United Kingdom
Research Priorities Workshop 2024 - Outcomes Report
Feb 2025
Publication
The Research Priorities Workshop (RPW) brought together experts from academia industry and government to identify and prioritise future research directions with regard to hydrogen safety. Over two days participants engaged in presentations and discussions covering key areas such as transportation and storage ignition phenomena cryogenic hydrogen risk assessment methodologies and others. A critical component of the workshop was the prioritisation exercise during which attendees voted on the most urgent and impactful areas for future research. This document summarises the workshop’s activities including the prioritisation results which will serve as input to guide global hydrogen safety research efforts. The combined rankings from industry and non-industry stakeholders highlighted Quantitative Risk Assessment (QRA) and Reliability Data as the top priority followed closely by Mitigation Sensors and Hazard Prevention and Phenomena Understanding and Modelling. Regulations Codes and Standards followed immediately with a particularly high ranking from the industry representatives. These priorities reflect a strong collective focus on those topics to ensure hydrogen’s safe and scalable adoption. The insights and recommendations gathered during the RPW are important for shaping the strategic research priorities necessary to support the safe commercialisation of hydrogen technologies.
A Review of Analogue Case Studies Relevant to Large-scale Underground Hydrogen Storage
Feb 2024
Publication
Underground Hydrogen Storage (UHS) has gathered interest over the past decade as an efficient means of storing energy. Although a significant number of research and demonstration projects have sought to understand the associated technical challenges it is yet to be achieved on commercial scales. We highlight case studies from town gas and blended hydrogen storage focusing on leakage pathways and hydrogen reactivity. Experience from helium storage serves as an analogue for the containment security of hydrogen as the two gases share physiochemical similarities including small molecular size and high diffusivity. Natural gas storage case studies are also investigated to highlight well integrity and safety challenges. Technical parameters identified as having adverse effects on storage containment security efficiency and hydrogen reactivity were then used to develop high-level and site-specific screening criteria. Thirty-two depleted offshore hydrocarbon reservoirs in the UK Continental Shelf (UKCS) are identified as potential storage formations based on the application of our high-level criteria. The screened fields reflect large hydrogen energy capacities low cushion gas requirements and proximity to offshore wind farms thereby highlighting the widespread geographic availability and potential for efficient UHS in the UKCS. Following the initial screening we propose that analysis of existing helium concentrations and investigation of local tectonic settings are key site-specific criteria for identifying containment security of depleted fields for stored hydrogen.
Optimization of Green Ammonia Distribution Systems for Intercontinental Energy Transport
Aug 2021
Publication
Green ammonia is a promising hydrogen derivative which enables intercontinental transport of dispatchable renewable energy. This research describes the development of a model which optimizes a global green ammonia network considering the costs of production storage and transport. In generating the model we show economies of scale for green ammonia production are small beyond 1 million tonnes per annum (MMTPA) although benefits accrue up to a production rate of 10 MMTPA if a production facility is serviced by a new port or requires a long pipeline. The model demonstrates that optimal sites for ammonia production require not only an excellent renewable resource but also ample land from which energy can be harvested. Land limitations constrain project size in otherwise optimal locations and force production to more expensive sites. Comparison of current crude oil markets to future ammonia markets reveals a trend away from global supply hubs and toward demand centers serviced by regional production.
High-Efficiency, Lightweight, and Reliable Integrated Structures—The Future of Fuel Cells and Electrolyzers
Oct 2025
Publication
The high efficiency light weight and reliability of hydrogen energy electrochemical equipment are among the future development directions. Membrane electrode assemblies (MEAs) and electrolyzers as key components have structures and strengths that determine the efficiency of their power generation and the hydrogen production efficiency of electrolyzers. This article summarizes the evolution of membrane electrode and electrolyzer structures and their power and efficiency in recent years highlighting the significant role of integrated structures in promoting proton transport and enhancing performance. Finally it proposes the development direction of integrating electrolyte and electrode manufacturing using phase-change methods.
Performance Test of a Hydrogen-powered Solid Oxide Fuel Cell System and its Simulation for Vehicle Propulsion Application
Dec 2024
Publication
Solid oxide fuel cells (SOFC) have not received enough attention as a power source in the transportation sector. However with the development of the technology its advantages over other types of fuel cells such as fuel flexibility and high energy efficiency have made SOFC an interesting option. The present study aims at simulation and experimentally validation of the performance of a hydrogen-powered SOFC in an automotive application. A 6 kW SOFC stack is tested and its model is integrated into a series hybrid electric vehicle model. A fuzzy controller is designed to regulate the charging current between the battery and the SOFC in the vehicle model. Experimental tests are also conducted in a few cases on the SOFC based on the simulation results. The performance of the real SOFC stack is then analysed under dynamic loads to see how the desired current is provided in practice. The results demonstrate a good performance of the SOFC stack under variable load conditions.
Sustainable Hydrogen Production from Waste Plastics via Staged Chemical Looping Gasification with Iron-based Oxygen Carrier
Aug 2025
Publication
Thermo-chemical conversion of waste plastics offers a sustainable strategy for integrated waste management and clean energy generation. To address the challenges of low gas yield and rapid catalyst deactivation due to coking in conventional gasification processes an innovative three-stage chemical looping gasification (CLG) system specifically designed for enhanced hydrogen-rich syngas production was proposed in this work. A comparative analysis between conventional gasification and the staged CLG system were firstly conducted coupled with online gas analysis for mechanistic elucidation. The influence of Fe/Al molar ratios in oxygen carriers and their cyclic stability were systematically examined through multicycle experiments. Results showed that the three-stage CLG in the presence of Fe1Al2 demonstrated exceptional performance achieving 95.23 mmol/gplastic of H2 and 129.89 mmol/gplastic of syngas respectively representing 1.32-fold enhancement over conventional method. And the increased H2/CO ratio (2.68-2.75) reflected better syngas quality via water-gas shift. Remarkably the oxygen carrier maintained nearly 100% of its initial activity after 7 redox cycles attributed to the incorporation of Al2O3 effectively mitigating sintering and phase segregation through metal-support interactions. These findings establish a three-stage CLG configuration with Fe-Al oxygen carriers as an efficient platform for efficient hydrogen production from waste plastics contributing to sustainable waste valorisation and carbon-neutral energy systems.
Techno-economic Comparative Study of Grid-connected PV/Reformer/FC Hybrid Systems with Distinct Solar Tracking Systems
Feb 2023
Publication
The purpose of this study is to analyze and compare the techno-economic performance of grid-connected Hybrid Energy Systems (HES) consisting of Photovoltaic (PV) and Reformer Fuel-Cell (RF-FC) using different types of solar PV tracking techniques to supply electricity to a small location in the City of Chlef Algeria. The PV tracking systems considered in this study include fixed facing south at four different angles (32◦ 34◦ 36◦ 38◦) horizontal-axis with continuous adjustment vertical-axis with continuous adjustment and a two-axis tracking system. The software tool HOMER Pro (Hybrid Optimization of Multiple Energy Resources) is used to simulate and analyze the technical feasibility and life-cycle cost of these different configurations. The meteorological data consisting of global solar radiation and air temperature used in this study was collected from the geographical area of the City of Chlef during the year 2020. This study has shown that the optimal design of a grid-connected hybrid PV/RF-FC energy system with Vertical Single Axis Tracker (VSAT) leads to the best economic perfor mance with low values of Net Present Cost (NPC) Cost of Energy (COE) with a Positive Return on Investment (ROI) and the shortest Simple Payback (SP) period. In addition from the simulation results obtained it can be concluded that the Horizontal and Vertical Single-Axis Trackers (HSAT and VSAT) as well as the Dual-Axis Tracker (DAT) are not always cost effective compared to the Fixed Tilt System (FTS). Therefore it is neces sary to carefully analyze the use of each tracker to assess whether the energy gain achieved outweighs the overall shortcomings of the tracker.
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
Aug 2025
Publication
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology which is highly successful in mitigating carbon emissions has increased. On the other hand hydrogen is an important energy carrier for storing and transporting energy and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless the integration of CCS technologies into power production processes is a significant challenge requiring the enhancement of the combined power generation–CCS process. In recent years there has been a growing interest in process intensification (PI) which aims to create smaller cleaner and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive multi-scale multi-phase dynamic computational fluid dynamics (CFD)-based process model is constructed which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57% signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR.
Hydrogen Pipelines Safety Using System Dynamics
Oct 2025
Publication
With the global expansion of hydrogen infrastructure the safe and efficient transportation of hydrogen is becoming more important. In this study several technical factors including material degradation pressure variations and monitoring effectiveness that influence hydrogen transportation using pipelines are examined using system dynamics. The results show that hydrogen embrittlement which is the result of microstructural trapping and limited diffusion in certain steels can have a profound effect on pipeline integrity. Material incompatibility and pressure fluctuations deepen fatigue damage and leakage risk. Moreover pipeline monitoring inefficiency combined with hydrogen’s high flammability and diffusivity can raise serious safety issues. An 80% decrease in monitoring efficiency will result in a 52% reduction in the total hydrogen provided to the end users. On the other hand technical risks such as pressure fluctuations and material weakening from hydrogen embrittlement also affect overall system performance. It is essential to understand that real-time detection using hydrogen monitoring is particularly important and will lower the risk of leakage. It is crucial to know where hydrogen is lost and how it impacts transport efficiency. The model offers practical insights for developing stronger and more reliable hydrogen transport systems thereby supporting the transition to a low-carbon energy future.
Adaptive Hydrogen Fuel Cell Vehicle Scheduling Strategy Based on Traffic State Assessment in Power-Transportation Coupled Networks
Aug 2025
Publication
As the global demand for energy increases and the transition to renewable and clean sources accelerates microgrid (MG) has emerged as a promising solution. Hydrogen fuel cell vehicles (HFCVs) offer significant advantages over gasoline vehicles in terms of reducing carbon dioxide emissions. However the development of HFCVs is hindered by the substantial up-front costs of hydrogen refueling stations (HRSs) coupled with the high cost of hydrogen transportation and the limitations of the hydrogen supply chain. This research proposes a multimicrogrid (MMG) system that integrates hydrogen energy and utilizes it as the HRS for fuel vehicle refueling. An adaptive hydrogen energy management method is employed for fuel cell vehicles to optimize the coupling between the transportation network and the power system. An integrated transportation state assessment model is developed and a smart MMG system is deployed to receive information from the transportation network. Building on this foundation an adaptive hydrogen scheduling model is developed. HFCVs are influenced by the hydrogen price adjustments leading them to travel to different MGs for refueling which in turn regulates the unit output of the MMG system. The MMG system is then integrated with the IEEE 33 bus distribution system to analyze the daily load balance. This integrated approach results in reduced traffic congestion lower MG costs and optimized power distribution network load balance.
Reviewing Sector Coupling in Offshore Energy System Integration Modelling: The North Sea Context
Dec 2024
Publication
Offshore energy system integration is particularly important for realising a rapid and cost-effective low-carbon energy transition in the North Sea region. Effective implementation of strategies that require collaboration be tween countries developers and operators must be underpinned by robust and comprehensive modelling results. Intra-system interactions and diversity of sectors needed to facilitate the energy transition must be adequately captured within whole-system models. Historically consideration of the offshore energy environment within macro-scale models has been supplementary to the onshore system. However increased deployment of offshore wind focus on geological storage for energy security and technological development and investment in hydrogen and carbon storage projects highlights the importance of expanding the role of the offshore system within modelling. This study presents a comprehensive investigation of energy system integration challenges within offshore system modelling and how these define the requirements of the employed methodology. The findings suggest large-scale offshore system modelling studies typically include few energy vectors limited spatial resolution and simplified network flow characteristics. Despite the North Sea focus these challenges reflect fundamental barriers within large-scale offshore energy system modelling and thus extend to similar offshore contexts globally. Key approaches are identified to maximise sectoral and technological diversity while maintaining sufficient temporal and spatial resolution to suitably represent the evolving offshore system are identified. We make concrete suggestions for future work in this field based on identified best practice among the reviewed literature.
Hydrogen Storage in Depleted Gas Reservoirs with Carbon Dioxide as a Cushion Gas: Exploring a Lateral Gas Seperation Strategy to Reduce Gas Mixing
Jan 2025
Publication
Large-scale H2 storage in depleted hydrocarbon reservoirs offers a practical way to use existing energy infra structure to address renewable energy intermittency. Cushion gases often constitute a large initial investment especially when expensive H2 is used. Cheaper alternatives such as CO2 or in-situ CH4 can reduce costs and in the case of CO2 integrate within carbon capture and storage systems. This study explored cushion and working gas dynamics through numerically modelling a range of storage scenarios in laterally extensive reservoirs – such as those in the Southern North Sea. In all simulations the cushion and working gases were separated laterally to limit contact surface area and therefore mixing. This work provides valuable insights into (i) capacity estima tions of CO2 storage and H2 withdrawal (ii) macro-scale fluid dynamics and (iii) the effects of gas mixing trends on H2 purity. The results underscore key trade-offs between CO2 storage volumes and H2 withdrawal and purity
Zone Negligible Extent: Example of Specific Detailed Risk Assessment for Low Pressure Equipment in a Hydrogen Refuelling Station
Sep 2023
Publication
The MultHyFuel project aims to develop evidence-based guidelines for the safe implementation of Hydrogen Refueling Stations (HRS) in a multi-fuel context. As a part of the generation of good practice guidelines for HRS Hazardous Area Classification (HAC) methodologies were analyzed and applied to case studies representing example configurations of HRS. It has been anticipated that Negligible Extent (NE) classifications might be applicable for sections of the HRS for instance a hydrogen generator. A NE zone requires that an ignition of a flammable cloud would result in negligible consequences. In addition depending on the pressure of the system IEC 60079-10-1:2020 establishes specific requirements in order to classify the hazardous area as being of NE. One such requirement is that a zone of NE shall not be applied for releases from flammable gas systems at pressures above 2000 kPag (20 barg) unless a specific detailed risk assessment is documented. However there is no definition within the standard as to the requirements of the specific detailed risk assessment. In this work an example for a specific detailed risk assessment for the NE classification is presented:<br/>• Firstly the requirements of cloud volume dilution and background concentration for a zone of NE classification from IEC 60079-10-1:2020 are analyzed for hydrogen releases from equipment placed in a mechanically ventilated enclosure.<br/>• Secondly the consequences arising from the ignition of the localized cloud are estimated and compared to acceptable harm criteria in order to assess if negligible consequences are obtained from the scenario.<br/>• In addition a specific qualitative risk assessment for the ignition of the cloud in the enclosure was considered incorporating the estimated consequences and analyzing the available safeguards in the example system.<br/>Recommendations for the specific detailed risk assessment are proposed for this scenario with the intention to support improved definition of the requirement in future revisions of IEC 60079-10-1.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Novel Model Reference-based Hybrid Decoupling Control of Multiport-isolated DC-DC Converter for Hydrogen Energy Storage System Integration
Dec 2024
Publication
Hydrogen energy storage systems (HESS) are increasingly recognised for their role in sustainable energy ap plications though their performance depends on efficient power electronic converter (PEC) interfaces. In this paper a multiport-isolated DC-DC converter characterised by enhanced power density reduced component count and minimal conversion stages is implemented for HESS applications. However the high-frequency multiwinding transformer in this converter introduces cross-coupling effects complicating control and result ing in large power deviations from nominal values due to step changes on other ports which adversely impact system performance. To address this issue a novel model reference-based decoupling control technique is pro posed to minimise the error between the actual plant output and an ideal decoupling reference model which represents the cross-coupling term. This model reference-based decoupling control is further extended into a hybrid decoupling control technique by integrating a decoupling matrix achieving more robust decoupling across a wider operating region. The hybrid decoupling technique mathematically ensures an improved control performance with the cross-coupling term minimised through a proportional-derivative controller. The proposed hybrid decoupling controller achieves a maximum power deviation.
Simulations of Blast Wave and Fireball Occurring due to Rupture oj High-Pressure Hydrogen Tank
Jun 2017
Publication
In the present study pilot simulations of the phenomena of blast wave and fireball generated by the rupture of a high-pressure (35 MPa) hydrogen tank (volume 72 L) due to fire were carried out. The computational fluid dynamics (CFD) model includes the realizable k-ε model for turbulence and the eddy dissipation model coupled with the one-step chemical reaction mechanism for combustion. The simulation results were compared with experimental data on a stand-alone hydrogen tank rupture in a bonfire test. The simulations provided insights into the interaction between the blast wave propagation and combustion process. The simulated blast wave decay is approximately identical to the experimental data concerning pressure at various distances. Fireball is first ignited at the ground level which is considered to be due to stagnation flow conditions. Subsequently the flame propagates toward the interface between hydrogen and air.
A Hydrogen Vision for the UK
Apr 2023
Publication
This report shows how the infrastructure that exists today can evolve from one based on the supply of fossil fuels to one providing the backbone of a clean hydrogen system. The ambitious government hydrogen targets across the UK will only be met with clarity focus and partnership. The gas networks are ready to play their part in the UK’s energy future. They have a plan know what is needed to deliver it and are taking the necessary steps to do just that.
Towards a Resilience Evaluation Framework for Hydrogen Supply Chains: A Systematic Literature Review and Future Research Agenda
Dec 2024
Publication
Hydrogen energy is crucial for achieving net zero targets making the resilience of hydrogen supply chains (HSCs) increasingly important. Understanding current research on HSC resilience is key to enhancing it. Few studies summarise HSC resilience evaluation methods and link them to the general supply chain resilience and complex adaptive system (CAS) evaluation approaches. This study addresses this gap by systematically reviewing the literature on HSC resilience evaluations defining HSC resilience and conducting content analysis. It proposes a conceptual framework integrating technical operational and organisational perspectives. Each perspective is further subdivided based on the course of events resulting in a system-based HSC resilience evaluation frame work with three layers of analysis. By linking HSC indicators with CAS theory and supply chain performance metrics the study offers novel insights into HSC resilience evaluations identifies research gaps provides prac tical guidance for practitioners and outlines future research directions for advancing HSC resilience understanding.
Hydrogen Production from Municipal Waste and Low Grade Lignite Blend
Nov 2024
Publication
The updraft rotating bed gasifier (URBG) offers a sustainable solution for waste-to-energy conversion utilizing low-grade lignite and municipal solid waste (MSW) from metropolitan dumping sites. This study investigates the co-gasification of lignite with various MSW components demonstrating a significant enhancement in gasification efficiency due to the synergistic effects arising from their higher hydrogen-to-carbon (H/C) ratios. We find feedstock blending is key to maximizing gasification efficiency from 11% to 52% while reducing SO emissions from 739 mg/kg to 155 mg/kg. Increasing the combustion zone temperature to 1100 K resulted in a peak hydrogen yield which was 19% higher than at 800 K. However steam management is complicated as increasing it improves hydrogen fraction in produced gas but gasification efficiency is compromised. These findingsshowcase the URBG’s potential to address both energy production and waste management challenges guiding fossil-reliant regions toward a more sustainable energy future.
Design and Optimal Sizing of a Hydrogen Uninterruptable Power Supply (UPS) System for Addressing Residential Power Cutoffs
Jan 2025
Publication
Hydrogen (H2) offers a green medium for storing the excess from renewables production instead of dumping it thus being crucial to decarbonisation efforts. Hydrogen also offers a storage medium for the grid’s cheap electricity to be used during grid peak demand or grid power cutoffs. Funded by the Scottish Government’s Emerging Energy Technologies this paper presents the design and performance analysis of a hydrogen uninterruptible power supply (H2GEN) for Cygnas Solutions Ltd. which is intended to enable continuity of supply in the residential sector while eradicating the need for environmentally and health risky lead–acid batteries and diesel generator backup. This paper presents the design optimal sizing and analysis of two H2Gen architectures one powered by the grid alone and the other powered by both the grid and a renewable (PV) source. By developing a model of each architecture in the HOMER space and using residential location weather data the home yearly load–demand profile and the grid yearly power outages profile in the developed models the optimal sizing of each H2Gen design was realised by minimising the costs while ensuring the H2Gen meets the home power demand during grid outages To enable HOMER to optimise its selection the sizes technical specifications and costs of all the market-available H2GEN components were added in the HOMER search space. Moreover the developed models were also used in assessing the sensitivity of the simulation outputs to several changes in the modelled system design and settings. Using a residential home with frequent power outages in New Delhi India as a case study it was found that the optimal sizing of H2Gen Architecture 1 is comprised of a 2 kW electrolyser a 0.2 kg type-I tank and a 2 kW water-cooled fuel cell directly connected to the AC bus offering an operational lifetime of 14.3 years. It was also found that the optimal sizing of Architecture 2 is comprised of a 1 kV PV utilised with the same 2 kW electrolyser 0.2 kg type-I tank and 2 kW water-cooled fuel cell connected to the AC bus. While the second design was found to have a higher capital cost due to the added PV it offered a more cost-effective and environmentally friendly architecture which contributes to the ongoing energy transition. This paper further investigated the capacity expansion of each H2GEN architecture to meet higher load demands or increased grid power outages. From the analysis of the simulation results it has been concluded that the most feasible and cost-effective H2GEN system expansion for meeting increased power demands or increased grid outages can be realised by using the developed models for optimally sizing the expanded H2Gen on a case-by-case basis because the increase in these profiles is highly time-dependent (for example an increased load demand or increased grid outage in the morning can be met by the PV while in the evening it must be met by the H2GEN). Finally this paper investigated the impact of other environmental variables such as the temperature and relative humidity on the H2GEN’s performance and provided further insights into increasing the overall system efficiency and cost benefit through utilising the H2GEN’s exhaust heat in the home space for heating/cooling and selling the electrolyser exhaust’s O2 as a commodity.
Hydrogen Fuel Quality for Transport - First Sampling and Analysis Comparison in Europe on Hydrogen Refuelling Station (70 Mpa) According to ISO 14687 and EN 17124
Jan 2021
Publication
Fuel cell electric vehicles are getting deployed exponentially in Europe. Hydrogen fuel quality regulations are getting into place in order to protect customers and ensure end-users satisfactory experiences. It became critical to have the capability to sample and analyse accurately hydrogen fuel delivered by hydrogen refuelling stations in Europe. This study presents two separate comparisons: the first bilateral comparison between two sampling systems (H2 Qualitizer) and (“H2 Sampling System” of Air Liquide) and the interlaboratory comparison between NPL and Air Liquide on hydrogen fuel quality testing according to EN 17124. The two sampling systems showed equivalent results for all contaminants for sampling at 70 MPa hydrogen refuelling stations. The two laboratories showed good agreement at 95% confidence level. Even if the study is limited due to the low number of samples it demonstrates the equivalence of two sampling strategies and the ability of two laboratories to perform accurate measurement of hydrogen fuel quality.
CFD Model of Refuelling through the Entire Equipment of a Hydrogen Refuelling Station
Dec 2023
Publication
This paper aims at the development and validation of a computational fluid dynamic (CFD) model for simulations of the refuelling process through the entire equipment of the hydrogen refuelling station (HRS). The absence of such models hinders the design of inherently safer refuelling protocols for an arbitrary combination of HRS equipment hydrogen storage parameters and environmental conditions. The CFD model is validated against the complete process of refuelling lasting 195s in Test No.1 performed by the National Renewable Energy Laboratory (NREL). The test equipment includes high-pressure tanks of HRS pressure control valve (PCV) valves pipes breakaway hose and nozzle all the way up to three onboard tanks. The model accurately reproduced hydrogen temperature and pressure through the entire line of HRS equipment. A standout feature of the CFD model distinguishing it from simplified models is the capability to predict temperature non-uniformity in onboard tanks a crucial factor with significant safety implications.
European Hydrogen Train the Trainer Programme for Responders: The Impact of HyResponder on Training Across Europe
Jan 2025
Publication
Síle Brennan,
Christian Brauner,
Dennis Davis,
Natalie DeBacker,
Alexander Dyck,
César García Hernández,
André Vagner Gaathaug,
Petr Kupka,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Laurent Lecomte,
Eric Maranne,
Pippa Steele,
Paola Russo,
Adolfo Pinilla,
Gerhard Schoepf,
Tom Van Esbroeck and
Vladimir V. Molkov
The impact of the HyResponder project on the training of responders in 10 European countries is described. An overview is presented of training activities undertaken within the project in Austria Belgium Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. National leads with training expertise are given and the longer-term plans in each region are mentioned. Responders from each region took part in a specially tailored “train the trainer” programme and then delivered training within their regions. A flexible approach to training within the HyResponder network has enabled fit for purpose region appropriate activities to be delivered impacting over 1250 individuals during the project and many more beyond. Teaching and learning materials in hydrogen safety for responders have been made available in 8 languages: English Czech Dutch French German Italian Norwegian Spanish. They are being used to inform training within each of the partner countries. Dedicated national working groups focused on hydrogen safety training for responders have been established in Belgium the Czech Republic Italy and Switzerland.
Green Hydrogen Production by Water Electrolysis: Current Status and Challenges
Apr 2024
Publication
The scientific and industrial communities worldwide have recently achieved impressive technical advances in developing innovative electrocatalysts and electrolysers for water and seawater splitting. The viability of water electrolysis for commercial applications however remains elusive and the key barriers are durability cost performance materials manufacturing and system simplicity especially with regard to running on practical water sources like seawater. This paper therefore primarily aims to provide a concise overview of the most recent disruptive water-splitting technologies and materials that could reshape the future of green hydrogen production. Starting from water electrolysis fundamentals the recent advances in developing durable and efficient electrocatalysts for modern types of electrolysers such as decoupled electrolysers seawater electrolysers and unconventional hybrid electrolysers have been represented and precisely annotated in this report. Outlining the most recent advances in water and seawater splitting the paper can help as a quick guide in identifying the gap in knowledge for modern water electrolysers while pointing out recent solutions for cost-effective and efficient hydrogen production to meet zero-carbon targets in the short to near term.
PyPSA-Earth Sector-coupled: A Global Open-source Multi-energy System Model Showcased for Hydrogen Applications in Countries of the Global South
Jan 2025
Publication
This study presents sector-coupled PyPSA-Earth: a novel global open-source energy system optimization model that incorporates major demand sectors and energy carriers in high spatial and temporal resolution to enable energy transition studies worldwide. The model includes a workflow that automatically downloads and processes the necessary demand supply and transmission data to co-optimize investment and operation of energy systems of countries or regions of Earth. The workflow provides the user with tools to forecast future demand scenarios and allows for custom user-defined data in several aspects. Sector-coupled PyPSA-Earth introduces novelty by offering users a comprehensive methodology to generate readily available sector-coupled data and model of any region worldwide starting from raw and open data sources. The model provides flexibility in terms of spatial and temporal detail allowing the user to tailor it to their specific needs. The capabilities of the model are demonstrated through two showcases for Egypt and Brazil. The Egypt case quantifies the relevant role of PV exceeding 35 GW and electrolysis in Suez and Damietta regions for meeting 16% of the EU hydrogen demand. Complementarily the Brazil case confirms the model’s ability in handling hydrogen planning infrastructure including repurposing of existing gas networks which results in 146 M€ lower costs than building new pipelines. The results prove the suitability of sector-coupled PyPSA-Earth to meet the needs of policymakers developers and scholars in advancing the energy transition. The authors invite the interested individuals and institutions to collaborate in the future developments of the model within PyPSA meets Earth initiative.
Modelling the Innovation-decision Process for Hydrogen Homes: An Integrated Model of Consumer Acceptance and Adoption Intention
Nov 2024
Publication
As the global energy transition progresses a range of drivers and barriers will continue to shape consumer attitudes and behavioural intentions towards emerging low-carbon technologies. The innovation-decision process for technologies composing the residential sector such as hydrogen-fuelled heating and cooking appliances is inherently governed by the complex interplay between perceptual cognitive and emotional factors. In response this study responds to the call for an integrated research perspective to advance theoretical and empirical insights on consumer engagement in the domestic hydrogen transition. Drawing on online survey data collected in the United Kingdom where a policy decision on ‘hydrogen homes’ is set for 2026 this study systematically explores whether an integrated modelling approach supports higher levels of explanatory and predictive power. Leveraging the foundations of the unified theory of domestic hydrogen acceptance the analysis suggests that production perceptions public trust perceived relative advantage safety perceptions knowledge and awareness and positive emotions will shape consumer support for hydrogen homes. Conversely perceived disruptive impacts perceived socio-economic costs financial perceptions and negative emotions may impede the domestic hydrogen transition. Consumer acceptance stands to significantly shape deployment prospects for hydrogen boilers and hobs which are perceived to be somewhat advantageous to natural gas appliances from a technological and safety perspective. The study attests to the predictive benefits of adopting an integrated theoretical perspective when modelling the early stages of the innovation-decision process while acknowledging opportunities for leveraging innovative research approaches in the future. As national hydrogen economies gain traction adopting a neuroscience-based approach may help deepen scientific understanding regarding the neural psychological and emotional signatures shaping consumer perspectives towards hydrogen homes.
A Multi-model Assessment of the Global Warming Potential of Hydrogen
Jun 2023
Publication
With increasing global interest in molecular hydrogen to replace fossil fuels more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas but its chemical reactions change the abundances of the greenhouse gases methane ozone and stratospheric water vapor as well as aerosols. Here we use a model ensemble of five global atmospheric chemistry models to estimate the 100-year time-horizon Global Warming Potential (GWP100) of hydrogen. We estimate a hydrogen GWP100 of 11.6 ± 2.8 (one standard deviation). The uncertainty range covers soil uptake photochemical production of hydrogen the lifetimes of hydrogen and methane and the hydroxyl radical feedback on methane and hydrogen. The hydrogeninduced changes are robust across the different models. It will be important to keep hydrogen leakages at a minimum to accomplish the benefits of switching to a hydrogen economy.
Advances in Hydrogen Storage Technologies
Jan 2025
Publication
Gaseous hydrogen storage is the most mature technology for fuel cell vehicles. The main safety concern is the catastrophic consequences of tank rupture in a fire i.e. blast waves fireballs and projectiles. This paper sum marises research on the development and validation of the breakthrough microleaks-no-burst (μLNB) safety technology of explosion-free in any fire self-venting Type IV tanks that do not require a thermally-activate pressure relief device (TPRD). The invention implies the melting of the hydrogen-tight liner of the Type IV tank before the hydrogen-leaky double-composite wall loses load-bearing ability. Hydrogen then flows through the natural microchannels in the composites and burns in microflames or together with resin. The unattainable to competitive products feature of the technology is the ability to withstand any fire from smouldering to extreme impinging hydrogen jet fires. Innovative 70 MPa tanks made of carbon-carbon carbon-glass and carbon-basalt composites were tested in characteristic for gasoline/diesel spill fires with a specific heat release rate of HRR/A = 1 MW/m2 . Standard unprotected Type III and IV tanks will explode in such intensity fire. The technology excludes hydrogen accumulation in naturally ventilated enclosures. It reduces the risk of hydrogen vehicles to an acceptable level below that of fossil fuel cars including underground parking tunnels etc. The performance of self-venting tanks is studied for fire intervention scenarios: removal from fire and fire extinction by water. It is concluded that novel tanks allow standard fire intervention strategies and tactics. Self-venting operation of the 70 MPa tank is demonstrated in extreme jet fire conditions under impinging hydrogen jet fire (70 MPa) with huge HRR/A = 19.5 MW/m2 . This technology excludes tank rupture in fires onboard trains ships and planes where hazard distances cannot be implemented i.e. provides an unprecedented level of life safety and property protection.
Electric-thermal Collaborative System and Control for Hydrogen-fuel Cell Passenger Trains in the UK's Winter
Feb 2025
Publication
This paper presents a quantitative study on electric-thermal collaborative system for hydrogen-powered train reutilising the waste heat from fuel cell system for Heating Ventilation and Air Conditioning (HVAC). Firstly a hybrid train simulator is developed to simulate the train’s motion state. Heat generation from fuel cell is estimated using a fuel cell model while a detailed thermodynamic model for railway passenger coach is established to predict the heat demand. Furthermore an electric-thermal collaborative energy management strategy (ETCEMS) is proposed for the system to comprehensively optimise the on-train power distribution considering traction and auxiliary power. Finally comparative analysis is performed among the train with electric heater (EH) heat pump (HP) and heat pump-heat reuse (HP-HR). The results demonstrate that over a round trip the proposed HP-HR with ETC-EMS recovers over 22.88% residual heat and saves 16.17% of hydrogen consumption. For the daily operation it reduces hydrogen and energy consumption by 12.06% and 12.82 % respectively. The findings indicate that collaborative optimisation brings significant improvements on the global energy utilisation. The proposed design with ETC-EMS is potential to further enhance the economic viability of hydrail and contributes to the rail decarbonisation.
Performance and Emissions Characteristics of Hydrogen-diesel Dual-fuel Combustion for Heavy-duty Engines
Jan 2025
Publication
This study investigates hydrogen-diesel dual-fuelling specifically for a modern 4.4L 4-cylinder heavy-duty diesel engine using extensive one-dimensional combustion modelling in Ricardo WAVE. Parametric analyses from 900 to 2200 rpm speeds and 0 to 17.5% hydrogen fractions introduced via port injection are undertaken to assess the effect of exhaust gas recirculation (EGR) for controlling NOx. Moreover impacts on key indicators like brake power torque thermal efficiency and emissions are also evaluated. Results revealed that the benefits of hydrogen enrichment are highly dependent on operating conditions. At speeds above 1700 rpm and hydrogen mass fraction of 17.5% remarkable gains were attained increasing brake power and torque by up to 17% and 16.5% respectively. Brake-specific diesel consumption (BSDC) improves by 29% at higher speeds due to hy drogen’s larger energy content. NOx emissions display a trade-off decreasing substantially by 96% at lower speeds but increasing by 43% at 2200 rpm with 17.5% hydrogen.
Sudden Releases of Hydrogen into a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. The sudden failure of a pressurised hydrogen vessel was identified as a scenario of concern due to the severity of the consequences associated with such an event. In order to investigate this scenario experimentally HSE designed a bespoke and reusable ‘sudden release’ vessel. This paper presents an overview of the vessel and the results of a series of 13 tests whereby hydrogen was released from the bespoke vessel into a tunnel at pressures up to 65 MPa. The starting pressure and the volume of hydrogen in the vessel were altered throughout the campaign. Four of the tests also included congestion in the tunnel. The tests reliably autoignited. Overpressure measurements and flame arrival times measured with exposed-tip thermocouples enabled analysis of the severity of the events. A high-pressure fast-acting pressure transducer in the body of the vessel showed the pressure decay in the vessel which shows that 90% of the hydrogen was evacuated in between 1.8 and 3.2 ms (depending on the hydrogen inventory). Schlieren flow imagery was also used at the release point of the hydrogen showing the progression of the shock front following initiation of the tests. An assessment of the footage shows an estimated initial velocity of Mach 3.9 at 0.4 m from the release point. Based on this an ignition mechanism is proposed based upon the temperature behind the initial shock front.
Assessing the Potential of Decarbonization Options for Industrial Sectors
Jan 2024
Publication
Industry emits around a quarter of global greenhouse gas (GHG) emissions. This paper presents the first comprehensive review to identify the main decarbonization options for this sector and their abatement potentials. First we identify the important GHG emitting processes and establish a global average baseline for their current emissions intensity and energy use. We then quantify the energy and emissions reduction potential of the most significant abatement options as well as their technology readiness level (TRL). We find that energy-intensive industries have a range of decarbonization technologies available with medium to high TRLs and mature options also exist for decarbonizing low-temperature heat across a wide range of industrial sectors. However electrification and novel process change options to reduce emissions from high-temperature and sector-specific processes have much lower TRLs in comparison. We conclude by highlighting important barriers to the deployment of industrial decarbonization options and identifying future research development and demonstration needs.
Clean Hydrogen Roadmap: Is Greater Realism Leading to more Credible Paths Forward?
Sep 2023
Publication
"The Oxford Institute for Energy Studies started researching the role of hydrogen in the energy transition in 2020. Since then the interest in hydrogen has continued to grow globally across the energy industry. A key research question has been the extent to which clean hydrogen can be scaled up at reasonable cost and whether it can play a significant role in the global energy system. In April 2022 OIES launched a new Hydrogen Research Programme under the overarching theme of ’building business cases for a hydrogen economy’. This overarching theme was selected based on the observation that most clean hydrogen developments to date had been relatively small-scale pilot or demonstration projects typically funded by government grants or subsidies. For clean hydrogen to play a significant role there will need to be business cases developed in order to attract the many hundreds of billions of dollars of investment required most of which will need to come from the private sector albeit ultimately underpinned by government-backed decarbonisation policies. Just over a year has passed since the start of the Hydrogen Research Programme and the intention of this paper is to pull together key themes which have emerged from the research so far and which can form a useful framework for further research both by OIES and others.<br/>The six key themes in this paper listed below are intended to create a framework to at least start to address the challenges:<br/>Hydrogen is in competition with other decarbonisation alternatives.<br/>The business case for clean hydrogen relies on government policy to drive decarbonisation.<br/>It is essential to understand emissions associated with potential hydrogen investments.<br/>Hydrogen investments need to consider the full value chain and its geopolitics.<br/>Transport of hydrogen is expensive and so should be minimised.<br/>Storage of hydrogen is an essential part of the value chain and requires more focus.
Look-ahead Scheduling of Energy-Water Nexus Integrated with Power2X Conversion Technologies under Multiple Uncertainties
Aug 2023
Publication
Co-optimizing energy and water resources in a microgrid can increase efficiency and improve economic performance. Energy-water storage (EWS) devices are crucial components of a high-efficient energy-water microgrid (EWMG). The state of charge (SoC) at the end of the first day of operation is one of the most significant variables in EWS devices since it is used as a parameter to indicate the starting SoC for the second day which influences the operating cost for the second day. Hence this paper examines the benefits and applicability of a lookahead optimization strategy for an EWMG integrated with multi-type energy conversion technologies and multienergy demand response to supply various energy-water demands related to electric/hydrogen vehicles and commercial/residential buildings with the lowest cost for two consecutive days. In addition a hybrid info-gap/robust optimization technique is applied to cover uncertainties in photovoltaic power and electricity prices as a tri-level optimization framework without generating scenarios and using the probability distribution functions. Duality theory is also used to convert the problem into a single-level MILP so that it can be solved by CPLEX. According to the findings the implemented energy-water storage systems and look-ahead strategy accounted for respectively 4.03% and 0.43% reduction in the total cost.
Hydrogen, A Less Disruptive Pathway for Domestic Heat? Exploratory Findings from Public Perception Research
Aug 2023
Publication
The disruption associated with heat decarbonisation has been identified as a key opportunity for hydrogen technologies in temperate countries and regions where established distribution infrastructure and familiarity with natural gas boilers predominate. A key element of such claims is the empirically untested belief that citizens will prefer to minimise disruption and perceive hydrogen to be less disruptive than the network upgrades and retrofit measures needed to support electric and other low carbon heating technologies. This article reports on exploratory deliberative research with residents of Cardiff Wales which examined public perceptions of heating disruptions. Our findings suggest that concerns over public responses to disruption may be overstated particularly as they relate to construction and road excavation for network upgrade. Disruptions arising from permanent changes to building fabric may be more problematic for heat pump retrofit however these may be greatly overshadowed by anxieties over the cost implications of moving to hydrogen fuel. Furthermore the biographical patterning of citizen preferences raises significant questions for hydrogen roll-out strategies relying on regionalised network conversion. We conclude by arguing that far from a non-disruptive alternative to electrification hydrogen risks being seen as posing substantial disruptions to precarious household finances and lifestyles.
A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact
Nov 2023
Publication
This study emphasises the growing relevance of hydrogen as a green energy source in meeting the growing need for sustainable energy solutions. It foregrounds the importance of assessing the environmental consequences of hydrogen-generating processes for their long-term viability. The article compares several hydrogen production processes in terms of scalability costeffectiveness and technical improvements. It also investigates the environmental effects of each approach considering crucial elements such as greenhouse gas emissions water use land needs and waste creation. Different industrial techniques have distinct environmental consequences. While steam methane reforming is cost-effective and has a high production capacity it is coupled with large carbon emissions. Electrolysis a technology that uses renewable resources is appealing but requires a lot of energy. Thermochemical and biomass gasification processes show promise for long-term hydrogen generation but further technological advancement is required. The research investigates techniques for improving the environmental friendliness of hydrogen generation through the use of renewable energy sources. Its ultimate purpose is to offer readers a thorough awareness of the environmental effects of various hydrogen generation strategies allowing them to make educated judgements about ecologically friendly ways. It can ease the transition to a cleaner hydrogen-powered economy by considering both technological feasibility and environmental issues enabling a more ecologically conscious and climate-friendly energy landscape.
Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System
Aug 2023
Publication
The latest International Maritime Organization strategies aim to reduce 70% of the CO2 emissions and 50% of the Greenhouse Gas (GHG) emissions from maritime activities by 2050 compared to 2008 levels. The EU has set up goals to reduce GHG emissions by at least 55% by 2030 compared to 1990 and achieve net-zero GHG emissions by 2050. The UK aims to achieve more than 68% GHG emission reduction by 2030 and net-zero GHG emissions by 2050. There are many solutions under development to tackle the challenge of meeting the latest decarbonization strategies from the IMO EU and UK among which are hydrogen powered marine vessels. This paper presents a life cycle analysis study for hydrogen fuelled vessels by evaluating their performance in terms of environmental friendliness and economic feasibility. The LCA study will consider the gas emissions and costs during the life stages of the ships including the construction operation maintenance and recycling phases of the selected vessels. The results of the comparisons with the conventional version of the ships (driven by diesel generators) demonstrate the benefits of using hydrogen for marine transportation: over 80% emission reduction and around 60% life cycle cost savings. A sensitivity analysis shows that the prices of fuels and carbon credits can affect the life cycle cost and recommendations for low H2 price and high carbon credit in the future are provided to attract the industry to adopt the new fuel.
A Review of Control Strategies for Proton Exchange Membrane (PEM) Fuel Cells and Water Electrolysers: From Automation to Autonomy
Jul 2024
Publication
Proton exchange membrane (PEM) based electrochemical systems have the capability to operate in fuel cell (PEMFC) and water electrolyser (PEMWE) modes enabling efficient hydrogen energy utilisation and green hydrogen production. In addition to the essential cell stacks the system of PEMFC or PEMWE consists of four sub-systems for managing gas supply power thermal and water respectively. Due to the system’s complexity even a small fluctuation in a certain sub-system can result in an unexpected response leading to a reduced performance and stability. To improve the system’s robustness and responsiveness considerable efforts have been dedicated to developing advanced control strategies. This paper comprehensively reviews various control strategies proposed in literature revealing that traditional control methods are widely employed in PEMFC and PEMWE due to their simplicity yet they suffer from limitations in accuracy. Conversely advanced control methods offer high accuracy but are hindered by poor dynamic performance. This paper highlights the recent advancements in control strategies incorporating machine learning algorithms. Additionally the paper provides a perspective on the future development of control strategies suggesting that hybrid control methods should be used for future research to leverage the strength of both sides. Notably it emphasises the role of artificial intelligence (AI) in advancing control strategies demonstrating its significant potential in facilitating the transition from automation to autonomy.
A COMSOL Framework for Predicting Hydrogen Embrittlement - Part 1: Coupled Hydrogen Transport
Mar 2025
Publication
Hydrogen threatens the structural integrity of metals and thus predicting hydrogen-material interactions is key to unlocking the role of hydrogen in the energy transition. Quantifying the interplay between material deformation and hydrogen diffusion ahead of cracks and other stress concentrators is key to the prediction and prevention of hydrogen-assisted failures. In this work a generalised theoretical and computational framework is presented that for the first time encompasses: (i) stress-assisted diffusion (ii) hydrogen trapping due to multiple trap types rigorously accounting for the rate of creation of dislocation trap sites (iii) hydrogen transport through dislocations (iv) equilibrium (Oriani) and non-equilibrium (McNabb-Foster) trapping kinetics (v) hydrogen-induced softening and (vi) hydrogen uptake considering the role of hydrostatic stresses and local electrochemistry. Particular emphasis is placed on the numerical implementation in COMSOL Multiphysics releasing the relevant models and discussing stability discretisation and solver details. Each of the elements of the framework is independently benchmarked against results from the literature and implications for the prediction of hydrogen-assisted fractures are discussed. The second part of this work (Part II) shows how these crack tip predictions can be combined with crack growth simulations.
Flame Acceleration, Detonation Limit and Heat Loss for Hydrogen-Oxygen Mixture at Cryogenic Temperature of 77 K
Sep 2023
Publication
Experiments are performed in hydrogen-oxygen mixtures at the cryogenic temperature of 77 K with the equivalence ratio of 1.5 and 2.0. The optical fibers pressure sensors and the smoked foils are used to record the flame velocity overpressure evolution curve and detonation cells respectively. The 1st and 2nd shock waves are captured and they finally merge to form a stronger precursor shock wave prior to the onset of detonation. The cryogenic temperature will cause the larger expansion ratio which results in the occurrence of strong flame acceleration. The stuttering mode the galloping mode and the deflagration mode are observed when the initial pressure decreases from 0.50 atm to 0.20 atm with the equivalence ratio of 1.5 and the detonation limit is within 0.25-0.30 atm. The heat loss effect on the detonation limit is analysed. In addition the regularity of detonation cell is investigated and the larger post-shock specific heat ratio !"" and the lower normalized activation energy # at lower initial pressure will cause the more regular detonation cell. Also the detonation cell width is predicted by a model of = ($) ⋅ Δ# and the prediction results are mainly consistent with the experimental results.
The UK Hydrogen Innovation Opportunity: Techno-economic Methodology
Apr 2024
Publication
This report outlines the methods and assumptions used in the hydrogen technology market analysis. The results of the analysis are presented in The UK Hydrogen Innovation Opportunity and the supporting report Hydrogen technology roadmaps. They include forecasts for the following market data:
○ Global hydrogen economy The overall size of the global hydrogen economy in 2023 2030 and 2050.
○ Global and UK hydrogen technology market by technology family
This is the proportion of the total future hydrogen economy attributable to hydrogen-related technologies in 2023 2030 and 2050. The hydrogen economy is defined as the ‘end-to-end’ value created from hydrogen production storage & distribution and use. This includes the direct economic value associated with production and distribution of hydrogen as a fuel or chemical feedstock hydrogen infrastructure technologies products services and the indirect economic value created through products and services that indirectly support the use of hydrogen in industry transport power generation and heating. This endto-end definition of the hydrogen economy is represented in Figure 1 overleaf.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
○ Global hydrogen economy The overall size of the global hydrogen economy in 2023 2030 and 2050.
○ Global and UK hydrogen technology market by technology family
This is the proportion of the total future hydrogen economy attributable to hydrogen-related technologies in 2023 2030 and 2050. The hydrogen economy is defined as the ‘end-to-end’ value created from hydrogen production storage & distribution and use. This includes the direct economic value associated with production and distribution of hydrogen as a fuel or chemical feedstock hydrogen infrastructure technologies products services and the indirect economic value created through products and services that indirectly support the use of hydrogen in industry transport power generation and heating. This endto-end definition of the hydrogen economy is represented in Figure 1 overleaf.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety
Sep 2023
Publication
Hydrogen vehicles encompassing fuel cell electric vehicles (FCEVs) are pivotal within the UK’s energy landscape as it pursues the goal of net-zero emissions by 2050. By markedly diminishing dependence on fossil fuels FCEVs including hydrogen vehicles wield substantial influence in shaping the circular economy (CE). Their impact extends to optimizing resource utilization enabling zero-emission mobility facilitating the integration of renewable energy sources supplying adaptable energy storage solutions and interconnecting diverse sectors. The widespread adoption of hydrogen vehicles accelerates the UK’s transformative journey towards a sustainable CE. However to fully harness the benefits of this transition a robust investigation and implementation of safety measures concerning hydrogen vehicle (HV) use are indispensable. Therefore this study takes a holistic approach integrating quantitative risk assessment (QRA) and an adaptive decision-making trial and evaluation laboratory (DEMATEL) framework as pragmatic instruments. These methodologies ensure both the secure deployment and operational excellence of HVs. The findings underscore that the root causes of HV failures encompass extreme environments material defects fuel cell damage delivery system impairment and storage system deterioration. Furthermore critical driving factors for effective safety intervention revolve around cultivating a safety culture robust education/training and sound maintenance scheduling. Addressing these factors is pivotal for creating an environment conducive to mitigating safety and risk concerns. Given the intricacies of conducting comprehensive hydrogen QRAs due to the absence of specific reliability data this study dedicates attention to rectifying this gap. A sensitivity analysis encompassing a range of values is meticulously conducted to affirm the strength and reliability of our approach. This robust analysis yields precise dependable outcomes. Consequently decision-makers are equipped to discern pivotal underlying factors precipitating potential HV failures. With this discernment they can tailor safety interventions that lay the groundwork for sustainable resilient and secure HV operations. Our study navigates the intersection of HVs safety and sustainability amplifying their importance within the CE paradigm. Using the careful amalgamation of QRA and DEMATEL methodologies we chart a course towards empowering decision-makers with the insights to steer the hydrogen vehicle domain to safer horizons while ushering in an era of transformative eco-conscious mobility.
Particle Swarm Optimisation for a Hybrid Freight Train Powered by Hydrogen or Ammonia Solid Oxide Fuel Cells
May 2024
Publication
All diesel-only trains in the UK will be phased out by 2040. Hydrogen and ammonia emerge as alternative zerocarbon fuel for greener railway. Solid Oxide Fuel Cells (SOFCs) provide an alternative prime mover option which efficiently convert zero-carbon fuels into electricity without emitting nitrogen oxides (NOx) unlike traditional engines. Superior to Proton Exchange Membrane Fuel Cells (PEMFCs) in efficiency SOFCs fulfil MW-scale power needs and can use ammonia directly. This study investigates innovative strategies for integrating SOFCs into hybrid rail powertrains using hydrogen or ammonia. Utilizing an optimization framework incorporating Particle Swarm Optimization (PSO) the study aims to minimize operational costs while considering capital and replacement expenditures powertrain performance and component sizing. The findings suggest that hybrid powertrains based on ammonia-fueled SOFCs may potentially reduce costs by 30% compared to their hydrogen counterparts albeit requiring additional space for engine compartments. Ammonia-fueled SOFCs trains also exhibit a 5% higher efficiency at End-of-Life (EoL) showing less performance degradation than those powered by hydrogen. The State of Charge (SoC) of the batteries in range of 30–70% for both cases is identified as most costeffective.
From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes
Jun 2024
Publication
Plastics have become integral to modern life playing crucial roles in diverse industries such as agriculture electronics automotive packaging and construction. However their excessive use and inadequate management have had adverse environmental impacts posing threats to terrestrial and marine ecosystems. Consequently researchers are increasingly searching for more sustainable ways of managing plastic wastes. Pyrolysis a chemical recycling method holds promise for producing valuable fuel sustainably. This study explores the process of the pyrolysis of plastic and incorporates recent advancements. Additionally the study investigates the integration of reforming into the pyrolysis process to improve hydrogen production. Hydrogen a clean and eco-friendly fuel holds significance in transport engines power generation fuel cells and as a major commodity chemical. Key process parameters influencing the final products for pyrolysis and in-line reforming are evaluated. In light of fossil fuel depletion and climate change the pyrolysis and in-line reforming strategy for hydrogen production is anticipated to gain prominence in the future. Amongst the various strategies studied the pyrolysis and in-line steam reforming process is identified as the most effective method for optimising hydrogen production from plastic wastes.
Optimizing Underground Hydrogen Storage in Aquifers: The Impact of Cushion Gas Type
Aug 2023
Publication
This study investigated the impact of cushion gas type and presence on the performance of underground hydrogen storage (UHS) in an offshore North Sea aquifer. Using numerical simulation the relationship between cushion gas type and UHS performance was comprehensively evaluated providing valuable insights for designing an efficient UHS project delivery. Results indicated that cushion gas type can significantly impact the process's recovery efficiency and hydrogen purity. CO2 was found to have the highest storage capacity while lighter gases like N2 and CH4 exhibited better recovery efficiency. Utilising CH4 as a cushion gas can lead to a higher recovery efficiency of 80%. It was also determined that utilising either of these cushion gases was always more beneficial than hydrogen storage alone leading to an incremental hydrogen recovery up to 7%. Additionally hydrogen purity degraded as each cycle progressed but improved over time. This study contributes to a better understanding of factors affecting UHS performance and can inform the selection of cushion gas type and optimal operational strategies.
Optimizing the Operational Efficiency of the Underground Hydrogen Storage Scheme in a Deep North Sea Aquifer through Compositional Simulations
Aug 2023
Publication
In this study we evaluate the technical viability of storing hydrogen in a deep UKCS aquifer formation through a series of numerical simulations utilising the compositional simulator CMG-GEM. Effects of various operational parameters such as injection and production rates number and length of storage cycles and shut-in periods on the performance of the underground hydrogen storage (UHS) process are investigated in this study. Results indicate that higher H2 operational rates degrade both the aquifer's working capacity and H2 recovery during the withdrawal phase. This can be attributed to the dominant viscous forces at higher rates which lead to H2 viscous fingering and gas gravity override of the native aquifer water resulting in an unstable displacement of water by the H2 gas. Furthermore analysis of simulation results shows that longer and less frequent storage cycles lead to higher storage capacity and decreased H2 retrieval. We conclude that UHS in the studied aquifer is technically feasible however a thorough evaluation of the operational parameters is necessary to optimise both storage capacity and H2 recovery efficiency.
Spillovers Between Hydrogen, Nuclear and AI Sectors: The Impact of Climate Policy Uncertainty and Geopolitical Risks
Mar 2025
Publication
This study investigates the spillover effects between hydrogen energy nuclear energy and artificial intelligence (AI) sectors in the context of the global clean energy transition with a particular focus on the impact of climate policy uncertainty (CPU) and geopolitical risks (GPR). Employing the TVP-VAR extended joint connectedness approach the findings show a high connectedness that indicates significant spillovers among these sectors. Hydrogen energy emerges as a dominant transmitter of shocks reflecting its sensitivity to regulatory changes and fluctuating demand. However nuclear energy acts as a stabilising force that offers hedging opportunities and resilience against market turbulence. The AI sector exhibits strong connectedness primarily as a net receiver of shocks driven by its dependency on clean energy sources and vulnerability to energy market volatility. Using the GARCHMIDAS framework the study identifies a temporal asymmetry in market responses to CPU and GPR. CPU triggers immediate but short-lived disruptions while GPR induces delayed yet persistent effects that intensify cross-sector spillovers over time. These results underline the vulnerabilities of sectors reliant on regulatory clarity and geopolitical stability. This study provides practical insights for investors policymakers technology and energy companies to better manage systemic risks at the crossroads of clean energy technological innovation and uncertainty.
Resilience Assessment of Offshore Wind-to-Hydrogen Systems
Jul 2024
Publication
Low-cost green hydrogen production will be key in reaching net zero carbon emissions by 2050. Green hydrogen can be produced by electrolysis using renewable energy including wind energy. However the configuration of offshore wind-to-hydrogen systems is not yet standardised. For example electrolysis can take place onshore or offshore. This work presents a framework to assess and quantify which configuration is more resilient so that security of hydrogen supply is incorporated in strategic decisions with the following key findings. First resilience should be assessed according to hydrogen supply rather than hydrogen production. This allows the framework to be applicable for all identified system configurations. Second resilience can be quantified according to the quantity ratio and lost revenue of the unsupplied hydrogen.
Multiphysics Performance Assessment of Hydrogen Fuelled Engines
Sep 2023
Publication
In the quest for decarbonisation alternative clean fuels for propulsion systems are sought. There is definite advantage in retaining the well-established principles of operation of combustion engines at the core of future developments with hydrogen as a fuel. Hydrogen is envisaged as a clean source of energy for propulsion of heavy and off-road vehicles as well as in marine and construction sectors. A source of concern is the unexplored effect of hydrogen combustion on dilution and degradation of engine lubricants and their additives and consequently upon tribology of engine contact conjunctions. These potential problems can adversely affect engine efficiency durability and operational integrity. Use of different fuels and their method of delivery produces distinctive combustion characteristics that can affect the energy losses associated with in-cylinder components and their durability. Therefore detailed predictive analysis should support the developments of such new generation of eco-friendly engines. Different fundamental physics underpin the various aspects of a pertinent detailed analysis. These include thermodynamics of combustion in-cylinder tribological interactions of contacting surfaces and blowby of generated gasses. This paper presents such an integrated multi-physics analysis of internal combustion engines with focus on hydrogen as the fuel. Such an in-depth and computationally efficient analysis has not hitherto been reported in the literature. The results show implications for lubricant degradation due to the use of hydrogen in the performance of in-cylinder components and the underlying physical principles.
Emission Reduction and Cost-benefit Analysis of the Use of Ammonia and Green Hydrogen as Fuel for Marine Applications
Dec 2023
Publication
Increasingly stringent emission standards have led shippers and port operators to consider alternative energy sources which can reduce emissions while minimizing capital investment. It is essential to understand whether there is a certain economic investment gap for alternative energy. The present work mainly focuses on the simulation study of ships using ammonia and hydrogen fuels arriving at Guangzhou Port to investigate the emission advantages and cost-benefit analysis of ammonia and hydrogen as alternative fuels. By collecting actual data and fuel consumption emissions of ships arriving at Guangzhou Port the present study calculated the pollutant emissions and cost of ammonia and hydrogen fuels substitution. As expected it is shown that with the increase of NH3 in fuel mixed fuels will effectively reduce CO and CO2 emissions. Compared to conventional fuel the injection of NH3 increases the NOx emission. However the cost savings of ammonia fuel for CO2 SOx and PM10 reduction are higher than that for NOx. In terms of pollutants ammonia is less expensive than conventional fuels when applied to the Guangzhou Port. However the cost of fuel supply is still higher than conventional energy as ammonia has not yet formed a complete fuel supply and storage system for ships. On the other hand hydrogen is quite expensive to store and transport resulting in higher overall costs than ammonia and conventional fuels even if no pollutants are produced. At present conventional fuels still have advantage in terms of cost. With the promotion of ammonia fuel technology and application the cost of supply will be reduced. It is predicted that by 2035 ammonia will not only have emission reduction benefits but also will have a lower overall economic cost than conventional fuels. Hydrogen energy will need longer development and technological breakthroughs due to the limitation of storage conditions.
CFD Analysis of Delayed Ignition Hydrogen Releases from a Train Inside a Tunnel
Sep 2023
Publication
In the present work we present the results of numerical simulations involving the dispersion and combustion of a hydrogen cloud released in an empty tunnel. The simulations were conducted with the use of ADREA-HF CFD code and the results are compared with measurements from experiments conducted by HSE in a tunnel with the exact same geometry. The length of the tunnel is equal to 70 m and the maximum height from the floor is equal to 3.25 m. Hydrogen release is considered to occur from a train containing pressurized hydrogen stored at 580 bars. The release diameter is equal to 4.7 mm and the release direction is upwards. Initially dispersion simulation was performed in order to define the initial conditions for the deflagration simulations. The effect of the initial wind speed and the effect of the ignition delay time were investigated. An extensive grid sensitivity study was conducted in order to achieve grid independent results. The CFD model takes into account the flame instabilities that are developed as the flame propagates inside the tunnel and turbulence that exists in front of the flame front. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model.
Comparative Analysis of Marine Alternative Fuels for Offshore Supply Vessels
Nov 2024
Publication
This paper provides an in-depth analysis of alternative fuels including liquefied natural gas (LNG) hydrogen ammonia and biofuels assessing their feasibility based on operational requirements availability safety concerns and the infrastructure needed for large-scale adoption. Moreover it examines hybrid and fully electric propulsion systems considering advancements in battery technology and the integration of renewable energy sources such as wind and solar power to further reduce SOV emissions. Key findings from this research indicate that LNG serves as a viable short- to medium-term solution for reducing GHG emissions in the SOV sector due to its relatively lower carbon content compared to MDO and HFO. This paper finally insists that while LNG presents an immediate opportunity for emission reduction in the SOV sector a combination of hydrogen ammonia and hybrid propulsion systems will be necessary to meet long-term decarbonisation goals. The findings underscore the importance of coordinated industry efforts technological innovation and supportive regulatory frameworks to overcome the technical economic and infrastructural challenges associated with decarbonising the maritime industry.
Literature Review on Life Cycle Assessment of Transportation Alternative Fuels
Aug 2023
Publication
Environmental concerns such as global warming and human health damage are intensifying and the transportation sector significantly contributes to carbon and harmful emissions. This review examines the life cycle assessment (LCA) of alternative fuels (AF) evaluating current research on fuel types LCA framework development life cycle inventory (LCI) and impact selection. The objectives of this paper are: (1) to compare various AF LCA frameworks and develop a comprehensive framework for the transportation sector; (2) to identify emission hotspots of different AFs through simulations and real-world cases; (3) to review AF LCA research; (4) to extract valuable information for potential future research directions. The analysis reveals that all stages except for hydrogen use have an environmental impact. LCA boundaries and LCIs vary considerably depending on the raw materials production processes and products involved leading to different emission hotspots. Due to knowledge or data limitations some stages remain uncalculated in the current study emphasizing the need for further refinement of the AF LCI. Future research should also explore the various impacts of widespread adoption of alternative fuels in transportation encompassing social economic and environmental aspects. Lastly the review provides structured recommendations for future research directions.
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Operational Implications of Transporting Hydrogen via a High Pressure Gas Network
Feb 2025
Publication
Transporting hydrogen gas has long been identified as one of the key issues to scaling up the hydrogen economy. Among various means of transportation many countries are considering using the existing natural gas pipeline networks for hydrogen transmission. This paper examines the implications of transporting hydrogen on the operational metrics of the high-pressure natural gas networks. A model of the GB high-pressure gas network was developed which has a high granularity with 294 nodes 356 pipes and 24 compressor stations. The model was developed using Synergi Gas a hydraulic pipeline network simulation software. By performing unsteady-state analysis pressure levels linepack levels and compressor energy consumption were simulated with 10-minute time steps. Additionally component tracing analysis was utilised to examine the variations in gas composition when hydrogen is injected into the gas network. Five scenarios were developed: one benchmark scenario representing the network transporting natural gas in 2018; one scenario where demand and supply levels are projected for 2035 but no hydrogen was transported by the network; two hydrogen injection scenarios in 2035 considering different geographical locations for hydrogen injection into the gas network; and lastly one pure hydrogen transmission scenario for 2050. The studies found that the GB’s high-pressure gas network could accept 20% volumetric hydrogen injection without significantly impacting network operation. Pressure levels and compressor energy consumption remain within the operational range. The geographical distribution of hydrogen injection points would highly affect the percentage of hydrogen across the network. Pure hydrogen transportation will cause significant variations in network linepack and increase compressor energy consumption significantly compared to other case studies. The findings signal that operating a network with pure hydrogen is possible only when it is prepared for these changes.
Safety Calculations for Emerging Technologies
Sep 2023
Publication
As part of executing 25 hydrogen-based Power to X (PtX) projects our team of Safety consultants has completed safety and risk assessments for a number of hydrogen production developments. Drawing on this experience we will present the importance of making comparisons between hydrogen specific data sources such as HyRAM and conventional oil and gas data sets and calculation methods to ensure that project design is carried out to the most appropriate data and provides a robust solution to demonstrate risks are managed. This presentation will be based on case studies where Fire and Explosion Risk Assessments (FERA) and Quantitative Risk Assessments (QRA) were conducted. The frequency calculations for these assessments used the release frequencies and ignition probabilities provided in HyRAM. However it is noted that the HyRAM ignition probabilities are derived from a correlation from oil and gas assessments in the 1990s. The oil and gas approach has moved on from this data source and now derives ignition probabilities based on the type of facility and fluid characteristics. To address this evolution a comparison was made between the leak frequencies for equipment in hydrogen service and established oil and gas release frequencies from IOGP. In addition a comparison between the HyRAM recommended ignition probabilities and the correlations used for oil and gas (from OEUK formerly UKOOA) was conducted. By taking this approach it was confirmed that the UKOOA data was more conservative and sensitivity calculations were carried out. It was also noted that as hydrogen technologies are emerging there is a level of uncertainty around the data and comparisons must be regularly made to ensure the most appropriate basis for calculations is used.
Visualisation and Quantification of Wind-induced Variability in Hydrogen Clouds Following Releases of Liquid Hydrogen
Sep 2023
Publication
Well characterized experimental data for consequence model validation is important in progressing the use of liquid hydrogen as an energy carrier. In 2019 the Health and Safety Executive (HSE) undertook a series of liquid hydrogen dispersion and combustion experiments as a part of the Pre-normative Research for Safe Use of Liquid Hydrogen (PRESLHY) project. In partnership between the National Renewable Energy Laboratory (NREL) and HSE time and spatially varying hydrogen concentration measurements were made in 25 dispersion experiments and 23 congested ignition experiments associated with PRESLHY WP3 and WP5 respectively. These measurements were undertaken using the hydrogen wide area monitoring system developed by NREL. During the 23 congested ignition experiments high variability was observed in the measured explosion severity during experiments with similar initial conditions. This led to the conclusion that wind including localized gusts had a large influence on the dispersion of the hydrogen and therefore the quantity of hydrogen that was present in the congested region of the explosions. Using the hydrogen concentration measurements taken immediately prior to ignition the hydrogen clouds were visualized in an attempt to rationalize the variability in overpressure between the tests. Gaussian process regression was applied to quantify the variability of the measured hydrogen concentrations. This analysis could also be used to guide modifications in experimental designs for future research on hydrogen combustion behavior.
Environmental-economic Sustainability of Hydrogen and Ammonia Fuels for Short Sea Shipping Operations
Jan 2024
Publication
Alternative fuels of low or zero carbon content can decarbonise the shipping operations. This study aims at assessing the lifetime environmental-economic sustainability of ammonia and hydrogen as alternatives to diesel fuel for short sea shipping cargo vessels. A model is employed to calculate key performance indicators representing the lifetime financial sustainability and environmental footprint of the case ship using a realistic operating profile and considering several scenarios with different diesel substitution rates. Scenarios meeting the carbon emissions reduction targets set by the International Maritime Organisation (IMO) for 2030 are identified whereas policy measures for their implementation including the emissions taxation are discussed. The derived results demonstrate that the future implementation of carbon emissions taxation in the ranges of 136–965 €/t for hydrogen and 356–2647 €/t for ammonia can support these fuels financial sustainability in shipping. This study provides insights for adopting zero-carbon fuels and as such impacts the de-risking of shipping decarbonisation.
Hydrogen Pipelines vs. HVDC Lines: Should We Transfer Green Molecules or Electrons?
Nov 2023
Publication
As the world races to decarbonize its energy systems the choice between transmitting green energy as electrons through high-voltage direct current (HVDC) lines or as molecules via hydrogen pipelines emerges as a critical decision. This paper considers this pivotal choice and compares the technoeconomic characteristics of these two transmission technologies. Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. Advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending. Considering these technologies as standalone competitors belies their complementary nature. In the emerging energy landscape they will be integral components of a complex system. Decisions on which technology to prioritize depend on factors such as existing infrastructure adaptability risk assessment and social acceptance. Furthermore while both HVDC lines and hydrogen pipelines are expected to proliferate other factors such as market maturity of the relevant energy vector government policies and regulatory frameworks around grid development and utilization are also expected to play a crucial role. Energy transition is a multifaceted challenge and accommodating both green molecules and electrons in our energy infrastructure may be the key to a sustainable future. This paper’s insights underline the importance of adopting a holistic perspective and recognising the unique strengths of each technology in shaping a resilient and sustainable energy ecosystem.
Case Study: Quantitative Risk Assessment of Hydrogen Blended Natural Gas for an Existing Distribution Network and End-use Equipment in Fort Saskatchewan, Alberta
Sep 2023
Publication
In a first-of-its-kind project for Alberta ATCO Gas and Pipelines Ltd. (ATCO) began delivering a 5% blend of hydrogen (H2) in natural gas into a subsection of the existing Fort Saskatchewan natural gas distribution system (approximately 2100 customers). The project was commissioned in October 2022 with the intention of increasing the blend to 20% H₂ in 2023. As part of project due diligence ATCO in partnership with DNV undertook Quantitative Risk Assessments (QRAs) to understand any risks associated with the introduction of blended gas into its existing distribution system and to its customers. This paper describes key findings from the QRAs through the comparison of risks associated with H2 blended natural gas at concentrations of 5% and 20% H₂ and the current natural gas configuration. The impact of operating pressure and hydrogen blend composition formed a sensitivity study completed as part of this work. To provide context and to help interpret the results an individual risk (IR) level of 1 × 10-6 per year was utilised as a reference threshold for the limit of the ‘broadly acceptable’ risk level and juxtaposed against comparable risk scenarios. Although adding hydrogen increases the IR of ignited releases from mains services meters regulators and end user appliances the ignited release IR was always well below the broadly acceptable reference criterion for all operating pressures and blend cases considered as part of the project. The IR associated with carbon monoxide poisoning dominates the overall IR and the results demonstrate that the reduction in carbon monoxide poisoning associated with the introduction of H₂ blended natural gas negates any incremental risk associated with ignited releases due to H₂ blended gas. The paper also explains how the results of the QRA were incorporated into Engineering Assessments as per the requirements of CSA Z662:19 [1] to justify the conversion of existing natural gas infrastructure to H₂ blended gas infrastructure.
Numerical Simulation of Liquid Hydrogen Evaporation in the Pressurized Tank During Venting
Sep 2023
Publication
CFD modelling of liquified hydrogen boiling and evaporation during the pressurised tank venting is presented. The model is based on the volume-of-fluid method for tracking liquid and gas phases and Lee’s model for phase change. The simulation results are compared against the liquid hydrogen evaporation experiment performed by Tani et al. (2021) in a large-scale pressurised storage tank using experimental pressure dynamics and temperatures measured in gas and liquid phases. The study focuses on tank pressure decrease and recovery phenomena during the first 15 s of the venting process. The model sensitivity have been studied applying different Lee’s model evaporisation-condensation coefficients. The CFD model provided reasonable agreement with the observed pressure and gas phase temperature dynamics during the liquid hydrogen storage depressurisation using Lee’s model coefficient =0.05 s-1. Experimentalists’ hypothesis about particularly intensive boiling in the proximity of thermocouples was supported by close agreement between simulated and experimental saturation temperatures obtained from pressure dynamics.
Technology Pathways, Efficiency Gains and Price Implications of Decarbonising Residential Heat in the UK
Jun 2023
Publication
The UK government’s plans to decarbonise residential heating will mean major changes to the energy system whatever the specific technology pathway chosen driving a range of impacts on users and suppliers. We use an energy system model (UK TIMES) to identify the potential energy system impacts of alternative pathways to low or zero carbon heating. We find that the speed of transitioning can affect the network investment requirements the overall energy use and emissions generated while the primary heating fuel shift will determine which sectors and networks require most investment. Crucially we identify that retail price differences between heating fuels in the UK particularly gas and electricity could erode or eliminate bill savings from switching to more efficient heating systems.
Lifetime Greenhouse Gas Emissions from Offshore Hydrogen Production
Aug 2023
Publication
With a limited global carbon budget it is imperative that decarbonisation decisions are based on accurate holistic accounts of all greenhouse gas (GHG) emissions produced to assess their validity. Here the upstream GHG emissions of potential UK offshore Green and Blue hydrogen production are compared to GHG emissions from hydrogen produced through electrolysis using UK national grid electricity and the ‘business-as-usual’ case of continuing to combust methane. Based on an operational life of 25 years and producing 0.5MtH2 per year for each hydrogen process the results show that Blue hydrogen will emit between 200-262MtCO2e of GHG emissions depending on the carbon capture rates achieved (39%–90%) Green hydrogen produced via electrolysis using 100% renewable electricity from offshore wind will emit 20MtCO2e and hydrogen produced via electrolysis powered by the National Grid will emit between 103-168MtCO2e depending of the success of its NetZero strategy. The ‘business-as-usual’ case of continuing to combust methane releases 250MtCO2e over the same lifetime. This study finds that Blue hydrogen at scale is not compatible with the Paris Agreement reduces energy security and will require a substantial GHG emissions investment which excludes it from being a ‘low carbon technology’ and should not be considered for any decarbonisation strategies going forward.
The Role of Hydrogen and Batteries in Delivering Net Zero in the UK by 2050
Apr 2023
Publication
This report presents an analysis of how hydrogen and battery technologies are likely to be utilised in different sectors within the UK including transportation manufacturing the built environment and power. In particular the report compares the use of hydrogen and battery technology across these sectors. In addition it evaluates where these technologies will be in competition where one technology will dominate and where a combination of the two may be used. This sector analysis draws on DNV’s knowledge and experience within both the battery and hydrogen industries along with a review of studies available in the public domain. The analysis has been incorporated into DNV’s Energy Transition Outlook model an integrated system-dynamics simulation model covering the energy system which provides an independent view of the energy outlook from now until 2050. The modelling which includes data on costs demand supply policy population and economic indicators enables the non-linear interdependencies between different parameters to be considered so that decisions made in one sector influence the decision made in another.
Explosion Mitigation Techniques in Tunnels and their Applicability to Scenarios of Hydrogen Tank Rupture in a Fire
Sep 2023
Publication
This paper presents a comprehensive review of existing explosion mitigation techniques for tunnels and evaluates their applicability in scenarios of hydrogen tank rupture in a fire. The study provides an overview of the current state of the art in tunnel explosion mitigation and discusses the challenges associated with hydrogen explosions in the context of fire incidents. The review shows that there are several approaches available to decrease the effects of explosions including wrapping the tunnel with a flexible and compressible barrier and introducing energy-absorbing flexible honeycomb elements. However these methods are limited to the mitigation of the action and do not consider either the mitigation of the structural response or the effects on the occupants. The study highlights how the structural response is affected by the duration of the action and the natural period of the structural elements and how an accurate design of the element stiffness can be used in order to mitigate the structural vulnerability to the explosion. The review also presents various passive and active mitigation techniques aimed at mitigating the explosion effects on the occupants. Such techniques include tunnel branching ventilation openings evacuation lanes right-angled bends drop-down perforated plates or high-performance fibre-reinforced cementitious composite (HPFRCC) panels for blast shielding. While some of these techniques can be introduced during the tunnel's construction phase others require changes to the already working tunnels. To simulate the effect of blast wave propagation and evaluate the effectiveness of these mitigation techniques a CFD-FEM study is proposed for future analysis. The study also highlights the importance of considering these mitigation techniques to ensure the safety of the public and first responders. Finally the study identifies the need for more research to understand blast wave mitigation by existing structural elements in the application for potential accidents associated with hydrogen tank rupture in a tunnel.
Technology Roadmap for Hydrogen-fuelled Transportation in the UK
Apr 2023
Publication
Transportation is the sector responsible for the largest greenhouse gas emission in the UK. To mitigate its impact on the environment and move towards net-zero emissions by 2050 hydrogen-fuelled transportation has been explored through research and development as well as trials. This article presents an overview of relevant technologies and issues that challenge the supply use and marketability of hydrogen for transportation application in the UK covering on-road aviation maritime and rail transportation modes. The current development statutes of the different transportation modes were reviewed and compared highlighting similarities and differences in fuel cells internal combustion engines storage technologies supply chains and refuelling characteristics. In addition common and specific future research needs in the short to long term for the different transportation modes were suggested. The findings showed the potential of using hydrogen in all transportation modes although each sector faces different challenges and requires future improvements in performance and cost development of innovative designs refuelling stations standards and codes regulations and policies to support the advancement of the use of hydrogen.
The UK Hydrogen Innovation Opportunity
Apr 2024
Publication
The report considers the full end-to-end nature of the hydrogen economy to ensure there is a common understanding of the economic opportunity it could represent by 2050. Insights from across industry have brought clarity to both market and technology requirements identifying four focus areas that represent the greatest potential benefit for the UK. It highlights the steps needed to build the UK industrial capability and capacity to position the UK as a market leader. The UK Hydrogen Innovation Opportunity has been developed with and for industry with the first phase of industrial engagement involving over 250 businesses and 12 sector bodies. A second phase of industrial engagement will expand to a broader set of consulted stakeholder groups concluding with a report entitled Hydrogen Innovation: The Case for Action in summer 2024. This will seek to validate the proposed focus areas provide more detailed scope definition the size of the opportunity and outline the steps required to secure them for the UK.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
Ignition and Flow Stopping Considerations for the Transmission of Hydrogen in the Existing Natural Gas Network
Sep 2023
Publication
This work formed part of the H21 programme whose objective is to reach the point whereby it is feasible to convert the existing natural gas (NG) distribution network to 100% hydrogen (H2) and provide a contribution to decarbonising the UK’s heat and power sectors with the focus on decarbonised fuel at point of use. Hydrogen has an ATEX Gas Group of IIC compared to IIA for natural gas which means further precautions are necessary to prevent the ignition of hydrogen during network operations. Both electrostatic and friction ignition risks were considered. Network operations considered include electrostatic precautions for polyethylene (PE) pipe and cutting and drilling of metallic pipes. As a result of the updated basis of safety from ignition considerations existing flow stopping methods were reviewed to see if they were compatible. Commonly used flow stopping methods were tested under laboratory conditions with hydrogen following the methodologies specified in the Gas Industry Standards (GIS). A new basis of safety for flow stopping has been proposed that looks at the flow past the secondary stop as double isolations are recommended for use with hydrogen.
Design and Optimization of a Type-C Tank for Liquid Hydrogen Marine Transport
May 2023
Publication
As one of the most promising renewable energy sources hydrogen has the excellent environmental benefit of producing zero emissions. A key technical challenge in using hydrogen across sectors is placed on its storage technology. The storage temperature of liquid hydrogen (20 K or 253 C) is close to absolute zero so the storage materials and the insulation layers are subjected to extremely stringent requirements against the cryogenic behaviour of the medium. In this context this research proposed to design a large liquid hydrogen type-C tank with AISI (American Iron and Steel Institution) type 316 L stainless steel as the metal barrier using Vapor-Cooled Shield (VCS) and Rigid Polyurethane Foams (RPF) as the insulation layer. A parametric study on the design of the insulation layer was carried out by establishing a thermodynamic model. The effects of VCS location on heat ingress to the liquid hydrogen transport tank and insulation temperature distribution were investigated and the optimal location of the VCS in the insulation was identified. Research outcomes finally suggest two optimal design schemes: (1) when the thickness of the insulation layer is determined Self-evaporation Vapor-Cooled Shield (SVCS) and Forcedevaporation Vapor-Cooled Shield (FVCS) can reduce heat transfer by 47.84% and 85.86% respectively; (2) when the liquid hydrogen evaporation capacity is determined SVCS and FVCS can reduce the thickness of the insulation layer by 50% and 67.93% respectively.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Coordinated Operation of Multi-energy Microgrids Considering Green Hydrogen and Congestion Management via a Safe Policy Learning Approach
Aug 2025
Publication
Multi-energy microgrids (MEMGs) with green hydrogen have attracted significant research attention for their benefits such as energy efficiency improvement carbon emission reduction as well as line congestion alleviation. However the complexities of multi-energy networks coupled with diverse uncertainties may threaten MEMG’s operation. In this paper a data-driven methodology is proposed to achieve effective MEMG operation considering the green hydrogen technique and congestion management. First a detailed MEMG modelling approach is developed coupling with electricity green hydrogen natural gas and thermal flows. Different from conventional MEMG models hydrogen-enriched compressed natural gas (HCNG) models and weatherdependent power flow are thoroughly considered in the modelling. Meanwhile the power flow congestion problem is also formulated in the MEMG operation which could be mitigated through HCNG integration. Based on the proposed MEMG model a reinforcement learning-based method is designed to obtain the optimal solution of MEMG operation. To ensure the solution’s safety a soft actor-critic (SAC) algorithm is applied and modified by leveraging the Lagrangian relaxation and safety layer scheme. In the end case studies are conducted and presented to validate the effectiveness of the proposed method.
Policy Supports for the Deployment of Solar Fuels: Islands as Test-beds for a Rapid Green Transition
May 2023
Publication
Coastal areas particularly islands are especially vulnerable to climate change due to their geographic and climate conditions. Reaching decarbonisation targets is a long process which will require radical changes and ‘out of the box’ thinking. In this context islands have become laboratories for the green transition by providing spaces for exploring possibilities and alternatives. Here we explore how hydrogen (H2) energy technologies can be a critical ally for island production of renewable electricity in part by providing a storage solution. However given the abundance of sunlight on many islands we also note the huge potential for a more profound engagement between renewables and hydrogen technologies via the co-generation of ‘green hydrogen’ using solar fuels technology. Solar hydrogen is a clean energy carrier produced by the direct or indirect use of solar irradiation for water-splitting processes such as photovoltaic systems coupled with electrolysers and photoelectrochemical cells. While this technology is fast emerging we question to what extent sufficient policy support exists for such initiatives and how they could be scaled up. We report on a case study of a pilot H2 plant in the Canary Islands and we offer recommendations on early-stage policy implications for hydrogen and other solar fuels in an island setting. The paper draws on the literature on islands as policy laboratories and the multi-level perspective on energy transitions. We argue that particular attention needs to be given to discrete issues such as research and planning and better synchronising between emerging local technology niches the various regulatory regimes for energy together with global trends.
Design and Evaluation of Operational Scheduling Approaches for HCNG Penetrated Integrated Energy System
Jul 2019
Publication
This paper proposes and assesses three different control approaches for the hydrocarbon natural gas (HCNG) penetrated integrated energy system (IES). The three control approaches adopt mixed integer linear programing conditional value at risk (CVaR) and robust optimization (RO) respectively aiming to mitigate the renewable generation uncertainties. By comparing the performance and efficiency the most appropriate control approach for the HCNG penetrated IES is identified. The numerical analysis is conducted to evaluate the three control approaches in different scenarios where the uncertainty level of renewable energy (within the HCNG penetrated IES) varies. The numerical results show that the CVaR-based approach outperforms the other two approaches when renewable uncertainty is high (approximately 30%). In terms of the cost to satisfy the energy demand the operational cost of the CVaR-based method is 8.29% lower than the RO one while the RO-based approach has a better performance when the renewable uncertainty is medium (approximately 5%) and it is operational is 0.62% lower than that of the CVaR model. In both evaluation cases mixed integer linear programing approach cannot meet the energy demand. This paper also compares the operational performance of the IES with and without HCNG. It is shown that the IES with HCNG can significantly improve the capability to accommodate renewable energy with low upgrading cost.
Modelling of Refuelling though the Entire Equipment of HRS: Use of Dynamic Mesh to Simulate Heat and Mass Transfer during Throttling at PCV
Sep 2024
Publication
Hydrogen refuelling is imperative for the emerging market of hydrogen vehicles. The pressure control valve (PCV) at the hydrogen refuelling station (HRS) plays a major role in ensuring that hydrogen delivery to the vehicle follows the prescribed refuelling protocols. A three-dimensional CFD model with a detailed resolution of PCV motion affecting heat and mass transfer is developed. The PCV motion controlling the mass flow rate is simulated using dynamic mesh. The CFD model captures refuelling from high-pressure tanks through entire HRS equipment to onboard tanks capturing pressure and temperature changes upstream and downstream of the PCV. The Joule-Thomson effect resulting in a hydrogen temperature increase at PCV is captured using the NIST real gas database. The model is validated against Test No.1 of NREL on refuelling through the entire equipment of HRS. The CFD model can be used to design HRS equipment parameters including PCV and develop efficient refuelling protocols.
Notes on the Development of the Hydrogen Supplement to IGEM/TD/1
Mar 2021
Publication
The supplement to the standard IGEM/TD/1 gives the additional requirements and qualifications for pipelines transporting hydrogen and hydrogen/natural gas blends (NG/H blends) at pressures at MOP exceeding 7 barg.<br/>Where there is no numbered section in the supplement corresponding to a section in the main document the requirements of the main document apply in full. Where there is a corresponding numbered section in the main document the numbered section in the supplement is either in addition to or replaces the section in the main document.<br/>Repurposing in accordance with the recommendations of this supplement should only be considered for pipelines which have been operated in accordance with the recommendations of the main document for at least 5 years and which have been audited in accordance with the recommendations of clause 12.4.2.1. This requirement is specified so that compliance with the operational and maintenance requirements specified in the main standard is confirmed through records. With respect to pipelines this includes the requirements for MOP affirmation. This requirement is more onerous than the requirement is ASME B31.12 Clause GR-5.2.1[1] which requires that assessment for conversion to hydrogen service shall be assessed at the time of conversion and reassessment of integrity shall be done within 5 years of conversion.<br/>NG/H blends containing more than 10% mol hydrogen are considered to be equivalent to 100 mol.% hydrogen with respect to limits on design stresses and the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials (see clause S5.8). It is noted that there is no evidence to confirm that blends containing up to 10 mol.% hydrogen do not cause material degradation but it is considered that the risk is low.<br/>With respect to industry experience with towns gas this product contained 10-20 % carbon monoxide which has been identified as inhibiting the effect of hydrogen on fracture toughness and fatigue crack growth. Therefore the historical experience with town gas is not relevant.
Experimental Investigation for Enhancing the Performance of Hydrogen Direct Injection Comparied to Gasoline in Spark Ignition Engine through Valve Timings and Overlap Optimization
Jun 2024
Publication
Recent advances in hydrogen internal combustion technologies highlight its potential for high efficiency and zero carbon emissions offering a promising alternative to fossil fuels. This paper investigates the effects of valve timings and overlaps on engine performance combustion characteristics and emissions in a boosted directinjection single-cylinder spark ignition engine using both gasoline and hydrogen. Optimized direct hydrogen injection effectively eliminates backfires and hydrogen slip during positive cam overlaps significantly reducing the pumping mean effective pressure. The study’s primary finding demonstrates the potential of hydrogen to operate as a direct substitute for a gasoline engine without necessitating changes to the cam profiles at the high load operation. Furthermore the study demonstrates that hydrogen leads to much higher thermal efficiencies across a wider range of engine loads when operated at a lean air-to-fuel ratio of 2.75. The engine operating with such a lean-burn hydrogen mixture keeps the engine-out NOx emission at ultra-low levels. Compared to gasoline hydrogen exhibits greater stability and a reduced reliance on camshaft timing during engine operation.
Techno-economic Analysis with Electrolyser Degradation Modelling in Green Hydrogen Production Scenarios
Feb 2025
Publication
A pivotal ambition to aid global decarbonisation efforts is green electrolytic hydrogen produced with renewable energy. Prolonged operation of water electrolysers induces cell degradation decreasing production efficiency and gas yield over the lifespan of the electrolyser stack. Considerations for degradation modelling is seen to a varying extent in previous literature. This work shows the effects of including degradation modelling within existing system scenarios and new ones to demonstrate the impact of inclusion on key techno-economic parameters. A fundamental Anion Exchange Membrane electrolyser model is constructed validated and utilised into a broader hydrogen and oxygen co-production system powered by solar-PV. A second scenario tests the compatibility of the no-degradation trend with reference material and then investigates the effects of including degradation modelling showing only a 1.47% increase in levelised cost of hydrogen (LCOH). Subsequent scenarios include determining that byproduct oxygen utilisation becomes beneficial for a scenario with rated electrolyser power of above 35 MW and the observations related to stack replacement strategies are discussed. Under hypothetically higher degradation rates detriment to gas yield and LCOH is around 5% for average operational degradation rates of 15–20 μV/hr and around 10% for 30–40 μV/hr compared to around 2% for the model baseline average rate of 5.23–5.26 μV/hr.
Performance Analysis of Silica Fluidized Bed Membrane Reactor for Hydrogen Production as a Green Process Using CFD Modelling
Aug 2025
Publication
The main aim of this study deals with the potential evaluation of a fluidized bed membrane reactor (FBMR) for hydrogen production as a clean fuel carrier via methanol steam reforming reaction comparing its performance with other reactors including packed bed membrane reactors (PBMR) fluidized bed reactors (FBR) and packed bed reactors (PBR). For this purpose a two-dimensional axisymmetric numerical model was developed using computational fluid dynamics (CFD) to simulate the reactor performances. Model accuracy was validated by comparing the simulation results for PBMR and PB with experimental data showing an accurate agreement within them. The model was then employed to examine the effects of key operating parameters including reaction temperature pressure steam-to-methanol molar ratio and gas volumetric space velocity on reactor performance in terms of methanol conversion hydrogen yield hydrogen recovery and selectivity. At 573 K 1 bar a feed molar ratio of 3/1 and a space velocity of 9000 h−1 the PBMR reached the best results in terms of methanol conversion hydrogen yield hydrogen recovery and hydrogen selectivity such as 67.6% 69.5% 14.9% and 97.1% respectively. On the other hand the FBMR demonstrated superior performance with respect to the latter reaching a methanol conversion of 98.3% hydrogen yield of 95.8% hydrogen recovery of 74.5% and hydrogen selectivity of 97.4%. These findings indicate that the FBMR offers significantly better performance than the other reactor types studied in this work making it a highly efficient method for hydrogen production through methanol steam reforming and a promising pathway for clean energy generation.
Integrative Assessment of Hydrogen-natural Gas Mixtures in Energy Grids: An Overview of the H2SAREA Project Experience
Jan 2025
Publication
This paper presents the results of the H2SAREA project which focuses on integrating hydrogen (H2) into the existing natural gas (NG) distribution network with blends of up to 20%. A key component of the project was the H2Loop testing platform built using ex-service materials and components to realistically assess the impact of hydrogen on current systems and components. The investigation covered several critical areas including gas injection and blending network capacity leak detection gas pressure regulation station (GPRS) performance valve and meter functionality materials compatibility permeation testing and gas deblending. Results show the feasibility of safely injecting up to 20% hydrogen into the existing system offering valuable insights to guide the transition of gas distribution networks toward a hydrogen-based energy future.
Cost-effect Scheduling of a Hydrogen-based Iron and Steel Plant Powered by a Grid-assisted Renewable Energy System
Feb 2025
Publication
The iron and steel industry contributes approximately 25% of global industrial CO2 emissions necessitating substantial decarbonisation efforts. Hydrogen-based iron and steel plants (HISPs) which utilise hydrogen-based direct reduction of iron ore followed by electric arc furnace steelmaking have attracted substantial research interest. However commercialisation of HISPs faces economic feasibility issues due to the high electricity costs of hydrogen production. To improve economic feasibility HISPs are jointly powered by local renewable generators and bulk power grid i.e. by a grid-assisted renewable energy system. Given the variability of renewable energy generation and time-dependent electricity prices flexible scheduling of HISP production tasks is essential to reduce electricity costs. However cost-effectively scheduling of HISP production tasks is non-trivial as it is subject to critical operational constraints arising from the tight coupling and distinct operational characteristics of HISPs sub-processes. To address the above issues this paper proposes an integrated resource-task network (RTN) to elaborately model the critical operational constraints such as resource balance task execution and transfer time. More specifically each sub-process is first modelled as an individual RTN which is then seamlessly integrated through boundary dependency constraints. By embedding the formulated operational constraints into optimisation a cost-effective scheduling model is developed for HISPs powered by the grid-assisted renewable energy system. Numerical results demonstrate that compared to conventional scheduling approaches the proposed method significantly reduces total operational costs across various production scales.
Roadmap for the Decarbonization of Domestic Passenger Ferries in the Republic of Korea
Feb 2025
Publication
This study examines the steps to lower air emissions in South Korea’s domestic shipping sector. It highlights the significant contributions of the sector to air pollution and greenhouse gas emissions emphasizing its impact on environmental sustainability and climate change mitigation. By looking at the current shipping energy use and emissions the research identifies ways to reduce the environmental impact of domestic shipping. Data was collected from domestic ferry routes and the fuel use was reviewed with respect to existing global technologies for reducing emissions. The results show that operational changes and current energy-efficient technologies can quickly cut emissions. Furthermore a long-term plan is suggested involving the development of new ship designs and the use of net-zero fuels like biofuels methanol hydrogen and ammonia. These efforts aim to meet climate goals targeting a 40% reduction in greenhouse emissions by 2030 and a 70% reduction by 2050 making South Korea’s shipping industry more sustainable and resilient.
Performance, Emissions, and Economic Analyses of Hydrogen Fuel Cell Vehicles
May 2024
Publication
The transport sector is considered to be a significant contributor to greenhouse gas emissions as this sector emits about one-fourth of global CO2 emissions. Transport emissions contribute toward climate change and have been linked to adverse health impacts. Therefore alternative and sustainable transport options are urgent for decarbonising the transport sector and mitigating those issues. Hydrogen fuel cell vehicles are a potential alternative to conventional vehicles which can play a significant role in decarbonising the future transport sector. This study critically analyses the recent works related to hydrogen fuel cell integration into vehicles modelling and experimental investigations of hydrogen fuel cell vehicles with various powertrains. This study also reviews and analyses the performance energy management strategies lifecycle cost and emissions of fuel cell vehicles. Previous literature suggested that the fuel consumption and well-to-wheel greenhouse gas emissions of hydrogen fuel cell-powered vehicles are significantly lower than that of conventional internal combustion vehicles. Hydrogen fuel cell vehicles consume about 29–66 % less energy and cause approximately 31–80 % less greenhouse gas emissions than conventional vehicles. Despite this the lifecycle cost of hydrogen fuel cell vehicles has been estimated to be 1.2–12.1 times higher than conventional vehicles. Even though there has been recent progress in energy management in hydrogen fuel cell electric vehicles there are a number of technical and economic challenges to the commercialisation of hydrogen fuel cell vehicles. This study presents current knowledge gaps and details future research directions in relation to the research advancement of hydrogen fuel cell vehicles.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Inspection of Coated Hydrogen Transportation Pipelines
Sep 2023
Publication
The growing need for hydrogen indicates that there is likely to be a demand for transporting hydrogen. Hydrogen pipelines are an economical option but the issue of hydrogen damage to pipeline steels needs to be studied and investigated. So far limited research has been dedicated to determining how the choice of inspection method for pipeline integrity management changes depending on the presence of a coating. Thus this review aims to evaluate the effectiveness of inspection methods specifically for detecting the defects formed uniquely in coated hydrogen pipelines. The discussion will begin with a background of hydrogen pipelines and the common defects seen in these pipelines. This will also include topics such as blended hydrogen-natural gas pipelines. After which the focus will shift to pipeline integrity management methods and the effectiveness of current inspection methods in the context of standards such as ASME B31.12 and BS 7910. The discussion will conclude with a summary of newly available inspection methods and future research directions.
A Systematic Comparison of the Energy and Emissions Intensity of Hydrogen Production Pathways in the United Kingdom
Sep 2024
Publication
Meeting climate targets requires profound transformations in the energy system. Most energy uses should be electrified but where this is not feasible hydrogen can be part of the solution. However 98% of global hydrogen production involves greenhouse gas emissions with an average of 12 kg CO2e/kg H2. Therefore new hydrogen production pathways are needed in order to make hydrogen production compatible with climate targets. In this work we fill this gap by systematically comparing the energy and emissions intensity of 173 hydrogen production pathways suitable for the UK. Scenarios include onshore and offshore pathways and the use of repurposed infrastructure. Unlike fossil-fuel based pathways the results show that electrolytic hydrogen powered by fixed offshore wind could align with proposed emissions standards either onshore or offshore. However the embodied and fugitive emissions are important to consider for electrolytic pathways as they result in 10–50% of the total emissions intensity.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
Prediction of Transient Hydrogen Flow of Proton Exchange Membrane Electrolyzer Using Artificial Neural Network
Aug 2023
Publication
A proton exchange membrane (PEM) electrolyzer is fed with water and powered by electric power to electrochemically produce hydrogen at low operating temperatures and emits oxygen as a by-product. Due to the complex nature of the performance of PEM electrolyzers the application of an artificial neural network (ANN) is capable of predicting its dynamic characteristics. A handful of studies have examined and explored ANN in the prediction of the transient characteristics of PEM electrolyzers. This research explores the estimation of the transient behavior of a PEM electrolyzer stack under various operational conditions. Input variables in this study include stack current oxygen pressure hydrogen pressure and stack temperature. ANN models using three differing learning algorithms and time delay structures estimated the hydrogen mass flow rate which had transient behavior from 0 to 1 kg/h and forecasted better with a higher count (>5) of hidden layer neurons. A coefficient of determination of 0.84 and a mean squared error of less than 0.005 were recorded. The best-fitting model to predict the dynamic behavior of the hydrogen mass flow rate was an ANN model using the Levenberg–Marquardt algorithm with 40 neurons that had a coefficient of determination of 0.90 and a mean squared error of 0.00337. In conclusion optimally fit models of hydrogen flow from PEM electrolyzers utilizing artificial neural networks were developed. Such models are useful in establishing an agile flow control system for the electrolyzer system to help decrease power consumption and increase efficiency in hydrogen generation.
Thermodynamic and Transport Properties of Hydrogen Containing Streams
Jul 2020
Publication
he use of hydrogen (H2) as a substitute for fossil fuel which accounts for the majority of the world’s energy is environmentally the most benign option for the reduction of CO2 emissions. his will require gigawatt-scale storage systems and as such H2 storage in porous rocks in the subsurface will be required. ccurate estimation of the thermodynamic and transport properties of H2 mixed with other gases found within the storage system is therefore essential for the efcient design for the processes involved in this system chain. In this study we used the established and regarded GERG-2008 Equation of State (EoS) and SuperRPP model to predict the thermo-physical properties of H2 mixed with CH4 N2 CO2 and a typical natural gas from the North-Sea. he data covers a wide range of mole fraction of H2 (10–90 Mole%) pressures (0.01–100MPa) and temperatures (200–500K) with high accuracy and precision. Moreover to increase ease of access to the data a user-friendly software (H2Themobank) is developed and made publicly available.
Conceptual Design-optimisation of a Subsonic Hydrogen-powered Long-range Blended-wing-body Aircraft
Nov 2024
Publication
The adoption of liquid hydrogen (LH2) holds promise for decarbonising long-range aviation. LH2 aircraft could weigh less than Jet-A aircraft thereby reducing the thrust requirement. However the lower volumetric energy density of LH2 can adversely impact the aerodynamic performance and energy consumption of tube-wing aircraft. In a first this work conducts an energy performance modelling of a futuristic (2030+) LH2 blendedwing-body (BWB) aircraft (301 passengers and 13890 km) using conceptual aircraft design-optimisation approach employing weight-sizing methods while considering the realistic gravimetric and volumetric energy density effects of LH2 on aircraft design and the resulting reduction in aircraft thrust requirement. This study shows that at the design point the futuristic LH2 BWB aircraft reduces the specific energy consumption (SEC MJ/ tonne-km) by 51.7–53.5% and 7.3–10.8% compared to (Jet-A) Boeing 777-200LR and Jet-A BWB respectively. At the off-design points this study shows that by increasing the load factor for a given range and/or increasing range for all load factor cases the SEC (or energy efficiency) of this LH2 BWB concept improves. The results of this work will inform future studies on use-phase emissions and contrails modelling LH2 aircraft operations for contrail reduction estimation of operating costs and lifecycle climate impacts.
Hydrogen Strategy Update to the Market: December 2024
Dec 2024
Publication
Low carbon hydrogen is essential to achieve the Government’s Clean Energy Superpower and Growth Missions. It will be a crucial enabler of a low carbon and renewables-based energy system and will help to deliver new clean energy industries which can support good jobs in our industrial heartlands and coastal communities. Hydrogen presents significant growth and economic opportunities across the UK by enhancing our energy security providing flexible cleaner energy for our power system and helping to decarbonise vital UK industries. Hydrogen has a critical role in helping to achieve our Clean Energy Superpower Mission. It can provide flexible low carbon power generation meaning we can use hydrogen to produce electricity during extended periods of low renewable output. Hydrogen can also provide interseasonal energy storage through conversion of electricity into hydrogen and then back into electricity at times of need using a combination of hydrogen production storage and hydrogen to power. To advance our Clean Energy and Growth Missions hydrogen also has a unique role in transitioning crucial UK industries away from oil and gas and towards a clean homegrown source of fuel. Hydrogen can decarbonise hard-to-abate sectors like chemicals and heavy transport complementing our wider electrification efforts and accelerating our progress to net zero. Using our strong domestic expertise and favourable geology geography and infrastructure backing UK hydrogen can unlock significant economic opportunities and new low carbon jobs of the future. Government has an ambitious range of policies in place to incentivise and support industry to invest in low carbon hydrogen. The recent Hydrogen Skills Workforce Assessment an industry-led study undertaken by the Hydrogen Skills Alliance estimated that the UK hydrogen economy could support 29000 direct jobs and 64500 indirect jobs by 2030. Since establishing in Summer 2024 this Government has already made significant progress in delivering the UK hydrogen economy. This includes confirming support for the 11 successful Hydrogen Allocation Round 1 projects announcing up to £21.7 billion of available funding to launch the UK’s new carbon capture utilisation and storage industry and publishing our hydrogen to power consultation response with an aim to establish a new hydrogen to power business model. We have also launched three new bodies – the National Energy System Operator Great British Energy and the National Wealth Fund – which will help to deliver a world-class energy system including for low carbon hydrogen. This December 2024 Hydrogen Strategy Update to the Market sets out the key milestones achieved by the Department for Energy Security and Net Zero in 2024 to deliver the hydrogen economy and an ambitious forward look at our next steps and upcoming opportunities. To achieve net zero and create a thriving and resilient energy landscape we are already working at considerable pace to deliver a world-leading UK hydrogen sector.
Modelling of Hydrogen Blending into the UK Natural Gas Network Driven by a Solid Oxide Fuel Cell for Electricity and District Heating System
Aug 2023
Publication
A thorough investigation of the thermodynamics and economic performance of a cogeneration system based on solid oxide fuel cells that provides heat and power to homes has been carried out in this study. Additionally different percentages of green hydrogen have been blended with natural gas to examine the techno-economic performance of the suggested cogeneration system. The energy and exergy efficiency of the system rises steadily as the hydrogen blending percentage rises from 0% to 20% then slightly drops at 50% H2 blending and then rises steadily again until 100% H2 supply. The system’s minimal levelised cost of energy was calculated to be 4.64 £/kWh for 100% H2. Artificial Neural Network (ANN) model was also used to further train a sizable quantity of data that was received from the simulation model. Heat power and levelised cost of energy estimates using the ANN model were found to be extremely accurate with coefficients of determination of 0.99918 0.99999 and 0.99888 respectively.
The Bio Steel Cycle: 7 Steps to Net-Zero CO2 Emissions Steel Production
Nov 2022
Publication
CO2 emissions have been identified as the main driver for climate change with devastating consequences for the global natural environment. The steel industry is responsible for ~7–11% of global CO2 emissions due to high fossil-fuel and energy consumption. The onus is therefore on industry to remedy the environmental damage caused and to decarbonise production. This desk research report explores the Bio Steel Cycle (BiSC) and proposes a seven-step-strategy to overcome the emission challenges within the iron and steel industry. The true levels of combined CO2 emissions from the blast-furnace and basic-oxygen-furnace operation at 4.61 t of CO2 emissions/t of steel produced are calculated in detail. The BiSC includes CO2 capture implementing renewable energy sources (solar wind green H2 ) and plantation for CO2 absorption and provision of biomass. The 7-step-implementation-strategy starts with replacing energy sources develops over process improvement and installation of flue gas carbon capture and concludes with utilising biogas-derived hydrogen as a product from anaerobic digestion of the grown agrifood in the cycle. In the past CO2 emissions have been seemingly underreported and underestimated in the heavy industries and implementing the BiSC using the provided seven-steps-strategy will potentially result in achieving net-zero CO2 emissions in steel manufacturing by 2030.
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
Review of Common Hydrogen Storage Tanks and Current Manufacturing Methods for Aluminium Tank Liners
Aug 2023
Publication
With the growing concern about climate issues and the urgent need to reduce carbon emissions hydrogen has attracted increasing attention as a clean and renewable vehicle energy source. However the storage of flammable hydrogen gas is a major challenge and it restricts the commercialisation of fuel cell electric vehicles (FCEVs). This paper provides a comprehensive review of common on-board hydrogen storage tanks possible failure mechanisms and typical manufacturing methods as well as their future development trends. There are generally five types of hydrogen tanks according to different materials used with only Type III (metallic liner wrapped with composite) and Type IV (polymeric liner wrapped with composite) tanks being used for vehicles. The metallic liner of Type III tank is generally made from aluminium alloys and the associated common manufacturing methods such as roll forming deep drawing and ironing and backward extrusion are reviewed and compared. In particular backward extrusion is a method that can produce near net-shape cylindrical liners without the requirement of welding and its tool designs and the microstructural evolution of aluminium alloys during the process are analysed. With the improvement and innovation on extrusion tool designs the extrusion force which is one of the most demanding issues in the process can be reduced significantly. As a result larger liners can be produced using currently available equipment at a lower cost.
Geomechanics of Hydrogen Storage in a Depleted Gas Field
Feb 2024
Publication
We perform a simulation study of hydrogen injection in a depleted gas reservoir to assess the geomechanical impact of hydrogen storage relative to other commonly injected gases (methane CO2). A key finding is that the differences in hydrogen density compressibility viscosity and thermal properties compared to the other gases result in significantly less thermal perturbation at reservoir level. The risks of fault reactivation and wellbore fractures due to thermally-induced stress changes are significantly lower when storing hydrogen compared to results observed in CO2 scenarios. This implies that hydrogen injection and production has a much smaller geomechanical footprint with benefits for operational safety. We also find that use of nitrogen cushion gas ensures efficient deliverability and phase separation in the reservoir. However in this study a large fraction of cushion gas was back-produced in each cycle demonstrating the need for further studies of the surface processing requirements and economic implications.
Investigation of the Suitability of Viper: Blast CFD Software for Hydrogen and Vapor Cloud Explosions
Sep 2023
Publication
Many simplified methods for estimating blast loads from a hydrogen or vapor cloud explosion are unable to take into account the accurate geometry of confining spaces obstacles or landscape that may significantly interact with the blast wave and influence the strength of blast loads. Computation fluid dynamics (CFD) software Viper::Blast which was originally developed for the simulation of the detonation of high explosives is able to quickly and easily model geometry for blast analyses however its use for vapor cloud explosions and deflagrations is not well established. This paper describes the results of an investigation into the suitability of Viper::Blast for use in modeling hydrogen deflagration and detonation events from various experiments in literature. Detonation events have been captured with a high degree of detail and relatively little uncertainty in inputs while deflagration events are significantly more complex. An approach is proposed that may allow for a reasonable bounding of uncertainty potentially leading to an approach to CFD-based Monte Carlo analyses that are able to address a problem’s true geometry while remaining reasonably pragmatic in terms of run-time and computational investment. This will allow further exploration of practical CFD application to inform hydrogen safety in the engineering design assessment and management of energy mobility and transport systems infrastructure and operations.
Modelling Flexibility Requirements in Deep Decarbonisation Scenarios: The Role of Conventional Flexibility and Sector Coupling Options in the European 2050 Energy System
Feb 2024
Publication
Russia’s invasion of Ukraine has reaffirmed the importance of scaling up renewable energy to decarbonise Europe’s economy while rapidly reducing its exposure to foreign fossil fuel suppliers. Therefore the question of sources of flexibility to support a fully decarbonised European energy system is becoming even more critical in light of a renewable-dominated energy system. We developed and used a Pan-European energy system model to systematically assess and quantify sources of flexibility to meet deep decarbonisation targets. The electricity supply sector and electricity-based end-use technologies are crucial in achieving deep decarbonisation. Other low-carbon energy sources like biomethane hydrogen synthetic e-fuels and bioenergy with carbon capture and storage will also play a role. To support a fully decarbonised European energy system by 2050 both temporal and spatial flexibility will be needed. Spatial flexibility achieved through investments in national electricity networks and cross-border interconnections is crucial to support the aggressive roll-out of variable renewable energy sources. Cross-border trade in electricity is expected to increase and in deep decarbonisation scenarios the electricity transmission capacity will be larger than that of natural gas. Hydrogen storage and green hydrogen production will play a key role in providing traditional inter-seasonal flexibility and intraday flexibility will be provided by a combination of electrical energy storage hydrogen-based storage solutions (e.g. liquid H2 and pressurised storage) and hybrid heat pumps. Hydrogen networks and storage will become more critical as we move towards the highest decarbonisation scenario. Still the need for natural gas networks and storage will decrease substantially.
Recent Advances in Combustion Science Related to Hydrogen Safety
Dec 2024
Publication
Hydrogen is a key pillar in the global Net Zero strategy. Rapid scaling up of hydrogen production transport distribution and utilization is expected. This entails that hydrogen which is traditionally an industrial gas will come into proximity of populated urban areas and in some situations handled by the untrained public. To realize all their benefits hydrogen and its technologies must be safely developed and deployed. The specific properties of hydrogen involving wide flammability range low ignition energy and fast flame speed implies that any accidental release of hydrogen can be easily ignited. Comparing with conventional fuels combustion systems fueled by hydrogen are also more prone to flame instability and abnormal combustion. This paper aims to provide a comprehensive review about combustion research related to hydrogen safety. It starts with a brief introduction which includes some overview about risk analysis codes and standards. The core content covers ignition fire explosions and deflagration to detonation transition (DDT). Considering that DDT leads to detonation and that detonation may also be induced directly under special circumstances the subject of detonation is also included for completeness. The review covers laboratory medium and large-scale experiments as well as theoretical analysis and numerical simulation results. While highlights are provided at the end of each section the paper closes with some concluding remarks highlighting the achievements and key knowledge gaps.
Techno-economic Assessments of Electrolyzers for Hydrogen Production
Jul 2025
Publication
This review provides a comprehensive techno-economic assessment of four leading electrolyzer technologies such as the Alkaline Water Electrolyzers (AWE) Proton Exchange Membrane (PEM) electrolyzers Solid Oxide Electrolyzer Cells (SOEC) and Anion Exchange Membrane (AEM) systems for green hydrogen production. Drawing on more than 40 peer-reviewed studies and real-world deployment scenarios the analysis compares performance indicators such as levelised cost of hydrogen (LCOH) capital expenditure (CAPEX) operating expenditure (OPEX) efficiency stack durability and water treatment requirements. AWE is identified as the most cost-effective option for baseload power contexts while PEM offers superior dynamic response and gas purity at a higher cost. SOECs despite their high theoretical efficiency remain limited by thermal cycling and material degradation. AEMs though less mature hold promise for low-cost decentralized hydrogen production. Cost of electricity is more than 64 % of LCOH in all technologies so it is important to match electrolyzers with stable or hybrid renewable energy resources such as geothermal wind-solar or Concentrated Solar Power (CSP). Optimisation methods such as genetic algorithms and GIS-based siting also enhance system performance and economic value. The report also considers regional and policy dimensions of deployment underlining the need for site-specific solutions in the context of local energy portfolios water supply and infrastructure readiness. Recommendations are provided for advancing membrane longevity integrating smart control systems and optimizing techno-economic assessment models. This study is a policy decision-making tool for policymakers investors and researchers who are interested in accelerating the global scale-up of green hydrogen using contextrelevant and economically viable electrolyzer technologies.
Underground Hydrogen Storage: A UK Perspective
Oct 2023
Publication
Hydrogen is anticipated to play a key role in global decarbonization and within the UK’s pathway to achieving net zero targets. However as the production of hydrogen expands in line with government strategies a key concern is where this hydrogen will be stored for later use. This study assesses the different large-scale storage options in geological structures available to the UK and addresses the surrounding uncertainties moving towards establishing a hydrogen economy. Currently salt caverns look to be the most favourable option considering their proven experience in the storage of hydrogen especially high purity hydrogen natural sealing properties low cushion gas requirement and high charge and discharge rates. However their geographical availability within the UK can act as a major constraint. Additionally a substantial increase in the number of new caverns will be necessary to meet the UK’s storage demand. Salt caverns have greater applicability as a good short-term storage solution however storage in porous media such as depleted hydrocarbon reservoirs and saline aquifers can be seen as a long-term and strategic solution to meet energy demand and achieve energy security. Porous media storage solutions are estimated to have capacities which far exceed projected storage demand. Depleted fields have generally been well explored prior to hydrocarbon extraction. Although many saline aquifers are available offshore UK geological characterizations are still required to identify the right candidates for hydrogen storage. Currently the advantages of depleted gas reservoirs over saline aquifers make them the favoured option after salt caverns.
No more items...