Greece
Sizing, Optimization, and Financial Analysis of a Green Hydrogen Refueling Station in Remote Regions
Jan 2022
Publication
Hydrogen (H2 ) can be a promising energy carrier for decarbonizing the economy and especially the transport sector which is considered as one of the sectors with high carbon emissions due to the extensive use of fossil fuels. H2 is a nontoxic energy carrier that could replace fossil fuels. Fuel Cell Electric Vehicles (FCEVs) can decrease air pollution and reduce greenhouse gases when H2 is produced from Renewable Energy Sources (RES) and at the same time being accessible through a widespread network of Hydrogen Refueling Stations (HRSs). In this study both the sizing of the equipment and financial analysis were performed for an HRS supplied with H2 from the excess electrical energy of a 10 MW wind park. The aim was to determine the optimum configuration of an HRS under the investigation of six different scenarios with various numbers of FCEVs and monthly demands as well as ascertaining the economic viability of each examined scenario. The effect of the number of vehicles that the installation can refuel to balance the initial cost of the investment and the fuel cost in remote regions was investigated. The results showed that a wind-powered HRS could be a viable solution when sized appropriately and H2 can be used as a storage mean for the rejected wind energy. It was concluded that scenarios with low FCEVs penetration have low economic performance since the payback period presented significantly high values.
CFD Evaluation Against a Large Scale Unconfined Hydrogen Deflagration
Oct 2015
Publication
In the present work CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen–air mixture occupies a 20 m hemisphere. Two combustion models are compared and evaluated against the experiment: the Eddy Dissipation Concept model and a multi-physics combustion model which calculates turbulent burning velocity based on Yakhot's equation. Sensitivity analysis on the value of fractal dimension of the latter model is performed. A semi-empirical relation which estimates the fractal dimension is also tested. The effect of the turbulence model on the results is examined. LES approach and k-ε models are used. The multi-physics combustion model with constant fractal dimension value equal to 2.3 using the RNG LES turbulence model achieves the best agreement with the experiment.
Comparison of Convective Schemes in Hydrogen Impinging Jet CFD Simulation
Oct 2015
Publication
Hydrogen impinging jets can be formed in the case of an accidental release indoors or outdoors. The CFD simulation of hydrogen impinging jets suffers from numerical errors resulting in a non-physical velocity and hydrogen concentration field with a butterfly like structure. In order to minimize the numerical errors and to avoid the butterfly effect high order schemes need to be used. The aim of this work is to give best practices guidelines for hydrogen impinging jet simulations. A number of different numerical schemes is evaluated. The number of cells which discretize the source is also examined.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
CFD Modeling for Helium Releases in a Private Garage Without Forced Ventilation.
Sep 2005
Publication
In the course towards a safe future hydrogen based society one of the tasks to be considered is the investigation of the conditions under which the use or storage of hydrogen systems inside buildings becomes too dangerous to be accepted. One of the relevant scenarios which is expected to have a relatively high risk is a slow (and long lasting) hydrogen release from a vehicle stored in a closed private garage without any forced ventilation i.e. only with natural ventilation. This scenario has been earlier investigated experimentally (by M. Swain) using He (helium) to simulate the hydrogen behavior. In the present work the CFD code ADREA-HF is used to simulate three of the abovementioned experiments using the standard k- turbulence model. For each case modeled the predicted concentration (by vol.) time series are compared against the experimental at the given sensor locations. In addition the structure of the flow is investigated by presenting the helium concentration field.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
Indoor Use of Hydrogen, Knowledge Gaps and Priorities for the Improvement of Current Standards on Hydrogen, a Presentation of HyIndoor European Project
Sep 2013
Publication
To develop safety strategies for the use of hydrogen indoors the HyIndoor project is studying the behaviour of a hydrogen release deflagration or non-premixed flame in an enclosed space such as a fuel cell or its cabinet a room or a warehouse. The paper proposes a safety approach based on safety objectives that can be used to take various scenarios of hydrogen leaks into account for the safe design of Hydrogen and Fuel Cell (HFC) early market applications. Knowledge gaps on current engineering models and unknown influence of specific parameters were identified and prioritized thereby re-focusing the objectives of the project test campaign and numerical simulations. This approach will enable the improvement of the specification of openings and use of hydrogen sensors for enclosed spaces. The results will be disseminated to all stakeholders including hydrogen industry and RCS bodies.
Removing the Disrupting Wind Effect in Single Vented Enclosure Exposed to External Wind
Oct 2015
Publication
We are addressing hydrogen release into a single-vented facility with wind blowing onto the opposite side of the vent wall. Earlier work based on tests performed by HSL with wind (within the HyIndoor project) and comparative CFD simulations with and without wind ([1]within the H2FC project) has shown that the hydrogen concentrations inside the enclosure are increased compared to the case with no wind. This was attributed to the fact that wind is disrupting the passive ventilation. The present work is based on the GAMELAN tests (within the HyIndoor project) performed with one vent and no wind. For this enclosure simulations were performed with and without wind and reproduced the disrupting wind effect. In order to remove this effect and enhance the ventilation additional simulations were performed by considering different geometrical modifications near the vent. A simple geometrical layout around the vent is here proposed that leads to elimination of the disrupting wind effect. The analysis has been performed using the ADREA-HF code earlier validated both for the HSL and the GAMELAN tests. The current work was performed partly within HyIndoor project
Simulation of Hydrogen Dispersion under Cryogenic Release Conditions
Sep 2013
Publication
The use of hydrogen as fuel should always be accompanied by a safety assessment in case of an accidental release. To evaluate the potential hazards in a spill accident both experiments and simulations are performed. In the present work the CFD code ADREA-HF is used to simulate the liquefied hydrogen (LH2) spill experiments (test 5 6 7) conducted by the Health and Safety Laboratory (HSL). In these tests LH2 was spilled at a fixed rate of 60lt/min in several directions and for several durations. The factors that influence the vapor dispersion under cryogenic release conditions that were examined in this study are: the air humidity the wind direction and the slip effect of droplets formed by both the cryogenic liquid and the condensation of air humidity. The numerical results were compared with the experimental measurements and the effect of each abovementioned factors in the vapor dispersion is being discussed.
Development of a Model Evaluation Protocol for CFD Analysis of Hydrogen Safety Issues – The SUSANA Project
Oct 2015
Publication
The “SUpport to SAfety aNAlysis of Hydrogen and Fuel Cell Technologies (SUSANA)” project aims to support stakeholders using Computational Fluid Dynamics (CFD) for safety engineering design and assessment of FCH systems and infrastructure through the development of a model evaluation protocol. The protocol covers all aspects of safety assessment modelling using CFD from release through dispersion to combustion (self-ignition fires deflagrations detonations and Deflagration to Detonation Transition - DDT) and not only aims to enable users to evaluate models but to inform them of the state of the art and best practices in numerical modelling. The paper gives an overview of the SUSANA project including the main stages of the model evaluation protocol and some results from the on-going benchmarking activities.
CFD Benchmark Based on Experiments of Helium Dispersion in a 1m3 Enclosure–intercomparisons for Plumes
Sep 2013
Publication
In the context of the French DIMITRHY project ANR-08-PANH006 experiments have been carried out to measure helium injections in a cubic 1 m3 box - GAMELAN in a reproducible and quantitative manner. For the present work we limit ourselves to the unique configuration of a closed box with a small hole at its base to prevent overpressure. This case leads to enough difficulties of modelisations to deserve our attention. The box is initially filled with air and injections of helium through a tube of diameter 20 mm is operated. The box is instrumented with catharometres to measure the helium volume concentration within an accuracy better than 0.1%. We present the CFD (Fluent and CASTEM ANSYS-CFX and ADREA-HF) calculations results obtained by 5 different teams participating to the benchmark in the following situation: the case of a plume release of helium in a closed box (4NL/min). Parts of the CFD simulations were performed in the European co-funded project HyIndoor others were performed in the French ANR-08-PANH006 DimitrHy project.
LES Modelling Of Hydrogen Release and Accumulation Within a Non-Ventilated Ambient Pressure Garage Using The Adrea-HF CFD Code
Sep 2011
Publication
Computational Fluid Dynamics (CFD) has already proven to be a powerful tool to study the hydrogen dispersion and help in the hydrogen safety assessment. In this work the Large Eddy Simulation (LES) recently incorporated into the ADREA-HF CFD code is evaluated against the INERIS-6C experiment of hydrogen leakage in a supposed garage which provides detailed experimental measurements visualization of the flow and availability of previous CFD results from various institutions (HySafe SBEP-V3). The short-term evolution of the hydrogen concentrations in this confined space is examined and comparison with experimental data is provided along with comments about the ability of LES to capture the transient phenomena occurring during hydrogen dispersion. The influence of the value of the Smagorinsky constant on the resolved and on the unresolved turbulence is also presented. Furthermore the renormalization group (RNG) LES methodology is also tested and its behaviour in both highly-turbulent and less-turbulent parts of the flow is highlighted.
Modeling of Cryogenic Hydrogen jets
Oct 2015
Publication
In the present work the CFD modeling of cryogenic hydrogen releases in quiescent environment is presented. Two tests from the series of experiments performed in the ICESAFE facility at KIT (Karlsruhe Institute for Technology) have been simulated within the SUSANA project. During these tests hydrogen at temperature of 37K and 36K and at pressure of 19 and 29 bars respectively is released horizontally. The release at the nozzle is sonic and the modeling of the under-expanded jet was performed using two different approaches: the Ewan and Moodie approach and a modification of the Ewan and Moodie approach (modified Ewan and Moodie) that is introduced here and employs the momentum balance to calculate the velocity in the under-expanded jet. Using these approaches a pseudo-diameter is calculated and this diameter is set as source boundary in the simulation. Predictions are consistent with measurements for both experiments with both approaches. However the Ewan and Moodie approach seems to perform better.
Evaluation of the ADREA-HF CFD Code Against a Hydrogen Deflagration in a Tunnel
Sep 2013
Publication
In the present work the capabilities of the computational fluid dynamics (CFD) code ADREA-HF to predict deflagration in homogenous near stoichiometric hydrogen-air mixture in a model of a tunnel were tested. The tunnel is 78.5 m long. Hydrogen-air mixture is located in a 10 m long region in the middle of the tunnel. Two cases are studied: one with a complete empty tunnel and one with the presence of four vehicles near the center of the tunnel. The combustion model is based on the turbulent flame speed concept. The turbulent flame speed is a modification of Yakhot's equation in order to account for additional physical mechanisms. A sensitivity analysis for the parameter of the combustion model and for the mesh resolution was made for the empty tunnel case. The agreement between experimental and computational results concerning the value of the maximum pressure and the time it appears is satisfactory in both cases. The sensitivity analysis for the parameter of the combustion model showed that even small changes in it can have impact on the simulating results whereas the sensitivity analysis of the mesh resolution did not reveal any significant differences.
CFD Validation Against Large Scale Liquified Helium Release
Sep 2019
Publication
The ADREA-HF CFD code is validated against a large scale liquefied helium release experiment on flat ground performed by INERIS in the past. The predicted release and dispersion behavior is evaluated against the experimental using temperature time histories at sensors deployed at various distances and heights downstream the source. For the selected sensors the temperature predictions are generally in good agreement with the experimental with a tendency to under-predict temperature as the source is approached.
Assessment of the Impact of Material Selection on Aviation Sustainability, from a Circular Economy Perspective
Jan 2022
Publication
Climate change and global warming pose great sustainability challenges to the aviation industry. Alternatives to petroleum-based fuels (hydrogen natural gas etc.) have emerged as promising aviation fuels for future aircraft. The present study aimed to contribute to the understanding of the impact of material selection on aviation sustainability accounting for the type of fuel implemented and circular economy aspects. In this context a decision support tool was introduced to aid decisionmakers and relevant stakeholders to identify and select the best-performing materials that meet their defined needs and preferences expressed through a finite set of conflicting criteria associated with ecological economic and circularity aspects. The proposed tool integrates life-cycle-based metrics extending to both ecological and economical dimensions and a proposed circular economy indicator (CEI) focused on the material/component level and linked to its quality characteristics which also accounts for the quality degradation of materials which have undergone one or more recycling loops. The tool is coupled with a multi-criteria decision analysis (MCDA) methodology in order to reduce subjectivity when determining the importance of each of the considered criteria.
Status of the Pre-normative Research Project PRESLHY for the Safe Use of LH2
Sep 2019
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large scale transport and storage of hydrogen with higher densities and potentially better safety performance. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducts pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The work program consists of a preparatory phase where the state of the art before the project has been summarized and where the experimental planning was adjusted to the outcome of a research priorities workshop. The central part of the project consists of 3 phenomena oriented work packages addressing Release Ignition and Combustion with analytical approaches experiments and simulations. The results shall improve the general understanding of the behavior of LH2 in accidents and thereby enhance the state-of-the-art what will be reflected in appropriate recommendations for development or revision of specific international standards. The paper presents the status of the project at the middle of its terms.
CFD Simulations on Small Hydrogen Releases Inside a Ventilated Facility and Assessment of Ventilation Efficiency
Sep 2009
Publication
The use of stationary H2 and fuel cell systems is expected to increase rapidly in the future. In order to facilitate the safe introduction of this new technology the HyPer project funded by the EC developed a public harmonized Installation Permitting Guidance (IPG) document for the installation of small stationary H2 and fuel cell systems for use in various environments. The present contribution focuses on the safety assessment of a facility inside which a small H2 fuel cell system (4.8 kWe) is installed and operated. Dispersion experiments were designed and performed by partner UNIPI. The scenarios considered cover releases occurring inside the fuel cell at the valve of the inlet gas pipeline just before the pressure regulator which controls the H2 flow to the fuel cell system. H2 was expected to leak out of the fuel cell into the facility and then outdoors through the ventilation system. The initial leakage diameter was chosen based on the Italian technical guidelines for the enforcement of the ATEX European directive. Several natural ventilation configurations were examined. The performed tests were simulated by NCSRD using the ADREA-HF code. The numerical analysis took into account the full interior of the fuel cell in order to investigate for any potential accumulation effects. Comparisons between predicted and experimental H2 concentrations at 4 sensor locations inside the facility are reported. Finally an overall assessment of the ventilation efficiency was made based on the simulations and experiments.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Evaluation of an Improved Vented Deflagration CFD Model Against Nine Experimental Cases
Sep 2019
Publication
In the present work a newly developed CFD deflagration model incorporated into the ADREA-HF code is evaluated against hydrogen vented deflagrations experiments carried out by KIT and FM-Global in a medium (1 m3) and a real (63.7 m3) scale enclosure respectively. A square vent of 0.5 m2 and 5.4 m2 respectively is located in the center of one of side walls. In the case of the medium scale enclosure the 18% v/v homogeneous hydrogen-air mixture and back-wall ignition case is examined. In the case of the real scale enclosure the examined cases cover different homogeneous mixture concentrations (15% and 18% v/v) different ignition locations (back-wall and center) and different levels of initial turbulence. The CFD model accounts for flame instabilities that develop as the flame propagates inside the chamber and turbulence that mainly develops outside the vent. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model for the back-wall ignition cases. For the center ignition cases the model overestimates the maximum overpressure. The opening of the vent cover is identified as a possible reason for the overprediction. The analysis indicates that turbulence is the main factor which enhances external explosion strength causing the sudden pressure increase confirming previous findings.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
Results of the HySafe CFD Validation Benchmark SBEPV5
Sep 2007
Publication
The different CFD tools used by the NoE HySafe partners are applied to a series of integral complex Standard Benchmark Exercise Problems (SBEPs). All benchmarks cover complementarily physical phenomena addressing application relevant scenarios and refer to associated experiments with an explicit usage of hydrogen. After the blind benchmark SBEPV1 and SBEPV3 with subsonic vertical release in a large vessel and in a garage like facility SBEPV4 with a horizontal under-expanded jet release through a small nozzle SBEPV5 covers the scenario of a subsonic horizontal jet release in a multi-compartment room.<br/>As the associated dispersion experiments conducted by GEXCON Norsk Hydro and STATOIL were disclosed to the participants the whole benchmark was conducted openly. For the purpose of validation only the low momentum test D27 had to be simulated.<br/>The experimental rig consists of a 1.20 m x 0.20 m x 0.90 m (Z vertical) vessel divided into 12 compartments partially even physically by four baffle plates. In each compartment a hydrogen concentration sensor is mounted. There is one vent opening at the wall opposite the release location centrally located about 1 cm above floor with dimensions 0.10 m (Y) times 0.20 m (Z). The first upper baffle plate close to the release point is on a sensitive location as it lies nearly perfectly in the centre of the buoyant jet and thus separates the flow into the two compartments. The actual release was a nominally constant flow of 1.15 norm liters for 60 seconds. With a 12mm nozzle diameter this corresponds to an average exit velocity of 10.17 m/s.<br/>6 CFD packages have been applied by 7 HySafe partners to simulate this experiment: ADREAHF by NCSRD FLACS by GexCon and DNV KFX by DNV FLUENT by UPM and UU CFX by HSE/HSL and GASFLOW by FZK. The results of the different participants are compared against the experimental data. Sensitivity studies were conducted by FZK using GASFLOW and by DNV applying KFX.<br/>Conclusions based on the comparisons and the sensitivity studies related to the performance of the applied turbulence models and discretisation schemes in the release and diffusion phase are proposed. These are compared to the findings of the previous benchmark exercises.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Numerical Studies of Dispersion and Flammable Volume of Hydrogen in Enclosures
Sep 2007
Publication
Hydrogen dispersion in an enclosure is numerically studied using simple analytical solutions and a large-eddy-simulation based CFD code. In simple calculations the interface height and temperature rise of the upper layer are obtained based on mass and energy conservation and the centreline hydrogen volume fraction is derived from similarity solutions of buoyant jets. The calculated centreline hydrogen volume fraction using the two methods agree with each other; however discrepancies are found for the calculated total flammable volume as a result of the inability of simple calculations in taking into account local mixing and diffusion. The CFD model in contrast is found to be capable of correctly reproducing the diffusion and stratification phenomena during the mixing stage.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
Production of Sustainable Hydrogen and Carbon for the Metallurgical Industry
Dec 2021
Publication
Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However the challenge to supply enough CO2 -free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous H2 Storage Systems In Typical Garages, Part 2: CFC Dispersion Calculations Using the ADREA-HF Code and Experimental Validation Using Helium Tests at the Garage Facility
Sep 2009
Publication
The time and space evolution of the distribution of hydrogen in confined settings was investigated computationally and experimentally for permeation from typical compressed gaseous hydrogen storage systems for buses or cars. The work was performed within the framework of the InsHyde internal project of the HySafe NoE funded by EC. The main goal was to examine whether hydrogen is distributed homogeneously within a garage like facility or whether stratified conditions are developed under certain conditions. The nominal hydrogen flow rate considered was 1.087 NL/min based on the then current SAE standard for composite hydrogen containers with a non-metallic liner (type 4) at simulated end of life and maximum material temperature in a bus facility with a volume of 681m3. The release was assumed to be directed upwards from a 0.15m diameter hole located at the middle part of the bus cylinders casing. Ventilation rates up to 0.03 ACH were considered. Simulated time periods extended up to 20 days. The CFD simulations performed with the ADREA-HF code showed that fully homogeneous conditions exist for low ventilation rates while stratified conditions prevail for higher ventilation rates. Regarding flow structure it was found that the vertical concentration profiles can be considered as the superposition of the concentration at the floor (driven by laminar diffusion) plus a concentration difference between floor and ceiling (driven by buoyancy forces). In all cases considered this concentration difference was found to be less than 0.5%. The dispersion experiments were performed at the GARAGE facility using Helium. Comparison between CFD simulations and experiments showed that the predicted concentrations were in good agreement with the experimental data. Finally simulations were performed using two integral models: the fully homogeneous model and the two-layer model proposed by Lowesmith et al. (ICHS-2 2007) and the results were compared both against CFD and the experimental data.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
CFD Modeling OF LH2 Dispersion Using the ADREA-HF Code
Sep 2011
Publication
In the present work the computational fluid dynamics (CFD) code ADREA-HF has been applied to simulate the very recent liquefied hydrogen spill experiments performed by the Health Safety Laboratory (HSL). The experiment consists of four LH2 release trials over concrete at a fixed rate of 60 lt/min but with different release direction height and duration. In the modeling the hydrogen source was treated as a two phase jet enabling simultaneous modeling of pool formation spreading as well as hydrogen vapor dispersion. Turbulence was modeled with the standard k- model modified for buoyancy effects. The effect of solidification of the atmospheric humidity was taken into account. The predicted concentration at the experimental sensors? locations was compared with the observed one. The results from the comparison of the predicted concentration with and without solidification of the atmospheric humidity indicate that the released heat from the solidification affects significantly the buoyant behavior of the hydrogen vapor. Therefore the simulation with solidification of the atmospheric humidity is in better agreement with the experiment.
Methanol Reforming Processes for Fuel Cell Applications
Dec 2021
Publication
Hydrogen production through methanol reforming processes has been stimulated over the years due to increasing interest in fuel cell technology and clean energy production. Among different types of methanol reforming the steam reforming of methanol has attracted great interest as reformate gas stream where high concentration of hydrogen is produced with a negligible amount of carbon monoxide. In this review recent progress of the main reforming processes of methanol towards hydrogen production is summarized. Different catalytic systems are reviewed for the steam reforming of methanol: mainly copper- and group 8–10-based catalysts highlighting the catalytic key properties while the promoting effect of the latter group in copper activity and selectivity is also discussed. The effect of different preparation methods different promoters/stabilizers and the formation mechanism is analyzed. Moreover the integration of methanol steam reforming process and the high temperature–polymer electrolyte membrane fuel cells (HT-PEMFCs) for the development of clean energy production is discussed.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
A Reappraisal of Containment Safety Under Hydrogen Detonation
Sep 2005
Publication
The response of a typical steel-lined reinforced concrete nuclear reactor containment to postulated internal hydrogen detonations is investigated by detailed axisymetric non-linear dynamic finite element analysis. The wall pressure histories are calculated for hydrogen detonations using a technique that reproduces the sharp discontinuity at the shock front. The pressure results can be applied to geometrically similar vessels. The analysis indicates that the response is more sensitive to the point of initiation than to the strength of the detonation. Approximate solutions based on a pure impulse assumption where the containment is modelled as a single-degree-of freedom (SDOF) system may be seriously unconservative. This work becomes relevant because new nuclear reactors are foreseen as a primary of source of hydrogen supply.<br/><br/>
Consequence Assessment of the BBC Hydrogen Refuelling Station, Using The Adrea-Hf Code
Sep 2009
Publication
Within the framework of the internal project HyQRA of the HYSAFE Network of Excellence (NoE) funded by the European Commission (EC) the participating partners were requested to apply their Quantitative Risk Assessment (QRA) methodologies on a predefined hypothetical gaseous H2 refuelling station named BBC (Benchmark Base Case). The overall aim of the HyQRA project was to perform an inter-comparison of the various QRA approaches and to identify the knowledge gaps on data and information needed in the QRA steps specifically related to H2. Partners NCSRD and UNIPI collaborated on a common QRA. UNIPI identified the hazards on site selected the most critical ones defined the events that could be the primary cause of an accident and provided to NCSRD the scenarios listed in risk order for the evaluation of the consequences. NCSRD performed the quantitative analysis using the ADREA-HF CFD code. The predicted risk assessment parameters (flammable H2 mass and volume time histories and maximum horizontal and vertical distances of the LFL from the source) were provided to UNIPI to analyze the consequences and to evaluate the risk and distances of damage. In total 15 scenarios were simulated. Five of them were H2 releases in confined ventilated spaces (inside the compression and the purification/drying buildings). The remaining 10 scenarios were releases in open/semi-confined spaces (in the storage cabinet storage bank and refuelling hose of one dispenser). This paper presents the CFD methodology applied for the quantitative analysis of the common UNIPI/NCSRD QRA and discusses the results obtained from the performed calculations.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
CFD Simulations of Hydrogen Release and Dispersion Inside the Storage Room of a Hydrogen Refuelling Station Using the ADREA-HF Code
Sep 2007
Publication
The paper presents CFD simulations of high pressure hydrogen release and dispersion inside the storage room of realistic hydrogen refuelling station and comparison to experimental data. The experiments were those reported by Tanaka et al. (2005) carried out inside an enclosure 5 m wide 6 m long and 4 m high having 1 m high ventilation opening on all sidewalls (half or fully open) containing an array of 35 x 250 L cylinders. The scenarios investigated were 40 MPa storage pressure horizontal releases from the center of the room from one cylinder with orifices of diameters 0.8 1.6 and 8 mm. The release calculations were performed using GAJET integral code. The CFD dispersion simulations were performed using the ADREA-HF CFD code. The structure of the flow and the mixing patterns were also investigated by presenting the predicted hydrogen concentration field. Finally the effects of release parameters natural ventilation and wind conditions were analyzed too.
Recent Progress in the Steam Reforming of Bio-Oil for Hydrogen Production: A Review of Operating Parameters, Catalytic Systems and Technological Innovations
Dec 2021
Publication
The present review focuses on the production of renewable hydrogen through the catalytic steam reforming of bio-oil the liquid product of the fast pyrolysis of biomass. Although in theory the process is capable of producing high yields of hydrogen in practice certain technological issues require radical improvements before its commercialization. Herein we illustrate the fundamental knowledge behind the technology of the steam reforming of bio-oil and critically discuss the major factors influencing the reforming process such as the feedstock composition the reactor design the reaction temperature and pressure the steam to carbon ratio and the hour space velocity. We also emphasize the latest research for the best suited reforming catalysts among the specific groups of noble metal transition metal bimetallic and perovskite type catalysts. The effect of the catalyst preparation method and the technological obstacle of catalytic deactivation due to coke deposition metal sintering metal oxidation and sulfur poisoning are addressed. Finally various novel modified steam reforming techniques which are under development are discussed such as the in-line two-stage pyrolysis and steam reforming the sorption enhanced steam reforming (SESR) and the chemical looping steam reforming (CLSR). Moreover we argue that while the majority of research studies examine hydrogen generation using different model compounds much work must be done to optimally treat the raw or aqueous bio-oil mixtures for efficient practical use. Moreover further research is also required on the reaction mechanisms and kinetics of the process as these have not yet been fully understood.
Nonlinear Model Predictive Control of an Autonomous Power System Based on Hydrocarbon Reforming and High Temperature Fuel Cell
Mar 2021
Publication
The integration and control of energy systems for power generation consists of multiple heterogeneous subsystems such as chemical electrochemical and thermal and contains challenges that arise from the multi-way interactions due to complex dynamic responses among the involved subsystems. The main motivation of this work is to design the control system for an autonomous automated and sustainable system that meets a certain power demand profile. A systematic methodology for the integration and control of a hybrid system that converts liquefied petroleum gas (LPG) to hydrogen which is subsequently used to generate electrical power in a high-temperature fuel cell that charges a Li-Ion battery unit is presented. An advanced nonlinear model predictive control (NMPC) framework is implemented to achieve this goal. The operational objective is the satisfaction of power demand while maintaining operation within a safe region and ensuring thermal and chemical balance. The proposed NMPC framework based on experimentally validated models is evaluated through simulation for realistic operation scenarios that involve static and dynamic variations of the power load.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries
Dec 2022
Publication
The present review provides a catalogue of relevant renewable energy (RE) technologies currently available (regarding the 2030 scope) and to be available in the transition towards 2050 for the decarbonisation of Energy Intensive Industries (EIIs). RE solutions have been classified into technologies based on the use of renewable electricity and those used to produce heat for multiple industrial processes. Electrification will be key thanks to the gradual decrease in renewable power prices and the conversion of natural-gas-dependent processes. Industrial processes that are not eligible for electrification will still need a form of renewable heat. Among them the following have been identified: concentrating solar power heat pumps and geothermal energy. These can supply a broad range of needed temperatures. Biomass will be a key element not only in the decarbonisation of conventional combustion systems but also as a biofuel feedstock. Biomethane and green hydrogen are considered essential. Biomethane can allow a straightforward transition from fossil-based natural gas to renewable gas. Green hydrogen production technologies will be required to increase their maturity and availability in Europe (EU). EIIs’ decarbonisation will occur through the progressive use of an energy mix that allows EU industrial sectors to remain competitive on a global scale. Each industrial sector will require specific renewable energy solutions especially the top greenhouse gas-emitting industries. This analysis has also been conceived as a starting point for discussions with potential decision makers to facilitate a more rapid transition of EIIs to full decarbonisation.
Thermodynamic Analysis of Hydrogen Production via Chemical Looping Steam Methane Reforming Coupled with In Situ CO2 Capture
Dec 2014
Publication
A detailed thermodynamic analysis of the sorption enhanced chemical looping reforming of methane (SE-CL-SMR) using CaO and NiO as CO2 sorbent and oxygen transfer material (OTM) respectively was conducted. Conventional reforming (SMR) and sorption enhanced reforming (SE-SMR) were also investigated for comparison reasons. The results of the thermodynamic analysis show that there are significant advantages of both sorption enhanced processes compared to conventional reforming. The presence of CaO leads to higher methane conversion and hydrogen purity at low temperatures. Addition of the OTM in the SECL-SMR process concept minimizes the thermal requirements and results in superior performance compared to SE-SMR and SMR in a two-reactor concept with use of pure oxygen as oxidant/sweep gas.
Power to Hydrogen and Power to Water Using Wind Energy
May 2022
Publication
The need for energy and water security on islands has led to an increase in the use of wind power. However the intermittent nature of wind generation means it needs to be coupled with a storage system. Motivated by this two different models of surplus energy storage systems are investigated in this paper. In both models renewable wind energy is provided by a wind farm. In the first model a pumped hydro storage system (PHS) is used for surplus energy storage while in the second scenario a hybrid pumped hydrogen storage system (HPHS) is applied consisting of a PHS and a hydrogen storage system. The goal of this study is to compare the single and the hybrid storage system to fulfill the energy requirements of the island’s electricity load and desalination demands for domestic and irrigation water. The cost of energy (COE) is 0.287 EUR/kWh for PHS and 0.360 EUR/kWh for HPHS while the loss of load probability (LOLP) is 22.65% for PHS and 19.47% for HPHS. Sensitivity analysis shows that wind speed is the key parameter that most affects COE cost of water (COW) and LOLP indices while temperature affects the results the least.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
Editorial—Special Issue “Catalysis for Energy Production”
Jun 2021
Publication
The rapid increase in anthropogenic greenhouse gas concentrations in the last several decades means that the effects of climate change are fast becoming the familiar horsemen of a planetary apocalypse. Catalysis one of the pillars of the chemical and petrochemical industries will play a critical role in the effort to reduce the flow of greenhouse gases into the atmosphere. This Special Issue is timely as it provides a collection of high-quality manuscripts in a diverse range of topics which include the production of green hydrogen via water electrolysis the steam reforming of ethanol propane or glycerol the dry reforming of methane and the autothermal reforming of diesel surrogate fuel. The topic of the transformation of biomass waste to chemicals is also well represented as is the tackling of CO2 emissions via novel utilization technologies. The Editors are grateful to all authors for their valuable contributions and confident that this Special Issue will prove valuable to scholars university professors and students alike.
Investigation of Certain Mechanical and Magnetic Properties of a Stressed Low-carbon steel after corrosion in NaCl-water solution
Jun 2020
Publication
Atomic hydrogen produced by corrosion of a low-carbon steel in NaCl – Water solution may markedly affect its certain tensile mechanical and magnetic properties in a complex and peculiar manner. This influence was investigated by employing the intrinsic micromagnetic emission (ME)-response as well as tensile mechanical response of this ferromagnetic material and also by introduction a relevant measurement parameter of specific micromagnetic emission response. In this fashion it was shown that an increase in the hydrogen accumulation with corrosion time leads to an associated increase in the pervasive and embrittling influence expressed by a marked loss in ductility of the material. It was also shown that the competitive interplay of cumulative hydrogen applied stress and plastic strain-induced microstructural damage was related to a specific ME-response parameter by which an increased magnetic hardening tendency of material with corrosion time was established. In general embrittlement and magnetic hardening are parallel products of stress- assisted hydrogen accumulation where magnetic hardening process seems to be in a time processing advance of embrittlement one. The above findings allow to estimate that the magnetic properties are more susceptible to hydrogen effects than the mechanical ones.
Effect of Corrosion-induced Hydrogen Embrittlement and its Degradation Impact on Tensile Properties and Fracture Toughness of (Al-Cu-Mg) 2024 Alloy
Jul 2016
Publication
In the present work the effect of artificial ageing of AA2024-T3 on the tensile mechanical properties and fracture toughness degradation due to corrosion exposure will be investigated. Tensile and fracture toughness specimens were artificially aged to tempers that correspond to Under-Ageing (UA) Peak-Ageing (PA) and Over-Ageing (OA) conditions and then were subsequently exposed to exfoliation corrosion environment. The corrosion exposure time was selected to be the least possible according to the experimental work of Alexopoulos et al. (2016) so as to avoid the formation of large surface pits trying to simulate the hydrogen embrittlement degradation only. The mechanical test results show that minimum corrosion-induced decrease in elongation at fracture was achieved for the peak-ageing condition while maximum was noticed at the under-ageing and over-ageing conditions. Yield stress decrease due to corrosion is less sensitive to tempering; fracture toughness decrease was sensitive to ageing heat treatment thus proving that the S΄ particles play a significant role on the corrosion-induced degradation.
Energy System Modelling of Carbon-Neutral Hydrogen as an Enabler of Sectoral Integration within a Decarbonization Pathway
Jul 2019
Publication
This paper explores the alternative roles hydrogen can play in the future European Union (EU) energy system within the transition towards a carbon-neutral EU economy by 2050 following the latest policy developments after the COP21 agreement in Paris in 2015. Hydrogen could serve as an end-use fuel a feedstock to produce carbon-neutral hydrocarbons and a carrier of chemical storage of electricity. We apply a model-based energy system analysis to assess the advantages and drawbacks of these three roles of hydrogen in a decarbonized energy system. To this end the paper quantifies projections of the energy system using an enhanced version of the PRIMES energy system model up to 2050 to explore the best elements of each role under various assumptions about deployment and maturity of hydrogen-related technologies. Hydrogen is an enabler of sectoral integration of supply and demand of energy and hence an important pillar in the carbon-neutral energy system. The results show that the energy system has benefits both in terms of CO2 emission reductions and total system costs if hydrogen technology reaches high technology readiness levels and economies of scale. Reaching maturity requires a significant investment which depends on the positive anticipation of market development. The choice of policy options facilitating visibility by investors is the focus of the modelling in this paper.
Cold Hydrogen Blowdown Release: An Inter-comparison Study
Sep 2021
Publication
Hydrogen dispersion in stagnant environment resulting from blowdown of a vessel storing the gas at cryogenic temperature is simulated using different CFD codes and modelling strategies. The simulations are based on the DISCHA experiments that were carried out by Karlsruhe Institute of Technology (KIT) and Pro-Science (PS). The selected test for the current study involves hydrogen release from a 2.815 dm3 volume tank with an initial pressure of 200 barg and temperature 80 K. During the release the hydrogen pressure in the tank gradually decreased. A total of about 139 gr hydrogen is released through a 4 mm diameter. The temperature time series and the temperature decay rate of the minimum value predicted by the different codes are compared with each other and with the experimentally measured ones. Recommendations for future experimental setup and for modeling approaches for similar releases are provided based on the present analysis. The work is carried out within the EU-funded project PRESLHY.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Integration of a Dark Fermentation Effluent in a Microalgal-based Biorefinery for the Production of High-added Value Omega-3 Fatty Acids
Mar 2019
Publication
Dark fermentation is an anaerobic digestion process of biowaste used to produce hydrogen- for generation of energy- that however releases high amounts of polluting volatile fatty acids such as acetic acid in the environment. In order for this biohydrogen production process to become more competitive the volatile fatty acids stream can be utilized through conversion to high added-value metabolites such as omega-3 fatty acids. The docosahexaenoic acid is one of the two most known omega-3 fatty acids and has been found to be necessary for a healthy brain and proper cardiovascular function. The main source is currently fish which obtain the fatty acid from the primary producers microalgae through the food chain. Crypthecodinium cohnii a heterotrophic marine microalga is known for accumulating high amounts of docosahexaenoic acid while offering the advantage of assimilating various carbon sources such as glucose ethanol glycerol and acetic acid. The purpose of this work was to examine the ability of a C. cohnii strain to grow on different volatile fatty acids as well as on a pre-treated dark fermentation effluent and accumulate omega-3. The strain was found to grow well on relatively high concentrations of acetic butyric or propionic acid as main carbon source in a fed-batch pH-auxostat. Most importantly C. cohnii totally depleted the organic acid content of an ultra-filtrated dark fermentation effluent after 60 h of fed-batch cultivation therefore offering a bioprocess not only able to mitigate environmental pollutants but also to provide a solution for a sustainable energy production process. The accumulated docosahexaenoic acid content was as high as 29.8% (w/w) of total fatty acids.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
No more items...