibited larger or similar binding energies for n = 4–12 than the Li-systems. The present study strongly suggests that Na can be used as an alternative metal to Li in H2 -storage applications. The H2 -storage mechanism in the Na system is also discussed based on the calculated results.
Improving Hydrogen Embrittlement Resistance of Hot-Stamped 1500 MPa Steel Parts That Have Undergone a Q&P Treatment by the Design of Retained Austenite and Martensite Matrix
Nov 2020
Publication
Hydrogen embrittlement is one of the largest obstacles against the commercialisation of ultra-high strength quenching and partitioning (Q&P) steels with ultimate tensile strength over 1500 MPa including the hot stamped steel parts that have undergone a Q&P treatment. In this work the influence of partitioning temperature on hydrogen embrittlement of ultra-high strength Q&P steels is studied by pre-charged tensile tests with both dog-bone and notched samples. It is found that hydrogen embrittlement resistance is enhanced by the higher partitioning temperature. Then the hydrogen embrittlement mechanism is analysed in terms of hydrogen retained austenite and martensite matrix. Thermal desorption analysis (TDA) shows that the hydrogen trapping properties are similar in the Q&P steels which cannot explain the enhancement of hydrogen embrittlement resistance. On the contrary it is found that the relatively low retained austenite stability after the higher temperature partitioning ensures more sufficient TRIP effect before hydrogen-induced fracture. Additionally dislocation recovery and solute carbon depletion at the higher partitioning temperature can reduce the flow stress of the martensite matrix improving its intrinsic toughness and reducing its hydrogen sensitivity both of which result in the higher hydrogen embrittlement resistance.
Heuristic Design of Advanced Martensitic Steels That Are Highly Resistant to Hydrogen Embrittlement by ε-Carbide
Feb 2021
Publication
Many advanced steels are based on tempered martensitic microstructures. Their mechanical strength is characterized by fine sub-grain structures with a high density of free dislocations and metallic carbides and/or nitrides. However the strength for practical use has been limited mostly to below 1400 MPa owing to delayed fractures that are caused by hydrogen. A literature survey suggests that ε-carbide in the tempered martensite is effective for strengthening. A preliminary experimental survey of the hydrogen absorption and hydrogen embrittlement of a tempered martensitic steel with ε-carbide precipitates suggested that the proper use of carbides in steels can promote a high resistance to hydrogen embrittlement. Based on the surveys martensitic steels that are highly resistant to hydrogen embrittlement and that have high strength and toughness are proposed. The heuristic design of the steels includes alloying elements necessary to stabilize the ε-carbide and procedures to introduce inoculants for the controlled nucleation of ε-carbide.
Carbon Capture and Storage in the USA: The Role of US Innovation Leadership in Climate-technology Commercialization
Nov 2019
Publication
To limit global warming and mitigate climate change the global economy needs to decarbonize and reduce emissions to net-zero by mid-century. The asymmetries of the global energy system necessitate the deployment of a suite of decarbonization technologies and an all-of-the-above approach to deliver the steep CO2 -emissions reductions necessary. Carbon capture and storage (CCS) technologies that capture CO2 from industrial and power-plant point sources as well as the ambient air and store them underground are largely seen as needed to address both the flow of emissions being released and the stock of CO2 already in the atmosphere. Despite the pressing need to commercialize the technologies their large-scale deployment has been slow. Initial deployment however could lead to near-term cost reduction and technology proliferation and lowering of the overall system cost of decarbonization. As of November 2019 more than half of global large-scale CCS facilities are in the USA thanks to a history of sustained government support for the technologies. Recently the USA has seen a raft of new developments on the policy and project side signalling a reinvigorated push to commercialize the technology. Analysing these recent developments using a policy-priorities framework for CCS commercialization developed by the Global CCS Institute the paper assesses the USA’s position to lead large-scale deployment of CCS technologies to commercialization. It concludes that the USA is in a prime position due to the political economic characteristics of its energy economy resource wealth and innovation-driven manufacturing sector.
Study on Critical Technologies and Development Routes of Coal-based Hydrogen Energy
Jul 2019
Publication
Hydrogen is considered a secondary source of energy commonly referred to as an energy carrier. It has the highest energy content when compared to other common fuels by weight having great potential for further development. Hydrogen can be produced from various domestic resources but based on the fossil resource conditions in China coal-based hydrogen energy is considered to be the most valuable because it is not only an effective way to develop clean energy but also a proactive exploration of the clean usage of traditional coal resources. In this article the sorption-enhanced water–gas shift technology in the coal-to-hydrogen section and the hydrogen-storage and transport technology with liquid aromatics are introduced and basic mechanisms technical advantages latest progress and future R&D focuses of hydrogen-production and storage processes are listed and discussed. As a conclusion after considering the development frame and the business characteristics of CHN Energy Group a conceptual architecture for developing coal-based hydrogen energy and the corresponding supply chain is proposed.
Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
Apr 2021
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 o 4.8 ×10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments
Aug 2020
Publication
To avoid failures due to hydrogen embrittlement it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three different carbon steels (API 5CT L80 Type 1 P110 and 42CrMo4) was investigated in autoclave tests with hydrogen gas (H2) at elevated pressure and in ambient pressure tests with hydrogen sulfide (H2S). H2 gas with a pressure of up to 100 bar resulted in an overall low but still detectable hydrogen absorption which did not cause any substantial hydrogen embrittlement in specimens under a constant load of 90% of the specified minimum yield strength (SMYS). The amount of hydrogen absorbed under conditions with H2S was approximately one order of magnitude larger than under conditions with H2 gas. The high hydrogen content led to failures of the 42CrMo4 and P110 specimens.
The Effect of Electrolytic Hydrogenation on Mechanical Properties of T92 Steel Weldments under Different PWHT Conditions
Aug 2020
Publication
In the present work the effects of electrolytic hydrogen charging of T92 steel weldments on their room-temperature tensile properties were investigated. Two circumferential weldments between the T92 grade tubes were produced by gas tungsten arc welding using the matching Thermanit MTS 616 filler material. The produced weldments were individually subjected to considerably differing post-welding heat treatment (PWHT) procedures. The first-produced weldment was conventionally tempered (i.e. short-term annealed below the Ac1 critical transformation temperature of the T92 steel) whereas the second one was subjected to its full renormalization (i.e. appropriate reaustenitization well above the T92 steel Ac3 critical transformation temperature and subsequent air cooling) followed by its conventional subcritical tempering. From both weldments cylindrical tensile specimens of cross-weld configuration were machined. The room-temperature tensile tests were performed for the individual welds’ PWHT states in both hydrogen-free and electrolytically hydrogen-charged conditions. The results indicated higher hydrogen embrittlement susceptibility for the renormalized-and-tempered weldments compared to the conventionally tempered ones. The obtained findings were correlated with performed microstructural and fractographic observations.
A Review on Advanced Manufacturing for Hydrogen Storage Applications
Dec 2021
Publication
Hydrogen is a notoriously difficult substance to store yet has endless energy applications. Thus the study of long-term hydrogen storage and high-pressure bulk hydrogen storage have been the subject of much research in the last several years. To create a research path forward it is important to know what research has already been done and what is already known about hydrogen storage. In this review several approaches to hydrogen storage are addressed including high-pressure storage cryogenic liquid hydrogen storage and metal hydride absorption. Challenges and advantages are offered based on reported research findings. Since the project looks closely at advanced manufacturing techniques for the same are outlined as well. There are seven main categories into which most rapid prototyping styles fall. Each is briefly explained and illustrated as well as some generally accepted advantages and drawbacks to each style. An overview of hydrogen adsorption on metal hydrides carbon fibers and carbon nanotubes are presented. The hydrogen storage capacities of these materials are discussed as well as the differing conditions in which the adsorption was performed under. Concepts regarding storage shape and materials accompanied by smaller-scale advanced manufacturing options for hydrogen storage are also presented.
Feasibility of Renewable Hydrogen Based Energy Supply for a District
Sep 2017
Publication
Renewable generation technologies (e.g. photovoltaic panels (PV)) are often installed in buildings and districts with an aim to decrease their carbon emissions and consumption of non-renewable energy. However due to a mismatch between supply and demand at an hourly but also on a seasonal timescale; a large amount of electricity is exported to the grid rather than used to offset local demand. A solution to this is local storage of electricity for subsequent self-consumption. This could additionally provide districts with new business opportunities financial stability flexibility and reliability.<br/>In this paper the feasibility of hydrogen based electricity storage for a district is evaluated. The district energy system (DES) includes PV and hybrid photovoltaic panels (PVT). The proposed storage system consists of production of hydrogen using the renewable electricity generated within the district hydrogen storage and subsequent use in a fuel cell. Combination of battery storage along with hydrogen conversion and storage is also evaluated. A multi-energy optimization approach is used to model the DES. Results of the model are optimal battery capacity electrolyzer capacity hydrogen storage capacity fuel cell capacity and energy flows through the system. The model is also used to compare different system design configurations. The results of this analysis show that both battery capacity and conversion of electricity to hydrogen enable the district to decrease its carbon emissions by approximately 22% when compared to the reference case with no energy storage.
Energy Storage as Part of a Secure Energy Supply
Mar 2017
Publication
Florian Ausfelder,
Christian Beilmann,
Martin Bertau,
Sigmar Bräuninger,
Angelika Heinzel,
Renate Hoer,
Wolfram Koch,
Falko Mahlendorf,
Anja Metzelthin,
Marcell Peuckert,
Ludolf Plass,
Konstantin Räuchle,
Martin Reuter,
Georg Schaub,
Sebastian Schiebahn,
Ekkehard Schwab,
Ferdi Schüth,
Detlef Stolten,
Gisa Teßmer,
Kurt Wagemann and
Karl-Friedrich Ziegahn
The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However it affects all areas of the energy system albeit with different results. Within the energy system various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers and the demand-oriented supply ensures that energy demands are met at all times. However renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly.<br/>Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy store it in a storage medium for a suitable period of time and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations.<br/>These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage various technologies are currently in various stages of research development and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat exploitation of phase transitions adsorption/desorption processes and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen.<br/>Hydrogen can be transformed by various processes into other energy carriers which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector it also creates new opportunities for increased flexibility novel synergies and additional optimization.<br/>Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications. The article describes various technologies for energy storage and their potential applications in the context of Germany’s Energiewende i.e. the transition towards a more sustainable energy system. Therefore the existing legal framework defines some of the discussions and findings within the article specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act which is under constant reformation. While the article is written from a German perspective the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology.
Formation and Dissociation Behaviour Studies of Hydrogen Hydrate in the Presence of Tetrahydrofuran by using High Pressure DSC
Mar 2019
Publication
Significant challenges still remain in the development of suitable materials for storing hydrogen for practical applications. Clathrate hydrates as a special inclusion compounds could be tailored by changing the storage pressure and temperature to adapt ambient conditions. In this work the hydrates were adopted to encage hydrogen in tetrahydrofuran (THF) aqueous solution with concentration of 3.0 mol%. The formation and dissociation behaviours were investigated by a high pressure micro-differential scanning calorimeter at the operating pressure of 18 MPa 25 MPa and 34 MPa. Experimental results show that the memory water only affects the hydrate formation behaviour instead of the hydrate dissociation behaviour. The dissociation temperature of the THF-H2 hydrate increases with the increase of the operating pressure and its dissociation equilibrium data can be obtained. The dissociation temperatures of the THF-H2 hydrate are 9.26 ℃ 10.94 ℃ and 12.67 ℃ at the operating pressure of 18 MPa 25 MPa and 34 MPa respectively. It is fundamental for performing the kinetics and microscopic experiments.
Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions
Feb 2020
Publication
The formation of elongated zirconium hydride platelets during corrosion of nuclear fuel clad is linked to its premature failure due to embrittlement and delayed hydride cracking. Despite their importance however most existing models of hydride nucleation and growth in Zr alloys are phenomenological and lack sufficient physical detail to become predictive under the variety of conditions found in nuclear reactors during operation. Moreover most models ignore the dynamic nature of clad oxidation which requires that hydrogen transport and precipitation be considered in a scenario where the oxide layer is continuously growing at the expense of the metal substrate. In this paper we perform simulations of hydride formation in Zr clads with a moving oxide/metal boundary using a stochastic kinetic diffusion/reaction model parameterized with state-of-the-art defect and solute energetics. Our model uses the solutions of the hydrogen diffusion problem across an increasingly-coarse oxide layer to define boundary conditions for the kinetic simulations of hydrogen penetration precipitation and dissolution in the metal clad. Our method captures the spatial dependence of the problem by discretizing all spatial derivatives using a stochastic finite difference scheme. Our results include hydride number densities and size distributions along the radial coordinate of the clad for the first 1.6 h of evolution providing a quantitative picture of hydride incipient nucleation and growth under clad service conditions.
Heat Transfer Analysis for Fast Filling of On-board Hydrogen Tank
Mar 2019
Publication
The heat transfer analysis in the filling process of compressed on-board hydrogen storage tank has been the focus of hydrogen storage research. The initial conditions mass flow rate and heat transfer coefficient have certain influence on the hydrogen filling performance. In this paper the effects of mass flow rate and heat transfer coefficient on hydrogen filling performance are mainly studied. A thermodynamic model of the compressed hydrogen storage tank was established by Matlab/Simulink. This 0D model is utilized to predict the hydrogen temperature hydrogen pressure tank wall temperature and SOC (State of Charge) during filling process. Comparing the simulated results with the experimental data the practicability of the model can be verified. The simulated results have certain meaning for improving the hydrogenation parameters in real filling process. And the model has a great significance to the study of hydrogen filling and purification.
Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems
Aug 2015
Publication
This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV) system (nearly 100% self-consumption). Thereby the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.
Materials Towards Carbon-free, Emission-free and Oil-free Mobility: Hydrogen Fuel-cell Vehicles—Now and in the Future
Jul 2010
Publication
In the past material innovation has changed society through new material-induced technologies adding a new value to society. In the present world engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy it is time to accelerate our efforts towards this change.
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
In-situ Study of the Effect of Hydrogen on Fatigue Crack Initiation in Polycrystalline Nickel
Aug 2019
Publication
Correlating hydrogen embrittlement phenomenon with the metallic microstructural features holds the key for developing metals resistant to hydrogen-based failures. In case of fatigue failure of hydrogen charged metals in addition to the hydrogen-based failure mechanisms associated with monotonic loading such as HELP HEDE etc. microstructural features such as grain size type of grain boundary (special/random) fraction of special grain boundaries; their network and triple junctions can play a complex role. The probable sites for fatigue crack initiation in such metals can be identified as the sites of highest hydrogen concentration or accumulated plastic strain. To this end we have developed an experimental framework based on in-situ fatigue crack initiation and propagation studies under scanning electron microscope (SEM) to identify the weakest link in the metallic microstructure leading to failure. In-situ fatigue experiments are performed on carefully designed polycrystalline nickel (99.95% pure) specimens (miniaturised shallow-notched & electro-polished) using a 10 kN fatigue stage inside the SEM. Electron Back Scattering Diffraction (EBSD) map of the notched region surface helps identify the distribution of special/random grain boundaries triple junctions and grain orientation. The specimen surface in the shallow notched region for both the hydrogen charged and un-charged specimens are then carefully studied to correlate the microstructural feature associated with fatigue crack initiation sites. Such correlation of the fatigue crack initiation site and microstructural feature is further corroborated with the knowledge of hydrogen trapping and grain’s elastic anisotropicity to be either the site of high hydrogen concentration accumulated plastic slip or both.
Laboratory Method for Simulating Hydrogen Assisted Degradation of Gas Pipeline Steels
Aug 2019
Publication
Integrity of natural gas transmission systems is of great importance for energy and environmental security. Deterioration occurs in gas transit pipelines due to operational conditions and action of corrosion and hydrogenating media and leads to changes in microstructure and mechanical properties of pipeline steels which influences on pipeline performance. Hydrogenation of metal during corrosion process together with working stresses facilitates a development of in-bulk damaging at nano- and microscales. Reducing brittle fracture resistance of pipeline steels under operation increases significantly a failure risk of gas pipelines associated with in-bulk material degradation. Therefore hydrogen assisted degradation of pipelines steels under operation calls for effective methods for in-laboratory accelerated degradation. The present study is devoted to the development of the procedure of laboratory simulation of in-service degradation of pipeline steels. The role of hydrogen in degradation of pipeline steels was analysed. The procedure of accelerated degradation of pipeline steels under the combined action of axial loading and hydrogen charging was developed and induced in the laboratory. The procedure was consisted in consistently subjecting of specimens to electrolytic hydrogen charging to an axial loading up and to an artificial aging. Pipeline steels in the different states (as-received post-operated aged and after in-laboratory degradation) were investigated. The tensile mechanical behaviour of steels and impact toughness were experimentally studied. It was definitely concluded that the applied procedure caused the changes in the metal mechanical properties at the same level compared to the properties degradation due to operation. The developed procedure enables on a laboratory scale simulating of pipeline steel degradation during long-term operation under simultaneous action of hydrogenation and working loading and it makes possible to predict the mechanical behaviour of pipeline steels during service.
Implementation of hydrogen plasma activation of Mg powder in two steps hydrogenation
Oct 2017
Publication
Development of technologically and economically feasible solutions for hydrogen storage stimulates progress in hydrogen economy. High gravimetric and volumetric capacities of magnesium hydride makes it promising material capable to accelerate implementation of hydrogen-based technologies in our daily life. However widely discussed limitations of sorption kinetics and thermodynamic properties must be managed in MgH2. This work investigates two steps hydrogenation when process of hydrogen absorption is followed after hydrogen plasma activation. Such technique initiates creation of new channels for enhanced hydrogen sorption. Moreover synthesis of negligible amount of hydride acts as positive factor for further hydrogenation.
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatter diffraction analysis indicated that the reduction in ductility by hydrogen pre-charging was associated with localized plasticity-assisted intergranular crack initiation. It should be noted as an important finding that hydrogen-assisted cracking of the metastable HEA occurred not through a brittle mechanism but through localized plastic deformation in both the austenite and ε-martensite phases.
A Study on the Influential Factors of Stress Corrosion Cracking in C110 Casing Pipe
Jan 2022
Publication
In this paper we analyze the potential factors affecting the hydrogen sulfide type of stress corrosion cracking in C110 casing pipes. In order to further study these cracking factors the methods of material property testing scanning electron microscopy XRD TEM and 3D ultra-depth-of-field were applied in the experiments. Besides that an HTHP autoclave was independently designed by the laboratory to simulate the actual corrosion environment and the potential factors affecting the stress corrosion cracking of C110 casing pipes were determined. The test results showed that the chemical composition metallographic structure hardness and non-metallic inclusions of the two types of C110 casing pipes were all qualified. In fact there remains a risk of stress corrosion cracking when the two kinds of C110 casing pipes serve under long-term field-working conditions. It is considered in this paper that the precipitates on the material surface stress damage and pitting corrosion are all critical factors affecting the stress corrosion cracking of casing pipes.
Hydrogen Transport to Fracture Sites in Metals and Alloys Multiphysics Modelling
Sep 2017
Publication
Generalised continuum model of hydrogen transport to fracture loci is developed for the purposes of analysis of the hydrogenous environment assisted fracture (HEAF). The model combines the notions of the theories of gas flow surface science and diffusion and trapping in stressed solids. Derived flux and balance equations describe the species migration across different states (gas adsorbed specie at the gas-metal interface interstitial solute in metal bulk) and a variety of corresponding sites of energy minimums along the potential relief for hydrogen in a system. The model accounts for the local kinetics of hydrogen interchange between the closest dissimilar neighbour sites and for the nonlocal interaction of hydrogen trapping in definite positions with the species wandering in their farer surroundings. In particular situations certain balance equations of the model may degenerate into equilibrium constraints as well as some terms in the generalised equations may be insignificant. A series of known theories of hydrogen transport in material-environment system can be recovered then as particular limit cases of the generalised model. Presented theory can help clarifying the advantages and limitations of particularised models so that appropriate one may be chosen for the analysis of a particular HEAF case.
Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties
May 2020
Publication
The deterioration of the mechanical properties of metal induced by hydrogen absorption threatens the safety of the equipment serviced in hydrogen environments. In this study the hydrogen concentration distribution in 2.25Cr-1Mo-0.25V steel after hydrogen charging was analyzed following the hydrogen permeation and diffusion model. The diffusible hydrogen content in the 1-mm-thick specimen and its influence on the mechanical properties of the material were investigated by glycerol gas collecting test static hydrogen charging tensile test scanning electron microscopy (SEM) test and microhardness test. The results indicate that the content of diffusible hydrogen tends to be the saturation state when the hydrogen charging time reaches 48 h. The simulation results suggest that the hydrogen concentration distribution can be effectively simulated by ABAQUS and the method can be used to analyze the hydrogen concentration in the material with complex structures or containing multiple microstructures. The influence of hydrogen on the mechanical properties is that the elongation of this material is reduced and the diffusible hydrogen will cause a decrease in the fracture toughness of the material and thus hydrogen embrittlement (HE) will occur. Moreover the Young’s modulus E and microhardness are increased due to hydrogen absorption and the variation value is related to the hydrogen concentration introduced into the specimen.
Effects of Alloying Elements Addition on Delayed Fracture Properties of Ultra High-Strength TRIP-Aided Martensitic Steels
Dec 2019
Publication
To develop ultra high-strength cold stamping steels for automobile frame parts the effects of alloying elements on hydrogen embrittlement properties of ultra high-strength low alloy transformation induced plasticity (TRIP)-aided steels with a martensite matrix (TM steels) were investigated using the four-point bending test and conventional strain rate tensile test (CSRT). Hydrogen embrittlement properties of the TM steels were improved by the alloying addition. Particularly 1.0 mass% chromium added TM steel indicated excellent hydrogen embrittlement resistance. This effect was attributed to (1) the decrease in the diffusible hydrogen concentration at the uniform and fine prior austenite grain and packet block and lath boundaries; (2) the suppression of hydrogen trapping at martensite matrix/cementite interfaces owing to the suppression of precipitation of cementite at the coarse martensite lath matrix; and (3) the suppression of the hydrogen diffusion to the crack initiation sites owing to the high stability of retained austenite because of the existence of retained austenite in a large amount of the martensite–austenite constituent (M–A) phase in the TM steels containing 1.0 mass% chromium
Partitioning of Interstitial Segregants during Decohesion: A DFT Case Study of the Σ3 Symmetric Tilt Grain Boundary in Ferritic Steel
Sep 2019
Publication
The effect of hydrogen atoms at grain boundaries in metals is usually detrimental to the cohesion of the interface. This effect can be quantified in terms of the strengthening energy which is obtained following the thermodynamic model of Rice and Wang. A critical component of this model is the bonding or solution energy of the atoms to the free surfaces that are created during decohesion. At a grain boundary in a multicomponent system it is not immediately clear how the different species would partition and distribute on the cleaved free surfaces. In this work it is demonstrated that the choice of partitioning pattern has a significant effect on the predicted influence of H and C on grain boundary cohesion. To this end the Σ3(112)[11¯0] symmetric tilt grain boundary in bcc Fe with different contents of interstitial C and H was studied taking into account all possible distributions of the elements as well as surface diffusion effects. H as a single element has a negative influence on grain boundary cohesion independent of the details of the H distribution. C on the other hand can act both ways enhancing or reducing the cohesion of the interface. The effect of mixed H and C compositions depends on the partition pattern. However the general trend is that the number of detrimental cases increases with increasing H content. A decomposition of the strengthening energy into chemical and mechanical contributions shows that the elastic contribution dominates at high C contents while the chemical contribution sets the trend for high H contents.
Open-cathode PEMFC Heat Utilisation to Enhance Hydrogen Supply Rate of Metal Hydride Canisters
Mar 2019
Publication
In this paper the hydrogen supply to an open-cathode PEM fuel cell (FC) by using metal hydride (MH) storage and thermal coupling between these two components are investigated theoretically. One of the challenges in using MH hydrogen storage canisters is their limited hydrogen supply rate as the hydrogen release from MH is an endothermic reaction. Therefore in order to meet the required hydrogen supply rate high amounts of MH should be employed that usually suggests storage of hydrogen to be higher than necessary for the application adding to the size weight and cost of the system. On the other hand the exhaust heat (i.e. that is usually wasted if not utilised for this purpose) from open-cathode FCs is a low-grade heat. However this heat can be transferred to MH canisters through convection to heat them up and increase their hydrogen release rate. A mathematical model is used to simulate the heat transfer between PEMFC exhaust heat and MH storage. This enables the prediction of the required MH for different FC power levels with and without heat supply to the MH storage. A 2.5-kW open-cathode FC is used to measure the exhaust air temperature at different output powers. It was found that in the absence of heat supply from the FC to the MH canisters significantly higher number of MH canisters are required to achieve the required rate of hydrogen supply to the FC for sustained operation (specially at high power outputs). However using the exhaust hot air from the FC to supply heat to the MH storage can reduce the number of the MH canisters required by around 40% to 70% for power output levels ranging from 500 W to 2000 W.
Hydrogen Assisted Fracture of 30MnB5 High Strength Steel: A Case Study
Nov 2020
Publication
When steel components fail in service due to the intervention of hydrogen assisted cracking discussion of the root cause arises. The failure is frequently blamed on component design working conditions the manufacturing process or the raw material. This work studies the influence of quench and tempering and hot-dip galvanizing on the hydrogen embrittlement behavior of a high strength steel. Slow strain rate tensile testing has been employed to assess this influence. Two sets of specimens have been tested both in air and immersed in synthetic seawater at three process steps: in the delivery condition of the raw material after heat treatment and after heat treatment plus hot-dip galvanizing. One of the specimen sets has been tested without further manipulation and the other set has been tested after applying a hydrogen effusion treatment. The outcome for this case study is that fracture risk issues only arise due to hydrogen re-embrittlement in wet service.
Numerical Solution for Thermodynamic Model of Charge-discharge Cycle in Compressed Hydrogen Tank
Mar 2019
Publication
The safety and convenience of hydrogen storage are significant for fuel cell vehicles. Based on mass conservation equation and energy conservation equation two thermodynamic models (single zone model and dual zone model) have been established to study the hydrogen gas temperature and tank wall temperature for compressed hydrogen storage tank. With two models analytical solution and Euler solution for single zone (gas zone) charge-discharge cycle have been compared Matlab/Simulink solution and Euler solution for dual zone (gas zone wall zone) charge-discharge cycle have been compared. Three charge-discharge cycle cases (Case 1 constant inflow temperature; Case 2 variable inflow temperature; Case 3 constant inflow temperature variable outflow temperature) and two compressed hydrogen tanks (Type III 25L Type IV 99L) charge-discharge cycle are studied by Euler method. Results show Euler method can well predict hydrogen temperature and tank wall temperature.
A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids
Apr 2022
Publication
Hydrogen technologies have been rapidly developing in the past few decades pushed by governments’ road maps for sustainability and supported by a widespread need to decarbonize the global energy sector. Recent scientific progress has led to better performances and higher efficiencies of hydrogen-related technologies so much so that their future economic viability is now rarely called into question. This article intends to study the integration of hydrogen systems in both gas and electric distribution networks. A preliminary analysis of hydrogen’s physical storage methods is given considering both the advantages and disadvantages of each one. After examining the preeminent ways of physically storing hydrogen this paper then contemplates two primary means of using it: integrating it in Power-to-Gas networks and utilizing it in Power-to-Power smart grids. In the former the primary objective is the total replacement of natural gas with hydrogen through progressive blending procedures from the transmission pipeline to the domestic burner; in the latter the set goal is the expansion of the implementation of hydrogen systems—namely storage—in multi-microgrid networks thus helping to decarbonize the electricity sector and reducing the impact of renewable energy’s intermittence through Demand Side Management strategies. The study concludes that hydrogen is assumed to be an energy vector that is inextricable from the necessary transition to a cleaner more efficient and sustainable future.
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However stoichiometric methanation will lead to a significant presence of carbon dioxide limited in gas networks and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.
Understanding the Interaction between a Steel Microstructure and Hydrogen
Apr 2018
Publication
The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels i.e. high-strength low-alloy (HSLA) transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase i.e. ferrite bainite pearlite or martensite and with carbon contents of approximately 0 0.2 and 0.4 wt % are further considered to simplify the microstructure. Finally the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction a comparison of the available H trapping sites the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts
Jan 2022
Publication
The development of a hydrogen-based economy is the perfect nexus between the need of discontinuing the use of fossil fuels (trying to mitigate climate change) the development of a system based on renewable energy (with the use of hydrogen allowing us to buffer the discontinuities produced in this generation) and the achievement of a local-based robust energy supply system. However extending the use of hydrogen as an energy vector must still overcome challenging issues with the key issues being related to its storage. Cryogenic or pressurized storage is relatively expensive technically complex and presents important safety concerns. As a promising alternative the use of organic hydrogen carriers has been suggested in recent years. The ideal carrier will be an organic compound with a low melting point and low viscosity with a significant number of unsaturated carbon–carbon bonds in addition to being easy to hydrogenate and dehydrogenate. These properties allow us to store and transport hydrogen in infrastructures designed for liquid fuels thus facilitating the replacement of fossil fuels by hydrogen
Hydrogen Transport and Trapping: From Quantum Effects to Alloy Design
Jun 2017
Publication
This discussion session concerned experimental and theoretical investigations of the atomistic properties underlying the energetics and kinetics of hydrogen trapping and diffusion in metallic systems.
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Impact of Chemical Inhomogeneities on Local Material Properties and Hydrogen Environment Embrittlement in AISI 304L Steels
Feb 2018
Publication
This study investigated the influence of segregations on hydrogen environment embrittlement (HEE) of AISI 304L type austenitic stainless steels. The microstructure of tensile specimens that were fabricated from commercially available AISI 304L steels and tested by means of small strain-rate tensile tests in air as well as hydrogen gas at room temperature was investigated by means of combined EDS and EBSD measurements. It was shown that two different austenitic stainless steels having the same nominal alloy composition can exhibit different susceptibilities to HEE due to segregation effects resulting from different production routes (continuous casting/electroslag remelting). Local segregation-related variations of the austenite stability were evaluated by thermodynamic and empirical calculations. The alloying element Ni exhibits pronounced segregation bands parallel to the rolling direction of the material which strongly influences the local austenite stability. The latter was revealed by generating and evaluating two-dimensional distribution maps for the austenite stability. The formation of deformation-induced martensite was shown to be restricted to segregation bands with a low Ni content. Furthermore it was shown that the formation of hydrogen induced surface cracks is strongly coupled with the existence of surface regions of low Ni content and accordingly low austenite stability. In addition the growth behavior of hydrogen-induced cracks was linked to the segregation-related local austenite stability.
Hydrogen Permeation in X65 Steel under Cyclic Loading
May 2020
Publication
This experimental work analyzes the hydrogen embrittlement mechanism in quenched and tempered low-alloyed steels. Experimental tests were performed to study hydrogen diffusion under applied cyclic loading. The permeation curves were fitted by considering literature models in order to evaluate the role of trapping—both reversible and irreversible—on the diffusion mechanism. Under loading conditions a marked shift to the right of the permeation curves was noticed mainly at values exceeding the tensile yield stress. In the presence of a relevant plastic strain the curve changes due to the presence of irreversible traps which efficiently subtract diffusible atomic hydrogen. A significant reduction in the apparent diffusion coefficient and a considerable increase in the number of traps were noticed as the maximum load exceeded the yield strength. Cyclic loading at a tensile stress slightly higher than the yield strength of the material increases the hydrogen entrapment phenomena. The tensile stress causes a marked and instant reduction in the concentration of mobile hydrogen within the metal lattice from 55% of the yield strength and it increases significantly in the plastic field.
No more items...