Germany
Regulations and Research on RC&S for Hydrogen Storage Relevant To Transport and Vehicle Issues with Special Focus on Composite Containments
Sep 2011
Publication
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations codes and standards.<br/>Based on this review origins of different regulations for the storage of hydrogen as dangerous good and as propellant for vehicles will be examined. Both categories started out using steel and sometimes aluminium as cylinder material. With composite materials becoming more common a new problem emerged: vital input for regulations on composite pressure systems was initially derived from decades of experience with steel cylinders. As a result both regulatory fields suffer somewhat from this common basis. Only recent developments regarding requirements for composite cylinders have begun to go more and more separate ways. Thus these differences lead to some shortcomings in regulation with respect to composite storage systems.<br/>In principle in spite of separate development these deficits are in both applications very much the same: there are uncertainties in the prediction of safe service life in retesting procedures of composite cylinders and in their intervals. Hence different aspects of uncertainties and relevant approaches to solutions will be explained.
Ignition of Hydrogen Jet Fires from High Pressure Storage
Sep 2013
Publication
Highly transient jets from hydrogen high pressure tanks were investigated up to 30 MPa. These hydrogen jets might self-initiate when released from small orifices of high pressure storage facilities. The related effects were observed by high speed video technics including time resolved spectroscopy. Ignition flame head jet velocity flame contours pressure wave propagation reacting species and temperatures were evaluated. The evaluation used video cross correlation method BOS brightness subtraction and 1 dimensional image contraction to obtain traces of all movements. On burst of the rupture disc the combustion of the jet starts close to the nozzle on the outer shell of it at the boundary layer to the surrounding air. It propagates with a deceleration approximated by a drag force of constant value which is obtained by analysing the head velocity. The burning at the outer shell develops to an explosion converting a nearly spherical volume at the jet head the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated on an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The results are compared to thermodynamic calculations and radiation measurements. The combustion process is composed of a shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume.
A New Technology for Hydrogen Safety: Glass Structures as a Storage System
Sep 2011
Publication
The storage of hydrogen poses inherent weight volume and safety obstacles. An innovative technology which allows for the storage of hydrogen in thin sealed glass capillaries ensures the safe infusion storage and controlled release of hydrogen gas under pressures up to 100 MPa. Glass is a non-flammable material which also guarantees high burst pressures. The pressure resistance of single and multiple capillaries has been determined for different glass materials. Borosilicate capillaries have been proven to have the highest pressure resistance and have therefore been selected for further series of advanced testing. The innovative storage system is finally composed of a variable number of modules. As such in the case of the release of hydrogen this modular arrangement allows potential hazards to be reduced to a minimum. Further advantage of a modular system is the arrangement of single modules in every shape and volume dependent on the final application. Therefore the typical locations of storage systems e.g. the rear of cars can be modified or shifted to places of higher safety and not directly involved in crashes. The various methods of refilling and releasing capillaries with compressed hydrogen the increase of burst pressures through pre-treatment as well as the theoretical analysis and experimental results of the resistance of glass capillaries will further be discussed in detail.
Validation of Cryo-Compressed Hydrogen Storage (CCH2) – A Probabilistic Approach
Sep 2011
Publication
Due to its promising potential to overcome the challenge of thermal endurance of liquid hydrogen storage systems cryo-compressed hydrogen storage (CcH2) is regarded as a verypromising physical storage solution in particular for use in larger passenger vehicles with high energy and long range requirements. A probabilistic approach for validation of safe operation of CcH2 storage systems under automotive requirements and experimental results on life-cycle testing is presented. The operational regime of BMW's CcH2 storage covers pressures of up to 35 MPa and temperatures from +65 C down to -240 C applying high loads on composite and metallic materials of the cryogenic pressure vesselcompared to ambient carbon fiber reinforced pressure vessels. Thus the proof of fatigue strength under combined pressure and deep temperature cyclic loads remains a challenging exercise. Furthermore it will be shown that the typical automotive safety and life-cycle requirements can be fulfilled by the CcH2 vehicle storage system and moreover that the CcH2 storage system can even feature safety advantages over a CGH2 storage system mainly due to the advantageous thermodynamic properties of cryogenic hydrogen the lower storage pressure and due to the intrinsic protection against intrusion through the double-shell design.
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Flammability Limits and Laminar Flame Speed of Hydrogen–air Mixtures at Sub-atmospheric Pressures
Sep 2011
Publication
Hydrogen behavior at elevated pressures and temperatures was intensively studied by numerous investigators. Nevertheless there is a lack of experimental data on hydrogen ignition and combustion at reduced sub-atmospheric pressures. Such conditions are related to the facilities operating under vacuum or sub-atmospheric conditions for instance like ITER vacuum vessel. Main goal of current work was an experimental evaluation of such fundamental properties of hydrogen–air mixtures as flammability limits and laminar flame speed at sub-atmospheric pressures. A spherical explosion chamber with a volume of 8.2 dm3 was used in the experiments. A pressure method and high-speed camera combined with schlieren system for flame visualization were used in this work. Upper and lower flammability limits and laminar flame velocity have been experimentally evaluated in the range of 4–80% hydrogen in air at initial pressures 25–1000 mbar. An extraction of basic flame properties as Markstein length overall reaction order and activation energy was done from experimental data on laminar burning velocity.
Development of a Generalized Integral Jet Model
Sep 2017
Publication
Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis to describe the consequences of many different scenarios. Alternatively CFD codes are being applied but computational requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models however are not suited to handle transient releases such as releases from pressurized equipment where the initially high release rate decreases rapidly with time. Further on gas ignition a second model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development and decay of a jet of flammable gas after a release from a pressure container. The intention is to transfer the stationary models to a fully transient model capable to predict the maximum extension of short-duration high pressure jets. The model development is supported by conducting a set of transient ignited and unignited spontaneous releases at initial pressures between 25bar and 400bar. These data forms the basis for the presented model development approach.
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Interaction of Hydrogen Jets with Hot Surfaces
Sep 2017
Publication
The formation of hydrogen jets from pressurized sources and its ignition when hitting hot devices has been studied by many projects. The transient jets evolve with high turbulence depending on the configuration of the nozzle and especially the pressure in the hydrogen reservoir. In addition the length of the jets and the flames generated by ignition at a hot surface varies. Parameters to be varied were initial pressure of the source (2.5 10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (between 400 and 1000 K). The interaction of the hydrogen jets is visualized by high-speed cinematography techniques which allow analysing the jet characteristics. By combination of various methods of image processing the visibility of the phenomena on the videos taken at 15 000 fps was improved. In addition high-speed NIR spectroscopy was used to obtain temperature profiles of the expanding deflagrations. The jets ignite already above 450 K for conditions mainly from the tubular source at 40 MPa. In addition the propagation of the flame front depends on all three varied parameters: temperature of the hot surface pressure in the reservoir and distance between nozzle and hot surface. In most cases also upstream propagation occurs. A high turbulence seems to lead to the strong deflagrations. At high temperatures of the ignition sources the interaction leads to fast deflagration and speeds up- and downstream of the jet. The deflagration velocity is close to velocity of sound and emission of pressure waves occurs.
Application of the Validated 3D Multiphase-multicomponent CFD Model to an Accidental Liquid Hydrogen Release Scenario in a Liquefication Plant
Sep 2017
Publication
Hydrogen-air mixtures are flammable in a wide range of compositions and have a low ignition energy compared to gaseous hydrocarbons. Due to its low density high buoyancy and diffusivity the mixing is strongly enhanced which supports distribution into large volumes if accidentally released. Economically valuable discontinuous transportation over large distances is only expected using liquid hydrogen (LH2). Releases of LH2 at its low temperature (20.3 K at 0.1 MPa) have additional hazards besides the combustible character of gaseous hydrogen (GH2). Hazard assessment requires simulation tools capable of calculating the pool spreading as well as the gas distribution for safety assessments of existing the future liquid hydrogen facilities. Evaluating possible risks the following process steps are useful:
- Possible accident release scenarios need to be identified for a given plant layout.
- Environmental boundary conditions such as wind conditions and humidity need to be identified and worst case scenarios have to be identified.
- A model approach based on this information which is capable of simulating LH2 releases vaporization rates and atmospheric dispersion of the gaseous hydrogen.
- Evaluate and verify safety distances identify new risks and/or extract certain design rules.
Prevention of Hydrogen Accumulation Inside the Vacuum Vessel Pressure Suppression System of the ITER Facility by Means of Passive Auto-catalytic Recombiners
Sep 2017
Publication
Hydrogen safety is a relevant topic for both nuclear fission and fusion power plants. Hydrogen generated in the course of a severe accident may endanger the integrity of safety barriers and may result in radioactive releases. In the case of the ITER fusion facility accident scenarios with water ingress consider the release of hydrogen into the suppression tank (ST) of the vacuum vessel pressure suppression system (VVPSS). Under the assumption of additional air ingress the formation of flammable gas mixtures may lead to explosions and safety component failure.<br/>The installation of passive auto-catalytic recombiners (PARs) inside the ST which are presently used as safety devices inside the containments of nuclear fission reactors is one option under consideration to mitigate such a scenario. PARs convert hydrogen into water vapor by means of passive mechanisms and have been qualified for operation under the conditions of a nuclear power plant accident since the 1990s.<br/>In order to support on-going hydrogen safety considerations simulations of accident scenarios using the CFD code ANSYS-CFX are foreseen. In this context the in-house code REKO-DIREKT is coupled to CFX to simulate PAR operation. However the operational boundary conditions for hydrogen recombination (e.g. temperature pressure gas mixture) of a fusion reactor scenario differ significantly from those of a fission reactor. In order to enhance the code towards realistic PAR operation a series of experiments has been performed in the REKO-4 facility with specific focus on ITER conditions. These specifically include operation under sub-atmospheric pressure (0.2–1.0 bar) gas compositions ranging from lean to rich H2/O2 mixtures and superposed flow conditions.<br/>The paper gives an overview of the experimental program presents results achieved and gives an outlook on the modelling approach towards accident scenario simulation.
Analysis of Transient Supersonic Hydrogen Release, Dispersion and Combustion
Sep 2017
Publication
A hydrogen leak from a facility which uses highly compressed hydrogen gas (714 bar 800 K) during operation was studied. The investigated scenario involves supersonic hydrogen release from a 10 cm2 leak of the pressurized reservoir turbulent hydrogen dispersion in the facility room followed by an accidental ignition and burn-out of the resulting H2-air cloud. The objective is to investigate the maximum possible flame velocity and overpressure in the facility room in case of a worst-case ignition. The pressure loads are needed for the structural analysis of the building wall response. The first two phases namely unsteady supersonic release and subsequent turbulent hydrogen dispersion are simulated with GASFLOW-MPI. This is a well validated parallel all-speed CFD code which solves the compressible Navier-Stokes equations and can model a broad range of flow Mach numbers. Details of the shock structures are resolved for the under-expanded supersonic jet and the sonic-subsonic transition in the release. The turbulent dispersion phase is simulated by LES. The evolution of the highly transient burnable H2-air mixture in the room in terms of burnable mass volume and average H2-concentration is evaluated with special sub-routines. For five different points in time the maximum turbulent flame speed and resulting overpressures are computed using four published turbulent burning velocity correlations. The largest turbulent flame speed and overpressure is predicted for an early ignition event resulting in 35–71 m/s and 0.13–0.27 bar respectively.
Experiments on Flame Acceleration and DDT for Stoichiometric Hydrogen/Air Mixture in a Thin Layer Geometry
Sep 2017
Publication
A series of experiments in a thin layer geometry performed at the HYKA test site of the KIT. The experiments on different combustion regimes for lean and stoichiometric H2/air mixtures were performed in a rectangular chamber with dimensions of 20 x 90 x h cm3 where h is the thickness of the layer (h = 1 2 4 6 8 10 mm). Three different layer geometries:
- a smooth channel without obstructions;
- the channel with a metal grid filled 25% of length and
- a metal grid filled 100% of length.
Hydrogen Combustion Experiments in a Vertical Semi-confined Channel
Sep 2017
Publication
Experiments in an obstructed semi-confined vertical combustion channel with a height of 6 m (cross-section 0.4 × 0.4 m) inside a safety vessel of the hydrogen test center HYKA at the Karlsruhe Institute of Technology (KIT) are reported. In the work homogeneous hydrogen-air-mixtures as well as mixtures with different well-defined H2-concentration gradients were ignited either at the top or at the bottom end of the channel. The combustion characteristics were recorded using pressure sensors and sensors for the detection of the flame front that were distributed along the complete channel length. In the tests slow subsonic and fast sonic deflagrations as well as detonations were observed and the conditions for the flame acceleration (FA) to speed of sound and deflagration-to-detonation transition (DDT) are compared with the results of similar experiments performed earlier in a larger semi-confined horizontal channel.
Safety Concept of a self-sustaining PEM Hydrogen Electrolyzer System
Sep 2013
Publication
Sustainable electricity generation is gaining importance across the globe against the backdrop of ever- diminishing resources and to achieve significant reductions in CO2 emissions. One of the challenges is storing excess energy generated from wind and solar power. Siemens developed an electrolysis system based on proton exchange membrane (PEM) technology enabling large volumes of energy to be stored through the conversion of electrical energy into hydrogen. In developing this new product range Siemens worked intensively on safe operation with a special focus on safety measures (primary secondary and tertiary). Indeed hydrogen is not only a rapidly diffusing gas with a wide range of flammability but frequent lack of information leads to insecurity among the public. Siemens PEM water electrolyzer operates at a working pressure of 50 bar / 5 MPa. The current product generation is being used for demonstration purposes and fits into a 30 ft. / 9.14 m container. Further industrialized product lines up to double-digit medium voltage ranges will be available on the market short- and mid-term. The system is designed to operate self-sustaining. Therefore special features such as back-up and fail-safe mode supported by remote monitoring and access have been implemented. This paper includes Siemens' approach to develop and implement a safety concept for the PEM water electrolyzer leading into the approval and certification by a Notified Body as well as the lessons learnt from test stand and field experience in this new application field
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Safety Criteria for the Transport of Hydrogen in Permanently Mounted Composite Pressure Vessels
Sep 2019
Publication
The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers both in composite pressure vessels. As a transport regulation the ADR is applicable in Europe and adjoined regions and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012 the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan the USA and China. Subsequently the failure consequences of using trailer vehicles the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort.
Numerical Study on the Influence of Different Boundary Conditions on the Efficiency of Hydrogen Recombiners Inside a Car Garage
Oct 2015
Publication
Passive auto-catalytic recombiners (PARs) have the potential to be used in the future for the removal of accidentally released hydrogen inside confined areas. PARs could be operated both as stand-alone or backup safety devices e.g. in case of active ventilation failure.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Analysis of the Parametric-Acoustic Instability for Safety Assessment of Hydrogen-Air Mixtures in Closed Volumes
Sep 2011
Publication
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. Two approaches for the investigation of the problem have been considered. The simplified analytical model proposed by Bychkov was selected initially. Its range of applicability resulted to be very restricted and therefore numerical solutions of the problem were taken into account. The results obtained were used to study the existence of spontaneous transition from the acoustic to the parametric instability for different fuel concentrations. Finally the growth rate of the instabilities was numerically calculated for a set of typical mixtures for hydrogen safety.
Low Energy Hydrogen Sensor
Sep 2011
Publication
A new silicon-based hydrogen sensor for measurements at high concentrations near the lower flammable limit of hydrogen (40000 ppm) is presented. Due to operation at room temperature the power consumption of the sensor is smaller than that of other sensors on the market by several orders magnitude. Further development of the sensor system could lead to battery powered or even energy-independent operation. As sensor fabrication is based on semiconductor technology low-cost production can be achieved for the mass market. The sensor investigated showed good long-term stability combined with a fast response on the basis of cyclic thermal activations. This was demonstrated by a stress test that simulated the activation and measurement cycles experienced by the sensor in one year. Finite element method was used to further reduce the power consumption of the thermal activation. This resulted in an average power consumption of 2 × 10−6 W for the sensor activation.
Simulation of the Efficiency of Hydrogen Recombiners as Safety Devices
Sep 2011
Publication
Passive auto-catalytic recombiners (PARs) are used as safety devices in the containments of nuclear power plants (NPPs) for the removal of hydrogen that may be generated during specific reactor accident scenarios. In the presented study it was investigated whether a PAR designed for hydrogen removal inside a NPP containment would perform principally inside a typical surrounding of hydrogen or fuel cell applications. For this purpose a hydrogen release scenario inside a garage – based on experiments performed by CEA in the GARAGE facility (France) – has been simulated with and without PAR installation. For modelling the operational behaviour of the PAR the in-house code REKO-DIREKT was implemented in the CFD code ANSYS-CFX. The study was performed in three steps: First a helium release scenario was simulated and validated against experimental data. Second helium was replaced by hydrogen in the simulation. This step served as a reference case for the unmitigated scenario. Finally the numerical garage setup was enhanced with a commercial PAR model. The study shows that the PAR works efficiently by removing hydrogen and promoting mixing inside the garage. The hot exhaust plume promotes the formation of a thermal stratification that pushes the initial hydrogen rich gas downwards and in direction of the PAR inlet. The paper describes the code implementation and simulation results.
Optimizing Mixture Properties for Accurate Laminar Flame Speed Measurement from Spherically Expanding Flame: Application to H2/O2/N2/He Mixtures
Sep 2019
Publication
The uncertainty on the laminar flame speed extracted from spherically expanding flames can be minimized by using large flame radius data for the extrapolation to zero stretch-rate. However at large radii the hydrodynamic and thermo-diffusive instabilities induce the formation of a complex cellular flame front and limit the range of usable data. In the present study we have employed the flame stability theory of Matalon to optimize the properties of the initial mixture so that transition to cellularity may occur at a pre-determined large radius. This approach was employed to measure the laminar flame speeds of H2/O2/N2/He mixtures with equivalence ratios from 0.6 to 2.0 at pressures of 50/80/100 kPa and a temperature of 300 K. For all the performed experiments the uncertainty related to the extrapolation to zero stretch-rate (performed with the linear curvature model) was below 2% as shown by the position of the data points in the (Lb/Rf;U Lb/Rf;L) plan where Lb is the burned Markstein length; and Rf;L and Rf;U are the flame radii at the lower and upper bounds of the extrapolation range. Comparison of the predictions of four chemical mechanisms with the present unstretched laminar flame speed data indicated an error below 10% for most conditions. In addition unsteady 1-D simulations performed with A-SURF demonstrated that the flame dynamical response to stretch rate could not be captured by the mechanisms. The present work indicates that although the stability theory of Matalon provides a well defined framework to optimize the mixture properties for improved flame speed measurement the uncertainty of some of the required parameters can result in largely over-estimated critical radius for cellularity onset which compromise the accuracy of the optimization procedure.
Open-source Simulation of the Long-term Diffusion of Alternative Passenger Cars on the Basis of Investment Decisions of Private Persons
Feb 2021
Publication
Numerous studies have shown that a full electrification of passenger cars is needed to stay within the 1.5° C temperature rise. This article deals with the question of how the required shares of alternative vehicles can be achieved by the year 2050. In literature the preferred technology are battery electric vehicles as these are more energy efficient than hydrogen vehicles. To be able to demonstrate how alternative vehicles diffuse into the German market the passenger car investment behavior of private persons was investigated. For this purpose a discrete choice experiment (DCE) with 1921 participants was carried out empirically. The results of the DCE show that the investment costs in particular are important when choosing a vehicle. This is followed by the driving range fuel costs and vehicle type. Less important are the charging infrastructure and CO2 emissions of the vehicle. A CO2 tax is of least importance. The utility values of the DCE were used to simulate future market shares. For this purpose the open-source software Invest was developed and different scenarios were defined and calculated. This paper shows that conservative assumptions on attribute development leave a large gap until full electrification as conventional vehicles still account for around 62% of market shares in 2050. In order to achieve full electrification extreme efforts must be made targeting the technical and economic characteristics of the vehicles but also addressing person-related characteristics such as level of information the subjective norm or the technological risk attitude. A ban on new registrations of combustion engines from 2030 could also lead to a full electrification by 2050. An average annual increase in the market share of alternative vehicles of 2.4 percentage points is needed to achieve full electrification. Other important factors are measures that address the modal shift to other modes of transport (rail public transport car-sharing).
Experiments on the Combustion Behaviour of Hydrogen-Carbon Monoxide-Air Mixtures
Sep 2019
Publication
As a part of a German nuclear safety project on the combustion behaviour of hydrogen-carbon monoxide-air mixtures small scale experiments were performed to determine the lower flammability limit and the laminar burning velocity of such mixtures. The experiments were performed in a spherical explosion bomb with a free volume of 8.2 litre. The experimental set-up is equipped with a central spark ignition and quartz glass windows for optical access. Further instrumentation included pressure and temperature sensors as well as high-speed shadow-videography. A wide concentration range for both fuel gases was investigated in numerous experiments from the lower flammability limits up to the stoichiometric composition of hydrogen carbon monoxide and air (H2-CO-air) mixtures. The laminar burning velocities were determined from the initial pressure increase after the ignition and by using high-speed videos taken during the experiments.
Spontaneous Ignition Processes Due To High-Pressure Hydrogen Release in Air
Sep 2011
Publication
Spontaneous ignition processes due to the high-pressure hydrogen releases into air were investigated both experimentally and theoretically. Such processes reproduce accident scenarios of sudden expansion of pressurized hydrogen into the ambient atmosphere in cases of tube or valve rupture. High-pressure hydrogen releases in the range of initial pressures from 20 to 275 bar and with nozzle diameters of 0.5 – 4 mm have been investigated. Glass tubes and high-speed CCD camera were used for experimental study of self-ignition process. The problem was theoretically considered in terms of contact discontinuity for the case when spontaneous ignition of pressurized hydrogen due to the contact with hot pressurized air occurs. The effects of boundary layer and material properties are discussed in order to explain the minimum initial pressure of 25 bar leading to the self-ignition of hydrogen with air.
Experimental Study of Ignited Unsteady Hydrogen Jets into Air
Sep 2009
Publication
In order to simulate an accidental hydrogen release from the low pressure pipe system of a hydrogen vehicle a systematic study on the nature of transient hydrogen jets into air and their combustion behaviour was performed at the FZK hydrogen test site HYKA. Horizontal unsteady hydrogen jets with an amount of hydrogen up to 60 STP dm3 and initial pressures of 5 and 16 bar have been investigated. The hydrogen jets were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen-air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Safety of Hydrogen-fueled Motor Vehicles with IC Engines.
Sep 2005
Publication
Clarification of questions of safety represents a decisive contribution to the successful introduction of vehicles fuelled by hydrogen. At the moment the safety of hydrogen is being discussed and investigated by various bodies. The primary focus is on fuel-cell vehicles with hydrogen stored in gaseous form. This paper looks at the safety of hydrogen-fuelled vehicles with an internal combustion engine and liquefied hydrogen storage. The safety concept of BMW’s hydrogen vehicles is described and the specific aspects of the propulsion and storage concepts discussed. The main discussion emphasis is on the utilization of boil-off parking of the vehicles in an enclosed space and their crash behaviour. Theoretical safety observations are complemented by the latest experimental and test results. Finally reference is made to the topic-areas in the field of hydrogen safety in which cooperative research work could make a valuable contribution to the future of the hydrogen-powered vehicle.
Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting
Dec 2021
Publication
As an energy-intensive industry sector the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate that the proposed system can reduce specific carbon dioxide emissions by up to 60 % while increasing specific energy demand by a maximum of 25 %. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C) temperature efficiency (∆ξ = −0.003) and heat capacity flow ratio (∆zHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study high CO2 abatement costs of 295 €/t CO2-eq. were determined.. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future.
A Concept to Support the Transformation from a Linear to Circular Carbon Economy: Net Zero emissions, Resource Efficiency and Conservation Through a Coupling of the Energy, Chemical and Waste Management Sectors
Dec 2017
Publication
Coal and carbon-containing waste are valuable primary and secondary carbon carriers. In the current dominant linear economy such carbon resources are generally combusted to produce electricity and heat and as a way to resolve a nation’s waste issue. Not only is this a wastage of precious carbon resources which can be chemically utilized as raw materials for production of other value-added goods it is also contrary to international efforts to reduce carbon emissions and increase resource efficiency and conservation. This article presents a concept to support the transformation from a linear ‘one-way cradle to grave manufacturing model’ toward a circular carbon economy. The development of new and sustainable value chains through the utilization of coal and waste as alternative raw materials for the chemical industry via a coupling of the energy chemical and waste management sectors offers a viable and future-oriented perspective for closing the carbon cycle. Further benefits also include a lowering of the carbon footprint and increasing resource efficiency and conservation of primary carbon resources. In addition technological innovations and developments that are necessary to support a successful sector coupling will be identified. To illustrate our concept a case analysis of domestic coal and waste as alternative feedstock to imported crude oil for chemical production in Germany will be presented. Last but not least challenges posed by path dependency along technological institutional and human dimensions in the sociotechnical system for a successful transition toward a circular carbon economy will be discussed.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Safety Considerations and Approval Procedures for the Integration of Fuel Cells on Board of Ships
Sep 2009
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's hare of emissions to air is regarded to be significant and public concern lead to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce additional regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or main propulsion. The presentation summarizes the legal background in international shipping related to the use for gas as ship fuel and fuel cells. The focus of the presentation will be on the safety principles for the use of gas as fuel and fuel cells on board of ships and boats. The examples given show the successful integration of such systems on board of ships. Furthermore a short outlook will be given to the ongoing and planed projects for the use of fuel cells on board of ships.
Hydrogen Storage in Glass Capillary Arrays for Portable and Mobile Systems
Sep 2009
Publication
A crucial problem of new hydrogen technologies is the lightweight and also safe storage of acceptable amounts of hydrogen for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure safe infusion storage and controlled release of hydrogen gas although storage pressures up to 1200 bar are applied. This technology enables the storage of a significantly greater amount of hydrogen than other approaches. In storage tests with first capillary arrays a gravimetric storage capacity of about 33% and a volumetric capacity of 28% was determined at a comparative low pressure of only 400 bar. This is much more than the actual published storage capacities which are to find for other storage systems. This result already surpassed the US Department of Energy's 2010 target and it is expected to meet the DOE's 2015 target in the near future.<br/>Different safety aspects have been evaluated. On the one hand experiments with single capillaries or arrays of them have been carried out. The capillaries are made of quartz and other glasses. Especially quartz has a three times higher strength than steel. At the same time the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in dependence of capillary materials and dimensions wall thickness etc. in order to find out optimal parameters for the “final” capillaries. In these tests also the sudden release of hydrogen was tested in order to observe possible spontaneous ignitions. On the other hand a theoretical evaluation of explosion hazards was done. Different situations were analyzed e.g. release of hydrogen by diffusion or sudden rupture.
A Comparison Exercise on the CFD Detonation Simulation in Large Scale Confined Volumes
Sep 2009
Publication
The use of hydrogen as an energy carrier is going to widen exponentially in the next years. In order to ensure the public acceptance of the new fuel not only the environmental impact has to be excellent but also the risk management of its handling and storage must be improved. As a part of modern risk assessment procedure CFD modeling of the accident scenario development must provide reliable data on the possible pressure loads resulted from explosion processes. The expected combustion regimes can be ranged from slow flames to deflagration-to-detonation transition and even to detonation. In the last case the importance of the reliability of simulation results is particularly high since detonation is usually considered as a worst case state of affairs. A set of large-scale detonation experiments performed in Kurchatov Institute at RUT facility was selected as benchmark. RUT has typical industry-relevant characteristic dimensions. The CFD codes possibilities to correctly describe detonation in mixtures with different initial and boundary conditions were surveyed. For the modeling two detonation tests HYD05 and HYD09 were chosen; both tests were carried out in uniform hydrogen/air mixtures; first one with concentration of 20.0% vol. and the second one with 25.5% vol. In the present exercise three CFD codes using a number of different models were used to simulate these experiments. A thorough inter-comparison between the CFD results including codes models and obtained pressure predictions was carried out and reported. The results of this inter comparison should provide a solid basis for the further code development and detonation models’ validation thus improving CFD predictive capabilities.
Hyper Experiments on Catastrophic Hydrogen Releases Inside a Fuel Cell Enclosure
Sep 2009
Publication
As a part of the experimental work of the EC-funded project HYPER Pro-Science GmbH performed experiments to evaluate the hazard potential of a severe hydrogen leakage inside a fuel cell cabinet. During this study hydrogen distribution and combustion experiments were performed using a generic enclosure model with the dimensions of the fuel cell "Penta H2" provided by ARCOTRONICS (now EXERGY Fuel Cells) to the project partner UNIPI for their experiments on small foreseeable leaks. Hydrogen amounts of 1.5 to 15 g H2 were released within one second into the enclosure through a nozzle with an internal diameter of 8 mm. In the distribution experiments the effects of different venting characteristics and different amounts of internal enclosure obstruction on the hydrogen concentrations measured at fixed positions in- and outside the model were investigated. Based on the results of these experiments combustion experiments with ignition positions in- and outside the enclosure and two different ignition times were performed. BOS (Background-Oriented-Schlieren) observation combined with pressure and light emission measurements were performed to describe the characteristics and the hazard potential of the induced hydrogen combustions. The experiments provide new experimental data on the distribution and combustion behaviour of hydrogen that is released into a partly vented and partly obstructed enclosure with different venting characteristics.
Achievements of The EC Network of Excellence Hysafe
Sep 2009
Publication
In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to facilitate the safe introduction of hydrogen as an energy carrier by removing the safety related obstacles. The prioritisation of the HySafe internal project activities was based on a phenomena identification and ranking exercise (PIRT) and expert interviews. The identified research headlines were “Releases in (partially) confined areas” “Mitigation” and “Quantitative Risk Assessment”. Along these headlines existing or planned research work was re-orientated and slightly modified to build up three large internal research projects “InsHyde” “HyTunnel” and “HyQRA”. In InsHyde realistic indoor hydrogen leaks and associated hazards have been investigated to provide recommendations for the safe use of indoor hydrogen systems including mitigation and detection means. The appropriateness of available regulations codes and standards (RCS) has been assessed. Experimental and numerical work was conducted to benchmark simulation tools and to evaluate the related recommendations. HyTunnel contributed to the understanding of the nature of the hazards posed by hydrogen vehicles inside tunnels and its relative severity compared to other fuels. In HyQRA quantitative risk assessment strategies were applied to relevant scenarios in a hydrogen refuelling station and the performance was compared to derive also recommendations. The integration provided by the network is manifested by a series of workshops and benchmarks related to experimental and numerical work. Besides the network generated the following products: the International Conference on Hydrogen Safety the first academic education related to hydrogen safety and the Safety Handbook. Finally the network initiated the founding of the International Association for Hydrogen Safety which will open up the future networking to all interested parties on an international level. The indicated results of this five years integration activity will be described in short.
State-of-the-Art and Research Priorities in Hydrogen Safety
Sep 2013
Publication
On October 16-17 2012 the International Association for Hydrogen Safety (HySafe) in cooperation with the Institute for Energy and Transport of the Joint Research Centre of the European Commission (JRC IET Petten) held a two-day workshop dedicated to Hydrogen Safety Research Priorities. The workshop was hosted by Federal Institute for Materials Research and Testing (BAM) in Berlin Germany. The main idea of the Workshop was to bring together stakeholders who can address the existing knowledge gaps in the area of the hydrogen safety including identification and prioritization of such gaps from the standpoint of scientific knowledge both experimental and theoretical including numerical. The experience highlighting these gaps which was obtained during both practical applications (industry) and risk assessment should serve as reference point for further analysis. The program included two sections: knowledge gaps as they are addressed by industry and knowledge gaps and state-of-the-art by research. In the current work the main results of the workshop are summarized and analysed.
Indoor Use of Hydrogen, Knowledge Gaps and Priorities for the Improvement of Current Standards on Hydrogen, a Presentation of HyIndoor European Project
Sep 2013
Publication
To develop safety strategies for the use of hydrogen indoors the HyIndoor project is studying the behaviour of a hydrogen release deflagration or non-premixed flame in an enclosed space such as a fuel cell or its cabinet a room or a warehouse. The paper proposes a safety approach based on safety objectives that can be used to take various scenarios of hydrogen leaks into account for the safe design of Hydrogen and Fuel Cell (HFC) early market applications. Knowledge gaps on current engineering models and unknown influence of specific parameters were identified and prioritized thereby re-focusing the objectives of the project test campaign and numerical simulations. This approach will enable the improvement of the specification of openings and use of hydrogen sensors for enclosed spaces. The results will be disseminated to all stakeholders including hydrogen industry and RCS bodies.
The Slow Burst Test as a Method for Probabilistic Quantification of Cylinder Degradation
Sep 2013
Publication
"The current practise of focusing the periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical - with regard to the damage of the specimen as well as in terms of their significance. This is justified by micro damages caused to the specimen by the test itself and by a lack of informative values. Thus BAM Federal Institute of Materials Research and Testing (Germany) uses a new approach of validation of composite for the determination of re-test periods. It enables the description of the state of a population of composite cylinders based on destructive tests parallel to operation.<br/>An essential aspect of this approach is the prediction of residual safe service life. In cases where it cannot be estimated by means of hydraulic load cycle tests as a replacement the creep or burst test remains. As a combination of these two test procedures BAM suggests the ""slow burst test SBT"". On this a variety of about 150 burst test results on three design types of cylinders with plastic liners are presented. For this purpose both the parameters of the test protocol as well as the nature and intensity of the pre-damage artificially aged test samples are analysed statistically. This leads first to an evaluation of the different types of artificial ageing but also to the clear recommendation that conventional burst tests be substituted totally if indented for assessment of composite pressure receptacles."
Detonation Wave Propagation in Semi-confined Layers of Hydrogen-air and Hydrogen-oxygen Mixtures
Oct 2015
Publication
This paper presents results of an experimental investigation on detonation wave propagation in semi-confined geometries. Large scale experiments were performed in layers up to 0.6 m filled with uniform and non-uniform hydrogen–air mixtures in a rectangular channel (width 3 m; length 9 m) which is open from below. A semi confined driver section is used to accelerate hydrogen flames from weak ignition to detonation. The detonation propagation was observed in a 7 m long unobstructed part of the channel. Pressure measurements ionization probes soot-records and high speed imaging were used to observe the detonation propagation. Critical conditions for detonation propagation in different layer thicknesses are presented for uniform H2/air-mixtures as well as experiments with uniform H2/O2 mixtures in a down scaled transparent channel. Finally detail investigations on the detonation wave propagation in H2/air-mixtures with concentration gradients are shown.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Energy Storage as Part of a Secure Energy Supply
Mar 2017
Publication
Florian Ausfelder,
Christian Beilmann,
Martin Bertau,
Sigmar Bräuninger,
Angelika Heinzel,
Renate Hoer,
Wolfram Koch,
Falko Mahlendorf,
Anja Metzelthin,
Marcell Peuckert,
Ludolf Plass,
Konstantin Räuchle,
Martin Reuter,
Georg Schaub,
Sebastian Schiebahn,
Ekkehard Schwab,
Ferdi Schüth,
Detlef Stolten,
Gisa Teßmer,
Kurt Wagemann and
Karl-Friedrich Ziegahn
The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However it affects all areas of the energy system albeit with different results. Within the energy system various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers and the demand-oriented supply ensures that energy demands are met at all times. However renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly.<br/>Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy store it in a storage medium for a suitable period of time and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations.<br/>These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage various technologies are currently in various stages of research development and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat exploitation of phase transitions adsorption/desorption processes and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen.<br/>Hydrogen can be transformed by various processes into other energy carriers which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector it also creates new opportunities for increased flexibility novel synergies and additional optimization.<br/>Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications. The article describes various technologies for energy storage and their potential applications in the context of Germany’s Energiewende i.e. the transition towards a more sustainable energy system. Therefore the existing legal framework defines some of the discussions and findings within the article specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act which is under constant reformation. While the article is written from a German perspective the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology.
Safety Concept of Nuclear Cogeneration of Hydrogen and Electricity
Oct 2015
Publication
There is a significant potential for nuclear combined heat and power (CHP) in quite a number of industries. The reactor concepts of the next generation would be capable to open up in particular the high temperature heat market where nuclear energy is applicable to the production processes of hydrogen (or liquid fuels) by steam reforming or water splitting. Due to the need to locate a nuclear facility near the hydrogen plant an overall safety concept has to deal with the question of safety of the combined nuclear/industrial system by taking into account a qualitatively new class of events characterized by interacting influences. Specific requirements will be determined by such factors as the reactor type the nature of the industrial process the separation distances of the industrial facility and population centers from the nuclear plant and prevailing public attitudes. Based on the Japanese concept of the GTHTR300C nuclear reactor for electricity and hydrogen cogeneration theoretical studies were conducted on the release dispersive transport and explosion of a hydrogen cloud in the atmosphere for the sake of assessing the required minimum separation distance to avoid any risk to the nuclear plant's safety systems. In the case of sulfur-iodine water splitting the accidental release of process intermediates including large amounts of sulfur dioxide sulfur trioxide and sulfuric acid need to be investigated as well to estimate the potential risk to nuclear installations like the operators' room and estimate appropriate separation distances against toxic gas propagation. Results of respective simulation studies will be presented.
Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry
Sep 2019
Publication
A series of experiments on hydrogen flame propagation in a thin layer geometry is presented. Premixed hydrogen-air compositions in the range from 6 to 15%(vol.) H2 are tested. Semi-open vertical combustion chamber consists of two transparent Plexiglas side walls with main dimensions of 90x20 cm with a gap from 1 to 10 mm in between. Test mixtures are ignited at the open end of the chamber so that the flame propagates towards the closed end. Ignition position changes from top to bottom in order to take into account an effect of gravity on flame propagation regimes. High-speed shadow imaging is used to visualize and record the combustion process. Thermal-diffusion and Darrieus-Landau instabilities are governing the general flame behaviour. Heat losses to side walls and viscous friction in a thin layer may fully suppress the flame propagation with local or global extinction. The sensitivity to heat losses can be characterized using a Peclet number as a ratio of layer thickness to laminar flame thickness. Approaching to critical Peclet number Pec = 42 the planar or wrinkled flame surface degradants to one-or two-heads "finger" flame propagating straight (for two-heads flame) or chaotic (for one-head "finger" flame). Such a "fingering" of the flame is found for the first time for gaseous systems and very similar to that reported for smouldering or filtering combustion of solid materials and also under micro-gravity conditions. The distance between "fingers" may depend on deficit of limiting component. The processes investigated can be very important from academic and practical points of view with respect to safety of hydrogen fuel cells.
The Pressure Peaking Phenomenon: Validation for Unignited Releases in Laboratory-scale Enclosure
Oct 2015
Publication
This study is aimed at the validation of the pressure peaking phenomenon against laboratory-scale experiments. The phenomenon was discovered recently as a result of analytical and numerical studies performed at Ulster University. The phenomenon is characterized by the existence of a peak on the overpressure transient in an enclosure with vent(s) at some conditions. The peak overpressure can significantly exceed the steady-state pressure and jeopardise a civil structure integrity causing serious life safety and property protection problems. However the experimental validation of the phenomenon was absent until recently. The validation experiments were performed at Karlsruhe Institute of Technology within the framework of the HyIndoor project. Tests were carried out with release of three different gases (air helium and hydrogen) within a laboratory-scale enclosure of about 1 m3 volume with a vent of comparatively small size. The model of pressure peaking phenomenon reproduced closely the experimental pressure dynamics within the enclosure for all three used gases. The prediction of pressure peaking phenomenon consists of two steps which are explained in detail. Examples of calculation for typical hydrogen applications are presented.
Membrane Based Purification of Hydrogen System (MEMPHYS)
Feb 2019
Publication
A hydrogen purification system based on the technology of the electrochemical hydrogen compression and purification is introduced. This system is developed within the scope of the project MEMPHYS. Therefore the project its targets and the different work stages are presented. The technology of the electrochemical purification and the state of the art of hydrogen purification are described. Early measurements in the project have been carried out and the results are shown and discussed. The ability of the technology to recover hydrogen from a gas mixture can be recognized and an outlook into further optimizations shows the future potential. A big advantage is the simultaneous compression of the purified hydrogen up to 200 bar therefore facilitating the transportation and storage.
Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems
Aug 2015
Publication
This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV) system (nearly 100% self-consumption). Thereby the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.
Laser Powder Bed Fusion of WE43 in Hydrogen-argon-gas Atmosphere
Sep 2020
Publication
Growing demand for individual and especially complex parts with emphasis on biomedical or lightweight applications enhances the importance of laser powder bed fusion. Magnesium alloys offer both biocompatibility and low density but feature a very high melting point of oxide layers while the evaporation temperature of pure magnesium is much lower. This impedes adequate part quality and process reproducibility. To weaken this oxide layer and enhance processability a 2 %-hydrogen-argon-gas atmosphere was investigated. A machine system was modified to the use of the novel inert gas to determine the influence of gas atmosphere on hollow cuboids and solid cubes. While processing a 20.3 % decrease in structure width and 20.6 % reduction in standard deviation of the cuboids was determined. There was no significate influence on relative density of solid cubes although eight of the ten highest density specimen were fabricated with the hydrogen addition.
Determination of Distribution Function Used in Monte Carlo Simulation on Safety Analysis of Hydrogen Vessels
Sep 2019
Publication
The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution function; Anderson-Darling and Kolmogorov-Smirnov tests are the mostly favorable approaches for Goodness of Fit. However the different approaches used to determine the parameters of distribution function lead mostly to different conclusions for safety assessments.<br/>In this study six different methods are investigated to show the variations on the rates for accepting the composite pressure vessels according to GTR No. 13 life test procedure. The six methods are: a) Norm- Log based method b) Least squares regression c) Weighted least squares regression d) A linear approach based on good linear unbiased estimators e) Maximum likelihood estimation and f) The method of moments estimation. In addition various approaches of ranking function are considered. In the study Monte Carlo simulations are conducted to generate basic populations based on the distribution functions which are determined using different methods. Then the samples are extracted randomly from a population and evaluated to obtain acceptance rate. Here the “populations” and “samples” are corresponding to the burst strength or load cycle strength of the pressure vessels made from composite material and a plastic liner (type 4) for the storage of hydrogen. To the end the results are discussed and the best reliable methods are proposed.
The National Hydrogen Strategy - The Federal Government Germany
Jun 2020
Publication
The energy transition – which represents the efforts undertaken and results achieved on renewable energy expansion and energy efficiency – is our basis for a clean secure and affordable energy supply which is essential for all our lives. By adopting the 2030 Climate Action Plan the Federal Government has paved the way for meeting its climate targets for 2030. Its long-term goal is to achieve carbon neutrality in line with the targets agreed under the Paris Agreement which seeks to keep global warming well below 2 degrees and if possible below 1.5 degrees. In addition Germany has committed itself together with the other European Member States to achieving greenhouse gas (GHG) neutrality by 2050. Apart from phasing out coal-fired power for which Germany has already taken the relevant decisions this means preventing emissions which are particularly hard to reduce such as process-related GHG emissions from the industrial sector.<br/>In order for the energy transition to be successful security of supply affordability and environmental compatibility need to be combined with innovative and smart climate action. This means that the fossil fuels we are currently using need to be replaced by alternative options. This applies in particular to gaseous and liquid energy sources which will continue to be an integral part of Germany’s energy supply. Against this backdrop hydrogen will play a key role in enhancing and completing the energy transition.
No more items...