France
Safety Cost of a Large Scale Hydrogen System for Photovoltaic Energy Regulation
Sep 2011
Publication
Hydrogen can be used as a buffer for storing intermittent electricity produced by solar plants and/or wind farms. The MYRTE project in Corsica France aims to operate and test a large scale hydrogen facility for regulating the electricity produced by a 560 kWp photovoltaic plant.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Fire Risk on High-pressure Full Composite Cylinders for Automotive Applications
Sep 2011
Publication
In the event of a fire the TPRD (Thermally activated Pressure Relief Device) prevents the high-pressure full composite cylinder from bursting by detecting high temperatures and releasing the pressurized gas. The current safety performance of both the vessel and the TPRD is demonstrated by an engulfing bonfire test. However there is no requirement concerning the effect of the TPRD release which may produce a hazardous hydrogen flame due to the high flow-rate of the TPRD. It is necessary to understand better the behavior of an unprotected composite cylinder exposed to fire in order to design appropriate protection for it and to be able to reduce the length of any potential hydrogen flame. For that purpose a test campaign was performed on a 36 L cylinder with a design pressure of 70 MPa. The time from fire exposure to the bursting of this cylinder (the burst delay) was measured. The influence of the fire type (partial or global) and the influence of the pressure in the cylinder during the exposure were studied. It was found that the TPRD orifice diameter should be significantly reduced compared to current practice.
Numerical Investigation of a Mechanical Device Subjected to a Deflagration-to-detonation Transition
Sep 2011
Publication
In this work we evaluate the consequences of the combustion of a stoichiometric mixture of hydrogen-air on a mechanical device which can be considered as a long tube. In order to choose the most dangerous combustion regime for the mechanical device we devote a particular attention to the investigation of the 1D deflagration-to-detonation transition. Then once established the most dangerous combustion regime we compute the reacting flow and the stress and strain in the mechanical device. Analyses are performed using both semi-analytical solutions and Europlexus a computer program for the simulation of fluid-structure systems under transient dynamic loading.
Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations
Sep 2011
Publication
In a near future with an increasing use of hydrogen as an energy vector gaseous hydrogen transport as well as high capacity storage may imply the use of high strength steel pipelines for economical reasons. However such materials are well known to be sensitive to hydrogen embrittlement (HE). For safety reasons it is thus necessary to improve and clarify the means of quantifying embrittlement. The present paper exposes the changes in mechanical properties of a grade API X80 steel through numerous mechanical tests i.e. tensile tests disk pressure test fracture toughness and fatigue crack growth measurements WOL tests performed either in neutral atmosphere or in high-pressure of hydrogen gas. The observed results are then discussed in front of safety considerations for the redaction of standards for the qualification of materials dedicating to hydrogen transport.
Delayed Explosion of Hydrogen High Pressure Jets in a Highly Obstructed Geometry
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario in safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. Such explosions were widely explored in multiple experimental and numerical investigations. Explosion of high pressure releases in highly obstructed geometries with high blockage ratio is a much more complicated phenomenon. This paper is dedicated to the experimental investigation of the influence of obstacles on a delayed deflagration of hydrogen jets. The computational fluid dynamics (CFD) code FLACS is used to reproduce experimental data. In the current study the computed overpressure signals are compared to the experimentally measured ones at different monitoring points. Simulations are in close agreement with experimental results and can be used to predict overpressure where experimental pressure detectors were saturated. For homogenous stationary clouds a new approach of equivalent mixture of H2/air (~16.5%) to stoichiometric mixture of CH4/air is suggested. This approach is validated versus experimental data from the literature in terms of overpressure maxima. A parametric study is performed using FLACS for various concentrations in the same geometry in order to identify a possible transition from deflagration to detonation.
Numerical and Experimental Investigation of H2-air and H2-O2 Detonation Parameters in a 9 m Long Tube, Introduction of a New Detonation Model
Sep 2017
Publication
Experimental and numerical investigation of hydrogen-air and hydrogen-oxygen detonation parameters was performed. A new detonation model was introduced and validated against the experimental data. Experimental set-up consisted of 9 m long tube with 0.17 m in diameter where pressure was measured with piezoelectric transducers located along the channel. Numerical simulations were performed within OpenFoam code based on progress variable equation where the detonative source term accounts for autoignition effects. Autoignition delay times were computed at a simulation run-time with the use of a multivariate regression model where independent variables were: pressure temperature and fuel concentration. The dependent variable was the autoignition delay time. Range of the analyzed gaseous mixture composition varied between 20% and 50% of hydrogen-air and 50%–66% of hydrogen in oxygen. Simulations were performed using LES one-equation eddy viscosity turbulence model in 2D and 3D. Calculations were validated against experimental data.
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Prevention of Hydrogen Accumulation Inside the Vacuum Vessel Pressure Suppression System of the ITER Facility by Means of Passive Auto-catalytic Recombiners
Sep 2017
Publication
Hydrogen safety is a relevant topic for both nuclear fission and fusion power plants. Hydrogen generated in the course of a severe accident may endanger the integrity of safety barriers and may result in radioactive releases. In the case of the ITER fusion facility accident scenarios with water ingress consider the release of hydrogen into the suppression tank (ST) of the vacuum vessel pressure suppression system (VVPSS). Under the assumption of additional air ingress the formation of flammable gas mixtures may lead to explosions and safety component failure.<br/>The installation of passive auto-catalytic recombiners (PARs) inside the ST which are presently used as safety devices inside the containments of nuclear fission reactors is one option under consideration to mitigate such a scenario. PARs convert hydrogen into water vapor by means of passive mechanisms and have been qualified for operation under the conditions of a nuclear power plant accident since the 1990s.<br/>In order to support on-going hydrogen safety considerations simulations of accident scenarios using the CFD code ANSYS-CFX are foreseen. In this context the in-house code REKO-DIREKT is coupled to CFX to simulate PAR operation. However the operational boundary conditions for hydrogen recombination (e.g. temperature pressure gas mixture) of a fusion reactor scenario differ significantly from those of a fission reactor. In order to enhance the code towards realistic PAR operation a series of experiments has been performed in the REKO-4 facility with specific focus on ITER conditions. These specifically include operation under sub-atmospheric pressure (0.2–1.0 bar) gas compositions ranging from lean to rich H2/O2 mixtures and superposed flow conditions.<br/>The paper gives an overview of the experimental program presents results achieved and gives an outlook on the modelling approach towards accident scenario simulation.
Experimental Determination of Minimum Ignition Current (MIC) for Hydrogen & Methane Mixtures for the Determination of the Explosion Group Corresponding to IEC 60079-20-1
Sep 2017
Publication
Power to gas could get an important issue in future permitting the valorisation of green electric excess energy by producing hydrogen mixing it with natural gas (NG) and use the NG grid as temporary storage. NG grid stakeholders expect that blends up to 20% seem to be a realistic scenario. The knowledge of the explosion group for these hydrogen/NG (H2NG) mixtures is a necessary information for the choice of equipment and protective systems intended for the use in potentially explosive atmospheres of these mixtures. Therefore we determined experimentally the minimum ignition current (MIC) the MIC ratios referenced on MIC of pure methane corresponding to IEC 60079-20-1 standard. The results are compared to those obtained by maximum experimental safe gap (MESG) the second standardized method. The tested gas mixtures started from 2 vol.% volume admixture in methane rising in 2% steps up to 20 vol.% of hydrogen. The interpretation of these results could conduct to consider methane/hydrogen mixtures containing more than 14 vol.% of hydrogen as Group IIB gases.
Delayed Explosion of Hydrogen High Pressure Jets: An Inter Comparison Benchmark Study
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario for safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. As a consequence the assessment of the associated consequences requires accurate and validated prediction based on modelling and experimental approaches. In the frame of the French working group dedicated to the evaluation of computational fluid dynamics (CFD) codes for the modelling of explosion phenomena this study is dedicated to delayed explosions of high pressure releases. Two participants using two different codes have evaluated the capacity of CFD codes to reproduce explosions of high pressure hydrogen releases. In the first step the jet dispersion is modelled and simulation results are compared with experimental data in terms of axial and radial concentration dilution velocity decay and turbulent characteristics of jets. In the second step a delayed explosion is modelled and compared to experimental data in terms of overpressure at different monitor points. Based on this investigation several recommendations for CFD modelling of high pressure jets explosions are suggested.
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
Vented Hydrogen-air Deflagration in a Small Enclosed Volume
Sep 2013
Publication
Since the rapid development of hydrogen stationary and vehicle fuel cells the last decade it is of importance to improve the prediction of overpressure generated during an accidental explosion which could occur in a confined part of the system. To this end small-scale vented hydrogen–air explosions were performed in a transparent cubic enclosure with a volume of 3375 cm3. The flame propagation was followed with a high speed camera and the overpressure inside the enclosure was recorded using high frequency piezoelectric transmitters. The effects of vent area and ignition location on the amplitude of pressure peaks in the enclosed volume were investigated. Indeed vented deflagration generates several pressures peaks according to the configuration and each peak can be the dominating pressure. The parametric study concerned three ignition locations and five square vent sizes.
Experimental Study of the Concentration Build-Up Regimes in an Enclosure Without Ventilation
Sep 2011
Publication
We present an experimental investigation of the different concentration build-up regimes encountered during a release of helium/air mixture in an empty enclosure without ventilation. The release is a vertical jet issuing from a nozzle located near the floor. The nozzle diameter the flow rate and the composition of the injected mixture have been varied such that the injection Richardson number ranges from 6 × 10−6 to 190. The volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 2 × 10−3 to 2 × 104. This wide range allowed reaching three distinct regimes: stratified stratified with a homogeneous upper layer and homogenous.
Failure of PEM Water Electrolysis Cells: Case Study Involving Anode Dissolution and Membrane Thinning
Sep 2013
Publication
Polymer electrolyte membrane (PEM) water electrolysis is an efficient and environmental friendly method that can be used for the production of molecular hydrogen of electrolytic grade using zero-carbon power sources such as renewable and nuclear. However market applications are asking for cost reduction and performances improvement. This can be achieved by increasing operating current density and lifetime of operation. Concerning performance safety reliability and durability issues the membrane-electrode assembly (MEA) is the weakest cell component. Most performance losses and most accidents occurring during PEM water electrolysis are usually due to the MEA. The purpose of this communication is to report on some specific degradation mechanisms that have been identified as a potential source of performance loss and membrane failure. An accelerated degradation test has been performed on a MEA by applying galvanostatic pulses. Platinum has been used as electrocatalyst at both anode and cathode in order to accelerate degradation rate by maintaining higher cell voltage and higher anodic potential that otherwise would have occurred if conventional Ir/IrOx catalysts had been used. Experimental evidence of degradation mechanisms have been obtained by post-mortem analysis of the MEA using microscopy and chemical analysis. Details of these degradation processes are presented and discussed.
Mixed E-learning and Virtual Reality Pedagogical Approach for Innovative Hydrogen Safety Training for First Responders
Oct 2015
Publication
Within the scope of the HyResponse project the development of a specialised training programme is currently underway. Utilizing an andragogy approach to teaching distance learning is mixed with classroom instructors-led activities while hands-on training on a full-scale simulator is coupled with an innovative virtual reality based experience. Although the course is dedicated mainly to first responders provision has been made to incorporate not only simple table-top and drill exercises but also full-scale training involving all functional emergency response organisations at multi-agency cooperation level. The developed curriculum includes basics of hydrogen safety first responders' procedures and incident management expectations
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Hydrogen Storage – Industrial Prospectives
Sep 2011
Publication
The topic of this paper is to give an historical and technical overview of hydrogen storage vessels and to detail the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60 s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70 s. Aluminum cylinders were also used for hydrogen storage since the end of the 60 s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80 s. Because of their low weight they started to be used in for portable applications: for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 850 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Explosion and Fire Risk Analyses of Maritime Fuel Cell Rooms with Hydrogen
Sep 2017
Publication
A methodology for explosion and fire risk analyses in enclosed rooms is presented. The objectives of this analysis are to accurately predict the risks associated with hydrogen leaks in maritime applications and to use the approach to provide decision support regarding design and risk-prevention and risk mitigating measures. The methodology uses CFD tools and simpler consequence models for ventilation dispersion and explosion scenarios as well as updated frequency for leaks and ignition. Risk is then efficiently calculated with a Monte Carlo routine capturing the transient behavior of the leak. This makes it possible to efficiently obtain effects of sensitivities and design options maintaining safety and reducing costs.
Threshold Stress Intensity Factor for Hydrogen Assisted Cracking of Cr-Mo Steel Used as Stationary Storage Buffer of a Hydrogen Refueling Station
Oct 2015
Publication
In order to determine appropriate value for threshold stress intensity factor for hydrogen-assisted cracking (KIH) constant-displacement and rising-load tests were conducted in high-pressure hydrogen gas for JIS-SCM435 low alloy steel (Cr-Mo steel) used as stationary storage buffer of a hydrogen refuelling station with 0.2% proof strength and ultimate tensile strength equal to 772 MPa and 948 MPa respectively. Thresholds for crack arrest under constant displacement and for crack initiation under rising load were identified. The crack arrest threshold under constant displacement was 44.3 MPa m1/2 to 44.5 MPa m1/2 when small-scale yielding and plane-strain criteria were satisfied and the crack initiation threshold under rising load was 33.1 MPa m1/2 to 41.1 MPa m1/2 in 115 MPa hydrogen gas. The crack arrest threshold was roughly equivalent to the crack initiation threshold although the crack initiation threshold showed slightly more conservative values. It was considered that both test methods could be suitable to determine appropriate value for KIH for this material.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
Risk Informed Separation Distances For Hydrogen Refuelling Stations
Sep 2011
Publication
The lay-out requirements developed for hydrogen systems operated in industrial environment are not suitable for the operating conditions specific to hydrogen refuelling stations (service pressure of up to 95 MPa facility for public use). A risk informed rationale has been developed to define and substantiate separation distance requirements in ISO 20100 Gaseous hydrogen – refuelling stations [1]. In this approach priority is given to preventing escalation of small incidents into majors ones with a focus on critical exposures such as places of occupancy (fuelling station retail shop) while optimizing use of the available space from a risk perspective a key objective for being able to retrofit hydrogen refuelling in existing stations.
Cell Failure Mechanisms in PEM Water Electrolyzers
Sep 2011
Publication
PEM water electrolysis offers an efficient and flexible way to produce “green-hydrogen” from renewable (intermittent) energy sources. Most research papers published in the open literature on the subject are addressing performances issues and to date very few information is available concerning the mechanisms of performance degradation and the associated consequences. Results reported in this communication have been used to analyze the failure mechanisms of PEM water electrolysis cells which can ultimately lead to the destruction of the electrolyzer. A two-step process involving firstly the local perforation of the solid polymer electrolyte followed secondly by the catalytic recombination of hydrogen and oxygen stored in the electrolysis compartments has been evidenced. The conditions leading to the onset of such mechanism are discussed and some preventive measures are proposed to avoid accidents.
Data for the Evaluation of Hydrogen Risks Onboard Vehicles: Outcomes from the French Project Drive
Sep 2011
Publication
From 2006 to 2009 INERIS alongside with CEA PSA PEUGEOT CITROËN and IRPHE were involved in a project called DRIVE. Its objective was to provide data on the whole reaction chain leading to a hydrogen hazard onboard a vehicle. Out of the three types of leakage identified by the consortium (permeation chronic and accidental) the chronic leakage taking place within the engine was judged to be more problematic since it can feature a high probability of occurrence and a significant release flow rate (up to 100 NL/min). Ignition tests carried out within a real and dummy engine compartment showed that pressure effects due to an explosion will be relatively modest provided that the averaged hydrogen concentration in this area is limited to 10% vol/vol which would correspond to a maximum release flow of 10 NL/min. This maximum concentration could be used as a threshold value for detection or as a target while designing the vehicle. Jet fire experiments were also conducted in the frame of the DRIVE project. It was found that pressure-relief devices (PRDs) might be unsuited to protect humans from the explosion of a tank caused by a bonfire. Other solutions are proposed in this paper.
Application of Reactive Discrete Equation Method to the ENACCEF Test 13h
Sep 2011
Publication
The Reactive Discrete Equation Method (RDEM) was recently introduced in [12] adapted to combustion modelling in [3] and implemented in the TONUS code [4]. The method has two major features: the combustion constant having velocity dimension is the fundamental flame speed and the combustion wave now is an integral part of the Reactive Riemann Problem. In the present report the RDEM method is applied to the simulation of the combustion Test 13H performed in the ENACCEF facility. Two types of computations have been considered: one with a constant fundamental flame speed the other with time dependent fundamental flame speed. It is shown that by using the latter technique we can reproduce the experimental visible flame velocity. The ratio between the fundamental flame speed and the laminar flame speed takes however very large values compared to the experimental data based on the tests performed in spherical bombs or cruciform burner.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Detonability of Binary H2/Ch4 - Air Mixture
Sep 2009
Publication
Abatement of greenhouse gas emissions and diversification of energy sources will probably lead to an economy based on hydrogen. In order to evaluate safety conditions during transport and distribution experimental data is needed on the detonation of Hydrogen/Natural gas blend mixtures. The aim of this study is to constitute detonation and deflagration to detonation transition (DDT) database of H2/CH4-air mixtures. More precisely the detonability of such mixtures is evaluated by the detonation cell size and the DDT run up distance measurements. Large experimental conditions are investigated (i) various equivalence ratios from 0.6 to 3 (ii) various H2 molar fraction x ( ( )2 2 4x H H CH= + ) from 0.5 to 1 (iii) different initial pressure P0 from 0.2 to 2 bar at fixed ambient temperature T0=293 K. Detonation pressures P velocities D and cell sizes ? were measured in two smooth tubes with different i.d. d (52 and 106 mm). For DDT data minimum DDT run up distances LDDT were determined in the d=52 mm tube containing a 2.8 m long Schelkin spiral with a blockage ratio BR = 0.5 and a pitch equal to the diameter. Measured detonation velocities D are very close to the Chapman Jouguet values (DCJ). Concerning the effect of detonation cell size ? follows a classical U shaped- curve with a minimum close to =1 and concerning the effect of x ? decreases when x increases. The ratio ik L?= obtained from different chemical kinetics (Li being the ZND induction length) is well approximated by the value 40 in the range 0.5 < x < 0.9 and 50 for x 0.9. Minimum DDT run up distance LDDT varies from 0.36 to 1.1m when x varies from 1 to 0.8. The results show that LDDT obeys the linear law LDDT ~ 30-40? previously validated in H2/Air mixtures. Adding Hydrogen in Natural Gas promotes the detonability of the mixtures and for x 0.65 these mixtures are considered more sensitive than common heavy Alkane-Air mixtures.
Genome-wide Transcriptome Analysis of Hydrogen Production in the Cyanobacterium Synechocystis: Towards the Identification of New Players
Dec 2012
Publication
We report the development of new tools and methods for facile integration and meaningful representation of high throughput data generated by genome-wide analyses of the model cyanobacterium Synechocystis PCC6803 for future genetic engineering aiming at increasing its level of hydrogen photoproduction. These robust tools comprise new oligonucleotide DNA microarrays to monitor the transcriptomic responses of all 3725 genes of Synechocystis and the SVGMapping method and custom-made templates to represent the metabolic reprogramming for improved hydrogen production. We show for the first time that the AbrB2 repressor of the hydrogenase-encoding operon also regulates metal transport and protection against oxidative stress as well as numerous plasmid genes which have been overlooked so far. This report will stimulate the construction and global analysis of hydrogen production mutants with the prospect of developing powerful cell factories for the sustainable production of hydrogen as well as investigations of the probable role of plasmids in this process.
An Analysis of the Experiments Carried Out by HSL in the HyIndoor European Project Studying Accumulation of Hydrogen Released into a Semi-confined Enclosure
Oct 2015
Publication
Experimental work on hydrogen releases consequences in a 31-m3 semi-confined enclosure was performed in the framework of the collaborative European Hyindoor project. Natural ventilation effectiveness on hydrogen build-up limitation in a confined area was studied for several configurations of ventilation openings and of release conditions in real environmental conditions [1]; influence of wind on gas build-up was observed as well. This paper proposes a critical analysis of these experiments carried out by HSL and compares results with analytical approaches available in open scientific literature. The validity of these models in presence of wind was broached.
Indoor Use of Hydrogen, Knowledge Gaps and Priorities for the Improvement of Current Standards on Hydrogen, a Presentation of HyIndoor European Project
Sep 2013
Publication
To develop safety strategies for the use of hydrogen indoors the HyIndoor project is studying the behaviour of a hydrogen release deflagration or non-premixed flame in an enclosed space such as a fuel cell or its cabinet a room or a warehouse. The paper proposes a safety approach based on safety objectives that can be used to take various scenarios of hydrogen leaks into account for the safe design of Hydrogen and Fuel Cell (HFC) early market applications. Knowledge gaps on current engineering models and unknown influence of specific parameters were identified and prioritized thereby re-focusing the objectives of the project test campaign and numerical simulations. This approach will enable the improvement of the specification of openings and use of hydrogen sensors for enclosed spaces. The results will be disseminated to all stakeholders including hydrogen industry and RCS bodies.
Hydrogen Storage - Recent Improvements and Industrial Prospectives
Sep 2013
Publication
This paper gives a historical and technical overview of hydrogen storage vessels and details the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70s. Aluminum cylinders were also used for hydrogen storage since the end of the 60s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80s. Because of their low weight they started to be used in for portable applications for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 1 000 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Sample Scale Testing Method to Prevent Collapse of Plastic Liners in Composite Pressure Vessels
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. When pressurised hydrogen permeates through the materials and solves into them. Emptying then leads to a difference of pressure at the interface between composite and liner possibly leading to a permanent deformation of the plastic liner called “collapse” or “buckling”. This phenomenon has been studied through French funded project Colline allowing to better understand its initiation and long-term effects. This paper presents the methodology followed using permeation tests hydrogen decompression tests on samples and gas diffusion calculation in order to determine safe operating conditions such as maximum flow rate or residual pressure level.
Application of Natural Ventilation Engineering Models to Hydrogen Build Up in Confined Zones
Sep 2013
Publication
Correlative engineering models (Linden 1994) are compared to recent published (Cariteau et al. (2009) Pitts et al. (2009) Barley and Gawlick (2009) Swain et al. (1999) Merilo et al. (2010)) and unpublished (CEA experiments in a 1 m3 with two openings) experimental hydrogen or helium distribution in enclosures (with one and two openings). The modelling-experiments comparison is carried out in transient and in steady state conditions. On this basis recommendations and limits of use of these models are proposed.
An Inter-comparison Exercise on Engineering Models Capabilities to Simulate Hydrogen Vented Explosions
Sep 2013
Publication
A benchmark exercise on vented explosion engineering model was carried out against the maximum overpressures (one or two peaks) of published experiments. The models evaluated are Bauwens et al. (2012-1 and 2012-2) [4 7] models Molkov Vent Sizing Technology 1999 2001 and 2008 models [12 13 6]. The experiments in consideration are Pasman et al. experiments (1974) (30% H2 - 1m3) [1] Bauwens et al. (2012) experiments (64m3) [4] Daubech et al. (2011) experiments (10 to 30% H2 - 1 and 10 m3) [2] and Daubech et al. (2013) [5] experiments (4 m3 – H2 10 to 30%). On this basis recommendations and limits of use of these models are proposed.
Detonation Dynamics in a Curved Chamber for an Argon Diluted Hydrogen-oxygen Mixture
Sep 2019
Publication
The dynamics of detonation transmission from a straight channel into a curved chamber was investigated as a function of initial pressure using a combined experimental and numerical study. Hi-speed Schlieren and *OH chemiluminescense were used for flow visualization; numerical simulations considered the two-dimensional reactive Euler equations with detailed chemistry. Results show the highly transient sequence of events (i.e. detonation diffraction re-initiation attempts and wave reflections) that precede the formation of a steadily rotating Mach detonation along the outer wall of the chamber. An increase in pressure from 15 kPa to 26 kPa expectedly resulted in detonations that are less sensitive to diffraction. Local quenching of the initial detonation occurred for all pressures considered. The location where this decoupling occurred along the inner wall determined the location where transition from regular reflection to a rather complex wave structure occurred along the outer wall. This complex wave structure includes a steadily rotating Mach detonation (stem) an incident decoupled shock-reaction zone region and a transverse detonation that propagates in pre-shocked mixture.
Experimental Results on The Dispersion of Buoyant Gas in a Full Scale Garage from a Complex Source
Sep 2009
Publication
The lack of experimental data on hydrogen dispersion led to the experimental project DRIVE (Experimental Data for Hydrogen Automotive Risks Assessment for the validation of numerical tools and for the Edition of guidelines) that involves the CEA (French Atomic Energy Commission) the National Institute of Industrial Environment and Risks (INERIS) the French car manufacturer PSA PEUGEOT CITROËN and the Research Institute on Out of Equilibrium Phenomena (IRPHE). The CEA has developed an experimental setup named GARAGE in order to analyze the condition of formation of an explosive atmosphere in an enclosure. This is a full scale facility in which a real car can be parked. Hydrogen releases were simulated with helium which volume fraction was measured with mini-katharometers. These thermal conductivity probes allow spatial and time volume fraction variations measurements. We present experimental results on the dispersion of helium in the enclosure due to releases in a typical car. The tested parameters are the location of the source (engine bottom of the car storage) and the flow rate. Emphasis is put on the influence of these parameters on the time evolution of the volume fraction in the enclosure as well as on the vertical distribution of helium.
Experiments on the Distribution of Concentration Due to Buoyant Gas Low Flow Rate Release in an Enclosure.
Sep 2009
Publication
Hydrogen energy based vehicles or power generators are expected to come into widespread use in the near future. Safety information is of major importance to support the successful public acceptance of hydrogen as an energy carrier. One of the most important issues in terms of safety is the use of such system in closed area such as a private garage in which a fuel cell car may be parked. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of a stably stratified distribution of concentration. Most of them consider the cases of accidental situation in which the flow rate is relatively important (of the order of 10Nl/min to 100Nl/min). We present a set of experiments conducted on a full scale facility of the size of a typical private garage with helium as a model gas for hydrogen. In this study we focus on the low flow rates that can be characteristic of chronic leaks that may not be detected by security devices of the system (of the order of 0.1Nl/min to 10Nl/min). The facility allows changing natural ventilation conditions and experiments have been conducted from the tightest which is less than 0.01ACH to that typical of a real garage say of the order of 0.1ACH.
Influence of the Location of a Buoyant Gas Release in Several Configurations Varying the Height of the Release and the Geometry of the Enclosure
Sep 2013
Publication
The present work proposes a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated enclosure. Several configurations were experimentally addressed in order to improve knowledge on dispersion considering conditions close to hydrogen energy systems in terms of operating characteristics and design. Thus the varying parameters of the study were mainly the height of the release and also the releasing flow rate the volume and the geometry of the enclosure. Experimental results were compared to existing analytical models and considered through model improvements allowing a better approach of these specific cases for hydrogen systems risk assessment.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
Influence of Doping Element in Distributed Hydrogen Optical Fiber Densors with Brillouin Scattering
Sep 2013
Publication
Distributed hydrogen optical fiber sensor with Brillouin scattering is an innovative solution to measure hydrogen in harsh environment as nuclear industry. Glass composition is the key point to enhance the sensing parameter of the fiber in the target application. Several optical fiber with different doping element were used for measuring hydrogen saturation. Permeability of optical plays a major role to the kinetic of hydrogen diffusion. Fluorine doped fiber increase the sorption and the desorption of hydrogen.
Hydrogen-air Vented Explosions- New Experimental Data
Sep 2013
Publication
The use of hydrogen as an energy carrier is a real perspective in Europe since a number of breakthroughs obtained in the last decades open the possibility to envision a deployment at the industrial scale if safety issues are duly accounted. However on this particular aspects experimental data are still lacking especially about the explosion dynamics in realistic dimensions. The purpose of this paper is to provide a set of totally new and well instrumented hydrogen - air vented explosions. Experiments were performed in a large explosion chamber within the scope of the DIMITRHY project (sponsored by the National French Agency for Research). The 4 m3 rectangular experimental chamber (2 m height 2 m width and 1 m depth) is equipped with transparent walls and is vented (0.25 and 0.5 m2 square vents).. Six pressure gauges were used to measure the overpressure evolution inside and outside the chamber. Six concentration gauges were used to control the hydrogen repartition in the vessel. The hydrogen-air cloud was seeded with micro particles of ammonium chloride to see the propagation of the flame the movement of the cloud inside and outside the chamber. The incidence of reactivity vent size ignition position and non homogenous repartition of hydrogen received a particular attention.
Development of a Model Evaluation Protocol for CFD Analysis of Hydrogen Safety Issues – The SUSANA Project
Oct 2015
Publication
The “SUpport to SAfety aNAlysis of Hydrogen and Fuel Cell Technologies (SUSANA)” project aims to support stakeholders using Computational Fluid Dynamics (CFD) for safety engineering design and assessment of FCH systems and infrastructure through the development of a model evaluation protocol. The protocol covers all aspects of safety assessment modelling using CFD from release through dispersion to combustion (self-ignition fires deflagrations detonations and Deflagration to Detonation Transition - DDT) and not only aims to enable users to evaluate models but to inform them of the state of the art and best practices in numerical modelling. The paper gives an overview of the SUSANA project including the main stages of the model evaluation protocol and some results from the on-going benchmarking activities.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2017
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets (early markets as well as transportation market). Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of hydrogen storage technologies and details the specific issues and constraints related to the materials behaviour in hydrogen and conditions representative of hydrogen energy uses. It is indeed essential for the development of applications requiring long-term performance to have good understanding of long-term behaviour of the materials of the storage device and its components under operational loads.
The CALIF3S-P2remics Software – An Application to Underexpanded Hydrogen Jet Deflagration
Sep 2019
Publication
To assess explosion hazard the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN) is developing the P2REMICS software (for Partially PREMIxed Combustion Solver) on the basis of the generic CFD solver library CALIF3S (for Components Adaptive Library for Fluid Flow Simulation). Both P2REMICS and CALIF3S are in-house IRSN softwares released under an open-source license. CALIF3S-P2REMICS is dedicated to the simulation of explosion scenarii (explosive atmosphere formation deflagration or detonation and blast waves propagation) for hydrogen as more generally for any explosive gas or gas/dust mixture. It is based on staggered space discretizations and implements fractional-steps time algorithms well suited for massively parallel computations. A wide range of experiments is used for the software validation. Among them we focus here on a free underexpanded hydrogen jet deflagration performed in two steps: first the hydrogen is released in air up to obtain a steady jet (dispersion phase) then the deflagration is triggered. For the dispersion phase simulation a notional nozzle approach is used to get rid of the description of the shocked zone located near the nozzle. Then a so-called turbulent flame velocity approach is chosen for the deflagration simulation. The computations allow to highlight the complex flow structures induced by the inhomogeneity fuel concentration in the jet. A large dispersion of results is observed depending on the chosen correlation for the turbulent flame speed.
Hydrogen Effect on Fatigue and Fracture of Pipe Steels
Sep 2009
Publication
Transport by pipe is one the most usual way to carry liquid or gaseous energies from their extraction point until their final field sites. To limit explosion risk or escape to avoid pollution problems and human risks it is necessary to assess nocivity of defect promoting fracture. This need to know the mechanical properties of the pipes steels. Hydrogen is considered to day as a new energy vector and its transport in one of the key problems to extension of its use. Within the European project NATURALHY it has been proposed to transport a mixture of natural gas and hydrogen. 39 European partners have combined their efforts to assess the effects of hydrogen presence on the existing gas network. Key issues are durability of pipeline material integrity management safety aspects life cycle and socio-economic assessment and end-use. The work described in this paper was performed within the NATURALHY work package on ’Durability of pipeline material’. This study makes it possible to emphasize the hydrogen effect on mechanical properties of several pipe steels as X52 X70 or X100 in fatigue and fracture and in two different environments: air and hydrogen electrolytic.
CFD Benchmark Based on Experiments of Helium Dispersion in a 1m3 Enclosure–intercomparisons for Plumes
Sep 2013
Publication
In the context of the French DIMITRHY project ANR-08-PANH006 experiments have been carried out to measure helium injections in a cubic 1 m3 box - GAMELAN in a reproducible and quantitative manner. For the present work we limit ourselves to the unique configuration of a closed box with a small hole at its base to prevent overpressure. This case leads to enough difficulties of modelisations to deserve our attention. The box is initially filled with air and injections of helium through a tube of diameter 20 mm is operated. The box is instrumented with catharometres to measure the helium volume concentration within an accuracy better than 0.1%. We present the CFD (Fluent and CASTEM ANSYS-CFX and ADREA-HF) calculations results obtained by 5 different teams participating to the benchmark in the following situation: the case of a plume release of helium in a closed box (4NL/min). Parts of the CFD simulations were performed in the European co-funded project HyIndoor others were performed in the French ANR-08-PANH006 DimitrHy project.
CFD design of protective walls against the effects of vapor cloud fast deflagration of hydrogen
Oct 2015
Publication
Protective walls are a well-known and efficient way to mitigate overpressure effects of accidental explosions (detonation or deflagration). For detonation there are multiple published studies whereas for deflagration no well-adapted and rigorous method has been reported in the literature. This article describes the validation of a new modelling approach for fast deflagrations of H2. This approach includes two steps. At the first step the combustion phase of vapor cloud explosion (VCE) involving a fast deflagration is substituted by equivalent vessel burst problem. The purpose of this step is to avoid the reactive flow computations. At the second step CFD is used for computations of pressure propagation from the equivalent (non reactive) vessel burst problem. After verifying the equivalence of the fast deflagration and the vessel burst problem at the first step the capability of two CFD codes such as FLACS and Europlexus are examined for modelling of the vessel burst problem (with and without barriers). Finally the efficiency of finite and infinite barriers used for mitigation of the shock is investigated
Feasibility of Hydrogen Detection by the Use of Uncoated Silicon Microcantilever-based Sensors
Sep 2013
Publication
Hydrogen is a key parameter to monitor radioactive disposal facility such as the envisioned French geological repository for nuclear wastes. The use of microcantilevers as chemical sensors usually involves a sensitive layer whose purpose is to selectively sorb the analyte of interest. The sorbed substance can then be detected by monitoring either the resonant frequency shift (dynamic mode) or the quasi-static deflection (static mode). The objective of this paper is to demonstrate the feasibility of eliminating the need for the sensitive layer in the dynamic mode thereby increasing the long-term reliability. The microcantilever resonant frequency allows probing the mechanical properties (mass density and viscosity) of the surrounding fluid and thus to determine the concentration of a species in a binary gaseous. Promising preliminary work has allowed detecting concentration of 200 ppm of hydrogen in air with non-optimized geometry of silicon microcantilever with integrated actuation and read-out.
Review of Methods For Estimating the Overpressure and Impulse Resulting From a Hydrogen Explosion in a Confined/Obstructed Volume
Sep 2009
Publication
This study deals with the TNO Multi-Energy and Baker-Strehlow-Tang (BST) methods for estimating the positive overpressures and positive impulses resulting from hydrogen-air explosions. With these two methods positive overpressure and positive impulse results depend greatly on the choice of the class number for the TNO Multi-Energy method or the Mach number for the BST methods. These two factors permit the user to read the reduced parameters of the blast wave from the appropriate monographs for each of these methods i.e. positive overpressure and positive duration phase for the TNO Multi-Energy method and positive overpressure and positive impulse for the BST methods. However for the TNO Multi-Energy method the determination of the class number is not objective because it is the user who makes the final decision in choosing the class number whereas with the BST methods the user is strongly guided in their choice of an appropriate Mach number. These differences in the choice of these factors can lead to very different results in terms of positive overpressure and positive impulse. Therefore the objective of this work was to compare the positive overpressures and positive impulses predicted with the TNO Multi-Energy and BST methods with data available from large-scale experiments.
Comparisons of Helium and Hydrogen Releases in 1 M3 and 2 M3 Two Vents Enclosures: Concentration Measurements at Different Flow Rates and for Two Diameters of Injection Nozzle
Oct 2015
Publication
This work presents a parametric study on the similitude between hydrogen and helium distribution when released in the air by a source located inside of a naturally ventilated enclosure with two vents. Several configurations were experimentally addressed in order to improve knowledge on dispersion. Parameters were chosen to mimic operating conditions of hydrogen energy systems. Thus the varying parameters of the study were mainly the source diameter the releasing flow rate the volume and the geometry of the enclosure. Two different experimental set-ups were used in order to vary the enclosure's height between 1 and 2 m. Experimental results obtained with helium and hydrogen were compared at equivalent flow rates determined with existing similitude laws. It appears for the plume release case that helium can suitably be used for predicting hydrogen dispersion in these operating designs. On the other hand – when the flow turns into a jet – non negligible differences between hydrogen and helium dispersion appear. In this case helium – used as a direct substitute to hydrogen – will over predict concentrations we would get with hydrogen. Therefore helium concentration read-outs should be converted to obtain correct predictions for hydrogen. However such a converting law is not available yet.
High-pressure PEM Water Electrolysis and Corresponding Safety Issues
Sep 2009
Publication
In this paper safety considerations related to the operation of proton-exchange membrane (PEM) water electrolysers (hydrogen production capacity up to 1 Nm3/h and operating pressure up to 130 bars) are presented. These results were obtained in the course of the GenHyPEM project a research program on high-pressure PEM water electrolysis supported by the European Commission. Experiments were made using a high-pressure electrolysis stack designed for operation in the 0–130 bars pressure range at temperatures up to 90 °C. Besides hazards related to the pressure itself hydrogen concentration in the oxygen gas production and vice-versa (resulting from membrane crossover permeation effects) have been identified as the most significant risks. Results show that the oxygen concentration in hydrogen at 130 bars can be as high as 2.66 vol %. This is a value still outside the flammability limit for hydrogen–oxygen mixtures (3.9–95.8 vol %) but safety measures are required to prevent explosion hazards. A simple model based on the diffusion of dissolved gases is proposed to account for gas cross-permeation effects. To reduce contamination levels different solutions are proposed. First thicker membranes can be used. Second modified or composite membranes with lower gas permeabilities can be used. Third as reported earlier external catalytic gas recombiners can be used to promote H2/O2 recombination and reduce contamination levels in the gas production. Finally other considerations related to cell and stack design are also discussed to further reduce operation risks.
No more items...