Italy
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model
Feb 2019
Publication
The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles which so far has not been reported in the literature. Thanks to a thorough experimental study the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.
Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment
Mar 2024
Publication
This review examines the central role of hydrogen particularly green hydrogen from renewable sources in the global search for energy solutions that are sustainable and safe by design. Using the hydrogen square safety measures across the hydrogen value chain—production storage transport and utilisation—are discussed thereby highlighting the need for a balanced approach to ensure a sustainable and efficient hydrogen economy. The review also underlines the challenges in safety assessments points to past incidents and argues for a comprehensive risk assessment that uses empirical modelling simulation-based computational fluid dynamics (CFDs) for hydrogen dispersion and quantitative risk assessments. It also highlights the activities carried out by our research group SaRAH (Safety Risk Analysis and Hydrogen) relative to a more rigorous risk assessment of hydrogenrelated systems through the use of a combined approach of CFD simulations and the appropriate risk assessment tools. Our research activities are currently focused on underground hydrogen storage and hydrogen transport as hythane.
Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications
Mar 2023
Publication
Among the alternative fuels enabling the energy transition hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar storage in composite tanks with a temperature limit of 85 ◦C and a negative Joule–Thomson coefficient throughout a wide range of operational parameters. Moreover to perform a refueling procedure that is closer to the driver’s expectations a fast process that requires pre-cooling the gas to −40 ◦C is necessary. The purpose of this work is to examine the major phenomena that occur during the hydrogen refueling process by analyzing the relevant theory and existing modeling methodologies.
Modeling and Simulation of an Isolated Hybrid Micro-grid with Hydrogen Production and Storage
Jan 2014
Publication
This work relates the study of system performance in operational conditions for an isolated micro-grid powered by a photovoltaic system and a wind turbine. The electricity produced and not used by the user will be accumulated in two different storage systems: a battery bank and a hydrogen storage system composed of two PEM electrolyzers four pressurized tanks and a PEM fuel cell. One of the main problems to be solved in the development of isolated micro-grids is the management of the various devices and energy flows to optimize their functioning in particular in relation to the load profile and power produced by renewable energy systems depending on weather conditions. For this reason through the development and implementation of a specific simulation program three different energy management systems were studied to evaluate the best strategy for effectively satisfying user requirements and optimizing overall system efficiency.
Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research
Oct 2022
Publication
Worldwide energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU 2019) hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition. However due to the operational characteristics of the HSC its planning is complicated. Renewable hydrogen supply can be diverse: Hydrogen can be produced de-centrally with renewables such as wind and solar energy or centrally by using electricity generated from a hydro power plant with a large volume. Similarly demand for hydrogen can also be diverse with many new applications such as fuels for fuel cell electrical vehicles and electricity generation feedstocks in industrial processes and heating for buildings. The HSC consists of various stages (production storage distribution and applications) in different forms with strong interdependencies which further increase HSC complexity. Finally planning of an HSC depends on the status of hydrogen adoption and market development and on how mature technologies are and both factors are characterised by high uncertainties. Directly adapting the traditional approaches of supply chain planning for HSCs is insufficient. Therefore in this study we develop a planning matrix with related planning tasks leveraging a systematic literature review to cope with the characteristics of HSCs. We focus only on renewable hydrogen due to its relevance to the future low-carbon economy. Furthermore we outline an agenda for future research from the supply chain management perspective in order to support HSC development considering the different phases of HSCs adoption and market development.
Redrawing the EU’s Energy Relations: Getting it Right with African Renewable Hydrogen
Oct 2022
Publication
In this paper we will explore the state of play with renewable hydrogen development in Africa through some case studies from AGHA members and the scope for growth moving forward. In so doing we will address some of the prevailing challenges to build out of a clean hydrogen economy that could be foreseen already at this early stage and look for potential solutions building on what is already in place in other sectors. We make the case that there should be four key areas of focus moving forward on African-EU hydrogen collaboration. Firstly (i) foreign direct investment (FDI) should be de-risked through offtake mechanisms and public-private partnerships (ii) flagship projects should lead the way (iii) large parts of the value chain should remain in Africa (iv) wider ‘democratisation’ and accessibility of the sector should be encouraged
Preliminary Design and Simulation of a Thermal Management System with Integrated Secondary Power Generation Capability for a Mach 8 Aircraft Concept Exploiting Liquid Hydrogen
Feb 2023
Publication
This paper introduces the concept of a thermal management system (TMS) with integrated on-board power generation capabilities for a Mach 8 hypersonic aircraft powered by liquid hydrogen (LH2). This work developed within the EU-funded STRATOFLY Project aims to demonstrate an opportunity for facing the challenges of hypersonic flight for civil applications mainly dealing with thermal and environmental control as well as propellant distribution and on-board power generation adopting a highly integrated plant characterized by a multi-functional architecture. The TMS concept described in this paper makes benefit of the connection between the propellant storage and distribution subsystems of the aircraft to exploit hydrogen vapors and liquid flow as the means to drive a thermodynamic cycle able on one hand to ensure engine feed and thermal control of the cabin environment while providing on the other hand the necessary power for other on-board systems and utilities especially during the operation of high-speed propulsion plants which cannot host traditional generators. The system layout inspired by concepts studied within precursor EU-funded projects is detailed and modified in order to suggest an operable solution that can be installed on-board the reference aircraft with focus on those interfaces impacting its performance requirements and integration features as part of the overall systems architecture of the plane. Analysis and modeling of the system is performed and the main results in terms of performance along the reference mission profile are discussed.
Assessment of Hydrogen Based Long Term Electrical Storage in Residential Energy Systems
Oct 2022
Publication
Among the numerous envisioned applications for hydrogen in the decarbonization of the energy system seasonal energy storage is usually regarded as one of the most likely options. Although long-term energy storage is usually considered at grid-scale level given the increasing diffusion of distributed energy systems and the expected cost reduction in hydrogen related components some companies are starting to offer residential systems with PV modules and batteries that rely on hydrogen for seasonal storage of electrical energy. Such hydrogen storage systems are generally composed by water electrolysers hydrogen storage vessels and fuel cells.<br/>The aim of this work is to investigate such systems and their possible applications for different geographical conditions in Italy. On-grid and off-grid systems are considered and compared to systems without hydrogen in terms of self-consumption ratio size of components and economic investment. Each different option has been assessed from a techno-economic point of view via MESS (Multi Energy Systems Simulator) an analytical programming tool for the analysis of local energy systems.<br/>Results have identified the optimal sizing of the system's components and have shown how such systems are not in general economically competitive for a single dwelling although they can in some cases ensure energy independence.
Energy and Environmental Assessment of Hydrogen from Biomass Sources: Challenges and Perspectives
Aug 2022
Publication
Hydrogen is considered as one of the pillars of the European decarbonisation strategy boosting a novel concept of the energy system in line with the EU’s commitment to achieve clean energy transition and reach the European Green Deal carbon neutrality goals by 2050. Hydrogen from biomass sources can significantly contribute to integrate the renewable hydrogen supply through electrolysis at large-scale production. Specifically it can cover the non-continuous production of green hydrogen coming from solar and wind energy to offer an alternative solution to such industrial sectors necessitating of stable supply. Biomass-derived hydrogen can be produced either from thermochemical pathways (i.e. pyrolysis liquefaction and gasification) or from biological routes (i.e. direct or indirect-biophotolysis biological water–gas shift reaction photo- and dark-fermentation). The paper reviews several production pathways to produce hydrogen from biomass or biomass-derived sources (biogas liquid bio-intermediates sugars) and provides an exhaustive review of the most promising technologies towards commercialisation. While some pathways are still at low technology readiness level others such as the steam bio-methane reforming and biomass gasification are ready for an immediate market uptake. The various production pathways are evaluated in terms of energy and environmental performances highlighting the limits and barriers of the available LCA studies. The paper shows that hydrogen production technologies from biomass appears today to be an interesting option almost ready to constitute a complementing option to electrolysis.
An Overview on Safety Issues Related to Hydrogen and Methane Blend Applications in Domestic and Industrial Use
Sep 2017
Publication
The share of electrical energy hailing from renewable sources in the European electricity mix is increasing. The match between renewable power supply and demand has become the greatest challenge to cope with. Gas infrastructure can accommodate large volumes of electricity converted into gas whenever this supply of renewable power is larger than the grid capacity or than the electricity demand. The Power-to-Gas (P2G) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable hydrogen via electrolysis and subsequent methanation. The aim of this paper is to provide an overview of the required technical adaptations of the most common devices for end users such as heating plants CHP systems home gas furnaces and cooking surfaces wherever these are fuelled with methane and hydrogen blends in variable percentages by volume. Special attention will be given to issues related to essential safety standards firstly comparing existing Italian and European regulations in this regard and secondly highlighting the potential need for legislation to regulate the suitability of hydrogen methane blends. Finally a list of foreseeable technical solutions will be provided and discussed thoroughly
A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty
Mar 2024
Publication
: In the last decade with the increased concerns about the global environment attempts have been made to promote the replacement of fossil fuels with sustainable sources. For transport which accounts for around a quarter of total greenhouse gas emissions meeting climate neutrality goals will require replacing existing fleets with electric or hydrogen-propelled vehicles. However the lack of adequate decision support approach makes the introduction of new propulsion technologies in the transportation sector a complex strategic decision problem where distorted non-optimal decisions may easily result in long-term negative effects on the performance of logistic operators. This research addresses the problem of transport fleet renewal by proposing a multi-criteria decision-making approach and takes into account the multiple propulsion technologies currently available and the objectives of the EU Green Deal as well as the inherent scenario uncertainty. The proposed approach based on the TOPSIS model involves a novel decision framework referred to as a generalized life cycle evaluation of the environmental and cost objectives which is necessary when comparing green and traditional propulsion systems in a long-term perspective to avoid distorted decisions. Since the objective of the study is to provide a practical methodology to support strategic decisions the framework proposed has been validated against a practical case referred to the strategic fleet renewal decision process. The results obtained demonstrate how the decision maker’s perception of the technological evolution of the propulsion technologies influences the decision process thus leading to different optimal choices.
Two-stage Model Predictive Control for a Hydrogen-based Storage System Paired to a Wind Farm Towards Green Hydrogen Production for Fuel Cell Electric Vehicles
Jul 2022
Publication
This study proposes a multi-level model predictive control (MPC) for a grid-connected wind farm paired to a hydrogen-based storage system (HESS) to produce hydrogen as a fuel for commercial road vehicles while meeting electric and contractual loads at the same time. In particular the integrated system (wind farm + HESS) should comply with the “fuel production” use case as per the IEA-HIA report where the hydrogen production for fuel cell electric vehicles (FCEVs) has the highest unconditional priority among all the objectives. Based on models adopting mixed-integer constraints and dynamics the problem of external hydrogen consumer requests optimal load demand tracking and electricity market participation is solved at different timescales to achieve a long-term plan based on forecasts that then are adjusted at real-time. The developed controller will be deployed onto the management platform of the HESS which is paired to a wind farm established in North Norway within the EU funded project HAEOLUS. Numerical analysis shows that the proposed controller efficiently manages the integrated system and commits the equipment so as to comply with the requirements of the addressed scenario. The operating costs of the devices are reduced by 5% which corresponds to roughly 300 commutations saved per year for devices.
Pressure Management in Smart Gas Networks for Increasing Hydrogen Blending
Jan 2022
Publication
The injection of hydrogen into existing gas grids is acknowledged as a promising option for decarbonizing gas systems and enhancing the integration among energy sectors. Nevertheless it affects the hydraulics and the quality management of networks. When the network is fed by multiple infeed sites and hydrogen is fed from a single injection point non-homogeneous hydrogen distribution throughout the grid happens to lead to a reduction of the possible amount of hydrogen to be safely injected within the grid. To mitigate these impacts novel operational schemes should therefore be implemented. In the present work the modulation of the outlet pressures of gas infeed sites is proposed as an effective strategy to accommodate larger hydrogen volumes into gas grids extending the area of the network reached by hydrogen while keeping compliance with quality and hydraulic restrictions. A distribution network operated at two cascading pressure tiers interfaced by pressure regulators constitutes the case study which is simulated by a fluid-dynamic and multi-component model for gas networks. Results suggest that higher shares of hydrogen and other green gases can be introduced into existing distribution systems by implementing novel asset management schemes with negligible impact on grid operations.
A Novel Optimal Power Control for a City Transit Hybrid Bus Equipped with a Partitioned Hydrogen Fuel Cell Stack
May 2020
Publication
The development of more sustainable and zero-emissions collective transport solutions could play a very important measure in the near future within smart city policies. This paper tries to give a contribution to this aim proposing a novel approach to fuel cell vehicle design and operation. Traditional difficulties experienced in fuel cell transient operation are in fact normally solved in conventional vehicle prototypes through the hybridization of the propulsion system and with the complete fulfillment of transients in road energy demand through a high-capacity onboard energy storage device. This makes it normally necessary to use Li-ion battery solutions accepting their restrictions in terms of weight costs energy losses limited lifetime and environmental constraints. The proposed solution instead introduces a partitioning of the hydrogen fuel cell (FC) and novel optimal power control strategy with the aim of limiting the capacity of the energy storage still avoiding FC transient operation. The limited capacity of the resulting energy storage systems which instead has to answer higher power requests makes it possible to consider the utilization of a high-speed flywheel energy storage system (FESS) in place of high energy density Li-ion batteries. The proposed control strategy was validated by vehicle simulations based on a modular and parametric model; input data were acquired experimentally on an operating electric bus in real traffic conditions over an urban bus line. Simulation results highlight that the proposed control strategy makes it possible to obtain an overall power output for the FC stacks which better follows road power demands and a relevant downsizing of the FESS device.
Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control
Aug 2022
Publication
Smooth power injection is one of the possible services that modern wind farms could provide in the not-so-far future for which energy storage is required. Indeed this is one among the three possible operations identified by the International Energy Agency (IEA)-Hydrogen Implementing Agreement (HIA) within the Task 24 final report that may promote their integration into the main grid in particular when paired to hydrogen-based energy storages. In general energy storage can mitigate the inherent unpredictability of wind generation providing that they are deployed with appropriate control algorithms. On the contrary in the case of no storage wind farm operations would be strongly affected as well as their economic performances since the penalty fees wind farm owners/operators incur in case of mismatches between the contracted power and that actually delivered. This paper proposes a Model Predictive Control (MPC) algorithm that operates a Hydrogen-based Energy Storage System (HESS) consisting of one electrolyzer one fuel cell and one tank paired to a wind farm committed to smooth power injection into the grid. The MPC relies on Mixed-Logic Dynamic (MLD) models of the electrolyzer and the fuel cell in order to leverage their advanced features and handles appropriate cost functions in order to account for the operating costs the potential value of hydrogen as a fuel and the penalty fee mechanism that may negatively affect the expected profits generated by the injection of smooth power. Numerical simulations are conducted by considering wind generation profiles from a real wind farm in the center-south of Italy and spot prices according to the corresponding market zone. The results show the impact of each cost term on the performances of the controller and how they can be effectively combined in order to achieve some reasonable trade-off. In particular it is highlighted that a static choice of the corresponding weights can lead to not very effective handling of the effects given by the combination of the system conditions with the various exogenous’ while a dynamic choice may suit the purpose instead. Moreover the simulations show that the developed models and the set-up mathematical program can be fruitfully leveraged for inferring indications on the devices’ sizing.
Dynamic Electric Simulation Model of a Proton Exchange Membrane Electrolyzer System for Hydrogen Production
Sep 2022
Publication
An energy storage system based on a Proton Exchange Membrane (PEM) electrolyzer system which could be managed by a nanoGrid for Home Applications (nGfHA) is able to convert the surplus of electric energy produced by renewable sources into hydrogen which can be stored in pressurized tanks. The PEM electrolyzer system must be able to operate at variable feeding power for converting all the surplus of renewable electric energy into hydrogen in reasonable time. In this article the dynamic electric simulation model of a PEM electrolyzer system with its pressurized hydrogen tanks is developed in a proper calculation environment. Through the calculation code the stack voltage and current peaks to a supply power variation from the minimum value (about 56 W) to the maximum value (about 440 W) are controlled and zeroed to preserve the stack the best range of the operating stack current is evaluated and hydrogen production is monitored.
Optimization of Small-Scale Hydrogen Production with Membrane Reactors
Mar 2023
Publication
In the pathway towards decarbonization hydrogen can provide valid support in different sectors such as transportation iron and steel industries and domestic heating concurrently reducing air pollution. Thanks to its versatility hydrogen can be produced in different ways among which steam reforming of natural gas is still the most commonly used method. Today less than 0.7% of global hydrogen production can be considered low-carbon-emission. Among the various solutions under investigation for low-carbon hydrogen production membrane reactor technology has the potential especially at a small scale to efficiently convert biogas into green hydrogen leading to a substantial process intensification. Fluidized bed membrane reactors for autothermal reforming of biogas have reached industrial maturity. Reliable modelling support is thus necessary to develop their full potential. In this work a mathematical model of the reactor is used to provide guidelines for their design and operations in off-design conditions. The analysis shows the influence of temperature pressures catalyst and steam amounts and inlet temperature. Moreover the influence of different membrane lengths numbers and pitches is investigated. From the results guidelines are provided to properly design the geometry to obtain a set recovery factor value and hydrogen production. For a given reactor geometry and fluidization velocity operating the reactor at 12 bar and the permeate-side pressure of 0.1 bar while increasing reactor temperature from 450 to 500 °C leads to an increase of 33% in hydrogen production and about 40% in HRF. At a reactor temperature of 500 °C going from 8 to 20 bar inside the reactor doubled hydrogen production with a loss in recovery factor of about 16%. With the reactor at 12 bar a vacuum pressure of 0.5 bar reduces hydrogen production by 43% and HRF by 45%. With the given catalyst it is sufficient to have only 20% of solids filled into the reactor being catalytic particles. With the fixed operating conditions it is worth mentioning that by adding membranes and maintaining the same spacing it is possible to increase hydrogen production proportionally to the membrane area maintaining the same HRF.
Analysis of the Combustion Process in a Hydrogen-Fueled CFR Engine
Mar 2023
Publication
Green hydrogen produced using renewable energy is nowadays one of the most promising alternatives to fossil fuels for reducing pollutant emissions and in turn global warming. In particular the use of hydrogen as fuel for internal combustion engines has been widely analyzed over the past few years. In this paper the authors show the results of some experimental tests performed on a hydrogen-fueled CFR (Cooperative Fuel Research) engine with particular reference to the combustion. Both the air/fuel (A/F) ratio and the engine compression ratio (CR) were varied in order to evaluate the influence of the two parameters on the combustion process. The combustion duration was divided in two parts: the flame front development (characterized by laminar flame speed) and the rapid combustion phase (characterized by turbulent flame speed). The results of the hydrogen-fueled engine have been compared with results obtained with gasoline in a reference operating condition. The increase in engine CR reduces the combustion duration whereas the opposite effect is observed with an increase in the A/F ratio. It is interesting to observe how the two parameters CR and A/F ratio have a different influence on the laminar and turbulent combustion phases. The influence of both A/F ratio and engine CR on heat transfer to the combustion chamber wall was also evaluated and compared with the gasoline operation. The heat transfer resulting from hydrogen combustion was found to be higher than the heat transfer resulting from gasoline combustion and this is probably due to the different quenching distance of the two fuels.
Hydrogen Addition to Natural Gas in Cogeneration Engines: Optimization of Performances Through Numerical Modeling
Aug 2021
Publication
A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine designed to be powered by natural gas is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios to avoid rapid pressure rise and excessive production of pollutant emissions.
Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy)
Oct 2016
Publication
The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island) including also some indications about solar resource. In both cases all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave) for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article as well as the main equations used are the result of previous applications made in different technical fields that show a good replicability.
Operation of a Solid Oxide Fuel Cell Based Power System with Ammonia as a Fuel: Experimental Test and System Design
Nov 2020
Publication
Ammonia has strong potentialities as sustainable fuel for energy applications. NH3 is carbon free and can be synthetized from renewable energy sources (RES). In Solid Oxide Fuel Cells NH3 reacts electrochemically thereby avoiding the production of typical combustion pollutants such as NOx. In this study an ammonia-fueled solid oxide fuel cells (SOFC) system design is proposed and a thermodynamic model is developed to evaluate its performance. A SOFC short stack was operated with NH3 in a wide range of conditions. Experimental results are implemented in the thermodynamic model. Electrical efficiency of 52.1% based on ammonia Lower Heating Value is calculated at a net power density of 0.36 W cmFC −2 . The operating conditions of the after burner and of the ammonia decomposition reactor are studied by varying the values of specific parameters. The levelized cost of energy of 0.221 $ kWh−1 was evaluated as introduced by the International Energy Agency for a system that operates at nominal conditions and at a reference power output of 100 kW. This supports the feasibility of ammonia-fueled SOFC systems with reference to the carbon free energy market specifically considering the potential development of green ammonia production.
Techno-Economic Model for Scaling up of Hydrogen Refueling Stations
Oct 2022
Publication
In a recent publication the Hydrogen Council states that scaling up to greater production volumes leads to significant cost savings as a consequence of the industrialization of equipment manufacturing increased utilization standardization and improvements in system efficiency and flexibility. In this study a component-oriented techno-economic model is applied to five different European hydrogen refueling stations within the 3Emotion project which is planned to ensure capacities sufficient for increasing a fleet to 100 fuel cell buses. The investigation of the various cases shows that the levelized cost of hydrogen (LCOH) for large-scale applications will be in the range of about 4 €/kg to 7 €/kg within the boundaries analyzed. On-site production facilities were found to be the lower-cost design benefiting from the high volumes at stake and the economy of scale with respect to decentralized production due to the significant costs associated with retail hydrogen and transport. This study also illustrates the effects on the LCOH of varying the hydrogen delivery and production prices using a sensitivity analysis. The results show that by utilizing high-capacity trailers the costs associated with delivery could be reduced by 30%. Furthermore green hydrogen production could be a competitive solution if coupled with low electricity prices resulting in an LCOH between 4.21 €/kg and 6.80 €/kg.
On the Use of a Hydrogen-Fueled Engine in a Hybrid Electric Vehicle
Dec 2022
Publication
Hybrid electric vehicles are currently one of the most effective ways to increase the efficiency and reduce the pollutant emissions of internal combustion engines. Green hydrogen produced with renewable energies is an excellent alternative to fossil fuels in order to drastically reduce engine pollutant emissions. In this work the author proposes the implementation of a hydrogen-fueled engine in a hybrid vehicle; the investigated hybrid powertrain is the power-split type in which the engine two electric motor/generators and the drive shaft are coupled together by a planetary gear set; this arrangement allows the engine to operate independently from the wheels and thus to exploit the best efficiency operating points. A set of numeric simulations were performed in order to compare the gasoline-fueled engine with the hydrogen-fueled one in terms of the thermal efficiency and total energy consumed during a driving cycle. The simulation results show a mean engine efficiency increase of around 17% when fueled with hydrogen with respect to gasoline and an energy consumption reduction of around 15% in a driving cycle.
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
Apr 2023
Publication
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector e.g. in power generation. Despite the advantages related to the use of this carbon-free fuel there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels it is important to investigate their thermoacoustic behavior when fueled by hydrogen. In this framework the present work aims to propose a methodology which combines Computational Fluid Dynamics CFD (3D Reynolds-Averaged Navier-Stokes (RANS)) and Finite Element Method (FEM) approaches in order to investigate the fluid dynamic and the thermoacoustic behavior introduced by hydrogen in a burner (a lab-scale bluff body stabilized burner) designed to work with methane. The case of CH4 -air mixture was used for the validation against experimental results and benchmark CFD data available in the literature. Numerical results obtained from CFD simulations namely thermofluidodynamic properties and flame characteristics (i.e. time delay and heat release rate) are used to evaluate the effects of the fuel change on the Flame Response Function to the acoustic perturbation by means of a FEM approach. As results in the H2 -air mixture case the time delay decreases and heat release rate increases with respect to the CH4 -air mixture. A study on the Rayleigh index was carried out in order to analyze the influence of H2 -air mixture on thermoacoustic instability of the burner. Finally an analysis of both frequency and growth rate (GR) on the first four modes was carried out by comparing the two mixtures. In the H2 -air case the modes are prone to become more unstable with respect to the same modes of the case fueled by CH4 -air due to the change in flame topology and variation of the heat release rate and time delay fields.
Impact of Hydrogen Injection on Thermophysical Properties and Measurement Reliability in Natural Gas Networks
Oct 2021
Publication
In the context of the European decarbonization strategy hydrogen is a key energy carrier in the medium to long term. The main advantages deriving from a greater penetration of hydrogen into the energy mix consist in its intrinsic characteristics of flexibility and integrability with alternative technologies for the production and consumption of energy. In particular hydrogen allows to: i) decarbonise end uses since it is a zero-emission energy carrier and can be produced with processes characterized by the absence of greenhouse gases emissions (e.g. water electrolysis); ii) help to balancing electricity grid supporting the integration of non-programmable renewable energy sources; iii) exploit the natural gas transmission and distribution networks as storage systems in overproduction periods. However the hydrogen injection into the natural gas infrastructures directly influences thermophysical properties of the gas mixture itself such as density calorific value Wobbe index speed of sound etc [1]. The change of the thermophysical properties of gaseous mixture in turn directly affects the end use service in terms of efficiency and safety as well as the metrological performance and reliability of the volume and gas quality measurement systems. In this paper the authors present the results of a study about the impact of hydrogen injection on the properties of the natural gas mixture. In detail the changes of the thermodynamic properties of the gaseous mixtures with different hydrogen content have been analysed. Moreover the theoretical effects of the aforementioned variations on the accuracy of the compressibility factor measurement have been also assessed.
Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy
Oct 2022
Publication
Green hydrogen exploitation plays a crucial role in achieving carbon neutrality by 2050. Hydrogen in fact provides a number of key benefits for the energy system due to its integrability with other clean technologies for energy production and consumption. This paper is aimed at presenting the project of recovery of an abandoned industrial area located in central Italy by developing a site for the production of green hydrogen. To this aim the analysis of the territorial and industrial context of the area allowed us to design the project phases and to define the sizing criteria of the hydrogen production plant. The results of a preliminary cost–benefit analysis show that a huge initial investment is required and that in the short term the project is sustainable only with a very large public grant. On the other hand in the long term the project is sustainable and the benefits significantly overcome the costs.
A Rational Approach to the Ecological Transition in the Cruise Market: Technologies and Design Compromises for the Fuel Switch
Jan 2023
Publication
Supporting policies to achieve a green revolution and ecological transition is a global trend. Although the maritime transport of goods and people can rightly be counted among the least polluting sectors much can be done to further reduce its environmental footprint. Moreover to boost the ecological transition of vessels a whole series of international regulations and national laws have been promulgated. Among these the most impactful on both design and operational management of ships concern the containment of air-polluting emissions in terms of GHG NOx SOx and PM. To address this challenge it might seem that many technologies already successfully used in other transport sectors could be applied. However the peculiar characteristics of ships make this statement not entirely true. In fact technological solutions recently adopted for example in the automotive sector must deal with the large size of vessels and the consequent large amount of energy necessary for their operation. In this paper with reference to the case study of a medium/large-sized passenger cruise ship the use of different fuels (LNG ammonia hydrogen) and technologies (internal combustion engines fuel cells) for propulsion and energy generation on board will be compared. By imposing the design constraint of not modifying the payload and the speed of the ship the criticalities linked to the use of one fuel rather than another will be highlighted. The current limits of application of some fuels will be made evident with reference to the state of maturity of the relevant technologies. Furthermore the operational consequences in terms of autonomy reduction will be presented. The obtained results underline the necessity for shipowners and shipbuilders to reflect on the compromises required by the challenges of the ecological transition which will force them to choose between reducing payload or reducing performance.
Dynamic Quality Tracking of Natural Gas and Hydrogen Mixture in a Portion of Natural Gas Grid
Aug 2015
Publication
Direct injection of alternative fuels (biomethane hydrogen) in the natural gas grid appears to be a promising solution to reach environmental objectives of CO2 emission reduction in the current energy scenario. This approach is justified by the large amount of biogas producible which can be upgraded to biomethane; while another proposed solution to increase renewable energy sources exploitation lies in producing hydrogen from excess wind energy followed by injection in the natural gas grid. Nevertheless compliance with composition limits and quality constraints in the resulting natural gas mixture has to be analysed in both stationary and dynamic operations tracking the gas quality downstream the injection point of the alternative fuels. A model was developed to simulate unsteady operation of a portion of gas grid dealing with realistic industrial and residential consumptions concentrated in offtake points. Two case studies were investigated focusing on the comparison between different amounts of hydrogen injection in the pure natural gas flow yielding composition flow rate and pressure profiles. The analysis shows how imposed quality thresholds can be respected although the hydrogen fraction within the natural gas mixture is highly sensitive to the profile and size of the loads connected to the gas pipeline.
Proposed Approach to Calculate Safety Distances for Hydrogen Fuelling Station in Italy
Sep 2021
Publication
In 2021 only 6 hydrogen fuelling station have been built in Italy of which 3 are not operational and only 1 is open to the public while the rest are built in private or industrial areas. While fuelling station which store more than 5000 kg of hydrogen are subjected to the “Seveso Directive” the permitting procedure for refuelling station which store less than the threshold is supervised by the fire brigade command of the province where the station is built. Recently in the effort to easy the permitting procedure to establish new stations a Ministerial Decree was published in the official gazette of the Italian Republic which lists minimum safety features and safety distances that if respected guarantee the approval by the authority. Nevertheless the imposed distances are such that the land required to build the station constitute a barrier rather than a facilitation. Exploiting the possibility introduced by the Decree to calculate safety distances following a Fire Safety Engineering approach a method is proposed for calculation of safety distances. The present paper presents the Italian regulation and describes an approach to calculate the safety distances including an example applied on the dispenser.
Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications
Mar 2017
Publication
In this paper hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e. energy storage for a family house) and a mobile system (i.e. an unmanned aerial vehicle) will be investigated. The stationary systems designed for off-grid applications were sized for photovoltaic energy production in the area of Turin Italy to provide daily energy of 10.25 kWh. The mobile systems to be used for high crane inspection were sized to have a flying range of 120 min one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view the fuel cell and the electrolyzer being niche products result in being more expensive with respect to the Li-ion batteries. On the other hand the life cycle assessment (LCA) results show the lower burdens of both technologies.
An MILP Approach for the Optimal Design of Renewable Battery-hydrogen Energy Systems for Off-grid Insular Communities
Jul 2021
Publication
The optimal sizing of stand-alone renewable H2-based microgrids requires the load demand to be reliably satisfied by means of local renewable energy supported by a hybrid battery/hydrogen storage unit while minimizing the system costs. However this task is challenging because of the high number of components that have to be installed and operated. In this work an MILP optimization framework has been developed and applied to the off-grid village of Ginostra (on the Stromboli island Italy) which is a good example of several other insular sites throughout the Mediterranean area. A year-long time horizon was considered to model the seasonal storage which is necessary for off-grid areas that wish to achieve energy independence by relying on local renewable sources. The degradation costs of batteries and H2-based devices were included in the objective function of the optimization problem i.e. the annual cost of the system. Efficiency and investment cost curves were considered for the electrolyzer and fuel cell components in order to obtain a more detailed and precise techno-economic estimation. The design optimization was also performed with the inclusion of a general demand response program (DRP) to assess its impact on the sizing results. Moreover the effectiveness of the proposed MILP-based method was tested by comparing it with a more traditional approach based on a metaheuristic algorithm for the optimal sizing complemented with ruled-based strategies for the system operation. Thanks to its longer-term storage capability hydrogen is required for the optimal system configuration in order to reach energy self-sufficiency. Finally considering the possibility of load deferral the electricity generation cost can be reduced to an extent that depends on the amount of load that is allowed to participate in the DRP scheme. This cost reduction is mainly due to the decreased capacity of the battery storage system.
Numerical Redesign of 100kw MGT Combustor for 100% H2 Fueling
Jan 2014
Publication
The use of hydrogen as energy carrier in a low emission microturbine could be an interesting option for renewable energy storage distributed generation and combined heat & power. However the hydrogen using in gas turbine is limited by the NOx emissions and the difficulty to operate safely. CFD simulations represent a powerful and mature tool to perform detailed 3-D investigation for the development of a prototype before carrying out an experimental analysis. This paper describes the CFD supported redesign of the Turbec T100 microturbine combustion chamber natural gas-fired to allow the operation on 100% hydrogen.
The EU Green Deal (2022 ed.)
Jan 2023
Publication
In this report we focus on the fundamentals of energy and climate policy as reformulated in the EU Green Deal. The 2022 edition includes updates following the publication of the Fit for 55 Package and the EU Hydrogen and Decarbonised Gas Markets Package. The reader is guided through the landscape of EU climate and energy policy. Starting with the big picture of the foundations of energy and climate policy we then move to discussing in more detail European climate policy security of supply and energy networks. We continue with energy wholesale and retail markets and finish with a closer look at energy innovation. Each chapter is divided into several sections aiming to give the reader a broad overview of the areas of climate and energy policy that are impacted by the EU Green Deal. The references at the end of each section serve as suggestions for further reading on each topic.
Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures
Mar 2018
Publication
The presence of a conductive layers of hot-formed oxide on the surface of bars for pre or post-compressing structures can promote localized attacks as a function of pH. The aggressive local environment in the occluded cells inside localized attacks has as consequence the possibility of initiation of stress corrosion cracking. In this paper the stress corrosion cracking behavior of high strength steels proposed for tendons was studied by means of Constant Load (CL) tests and Slow Strain Rate (SSR) tests. Critical ranges of pH for cracking were verified. The promoting role of localized attack was confirmed. Further electrochemical tests were performed on bars in as received surface conditions in order to evaluate pitting initiation. The adverse effect of mill scale was recognized.
AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges
May 2020
Publication
The main objective of the article is to provide a thorough review of currently used AC-DC converters for alkaline and proton exchange membrane (PEM) electrolyzers in power grid or wind energy conversion systems. Based on the current literature this article aims at emphasizing the advantages and drawbacks of AC-DC converters mainly based on thyristor rectifier bridges and chopper-rectifiers. The analysis is mainly focused on the current issues for these converters in terms of specific energy consumption current ripple reliability efficiency and power quality. From this analysis it is shown that thyristors-based rectifiers are particularly fit for high-power applications but require the use of active and passive filters to enhance the power quality. By comparison the association combination of the chopper-rectifier can avoid the use of bulky active and passive filters since it can improve power quality. However the use of a basic chopper (i.e. buck converter) presents several disadvantages from the reliability energy efficiency voltage ratio and current ripple point of view. For this reason new emerging DC-DC converters must be employed to meet these important issues according to the availability of new power switching devices. Finally based on the authors’ experience in power conversion for PEM electrolyzers a discussion is provided regarding the future challenges that must face power electronics for green hydrogen production based on renewable energy sources.
Evaluation of the Impact of Green Hydrogen Blending Scenarios in the Italian Gas Network: Optimal Design and Dynamic Simulation of Operation Strategies
Apr 2022
Publication
Blending hydrogen (H2) produced from PEM electrolysis coupled to Renewable Energy Sources (RES) in the existing Natural Gas (NG) network is a promising option for the deep decarbonization of the gas sector. However blending H2 with NG significantly affects the thermophysical properties of the gas mixture changing the gas supply requirements to meet the demand. In this work different scenarios of green hydrogen blending (Blend Ratio BR equal to 5/10/15/20%vol) are analyzed at the national level with different temporal constraints (hour/day/week/month/year) based on real gas demand data in Italy addressing both design requirements (RES and PEM electrolyzer capacity) via Linear Programming (LP) and carrying out dynamic simulations of different operational strategies (constant or variable blend). Although H2/NG blending provides a huge opportunity in terms of deployed H2 volume higher BRs show rapidly increasing design requirements (1.3-1.5 GWe/%vol and 2.5-3 GWe/%vol for PEM electrolyzers and RES capacity respectively) and a significative increase of the total gas mixture volume (0.83 %/%vol) which hinders the CO2 reduction potential (0.37 %/%vol). A variable blend operation strategy (allowing a variation of BR within the analyzed period) allows to balance a variable H2 production from RES. Wider temporal constraints imply several beneficial effects such as relaxing design constraints and avoiding the implementation of an external storage. The Levelized Cost Of Hydrogen (LCOH) is preliminarily estimated at around 7.3 $/kg for yearly scenarios (best-case) although shorter temporal constraints entail significant excess hydrogen which would increase the LCOH if not deployed for other applications.
Seasonal Energy Storage for Zero-emissions Multi-energy Systems Via Underground Hydrogen Storage
Jan 2020
Publication
The deployment of diverse energy storage technologies with the combination of daily weekly and seasonal storage dynamics allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular the production storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic possibility for large-scale hydrogen storage suitable for long-term storage dynamics is presented by salt caverns. In this contribution we provide a framework for modelling underground hydrogen storage with a focus on salt caverns and we evaluate its potential for reducing the CO2 emissions within an integrated energy systems context. To this end we develop a first-principle model which accounts for the transport phenomena within the rock and describes the dynamics of the stored energy when injecting and withdrawing hydrogen. Then we derive a linear reduced order model that can be used for mixed-integer linear program optimization while retaining an accurate description of the storage dynamics under a variety of operating conditions. Using this new framework we determine the minimum-emissions design and operation of a multi-energy system with H2 storage. Ultimately we assess the potential of hydrogen storage for reducing CO2 emissions when different capacities for renewable energy production and energy storage are available mapping emissions regions on a plane defined by storage capacity and renewable generation. We extend the analysis for solar- and wind-based energy generation and for different energy demands representing typical profiles of electrical and thermal demands and different CO2 emissions associated with the electric grid.
Soft-linking of a Behavioral Model for Transport with Energy System Cost optimization Applied to Hydrogen in EU
Sep 2019
Publication
Fuel cell electric vehicles (FCEV) currently have the challenge of high CAPEX mainly associated to the fuel cell. This study investigates strategies to promote FCEV deployment and overcome this initial high cost by combining a detailed simulation model of the passenger transport sector with an energy system model. The focus is on an energy system with 95% CO2 reduction by 2050. Soft-linking by taking the powertrain shares by country from the simulation model is preferred because it considers aspects such as car performance reliability and safety while keeping the cost optimization to evaluate the impact on the rest of the system. This caused a 14% increase in total cost of car ownership compared to the cost before soft-linking. Gas reforming combined with CO2 storage can provide a low-cost hydrogen source for FCEV in the first years of deployment. Once a lower CAPEX for FCEV is achieved a higher hydrogen cost from electrolysis can be afforded. The policy with the largest impact on FCEV was a purchase subsidy of 5 k€ per vehicle in the 2030–2034 period resulting in 24.3 million FCEV (on top of 67 million without policy) sold up to 2050 with total subsidies of 84 bln€. 5 bln€ of R&D incentives in the 2020–2024 period increased the cumulative sales up to 2050 by 10.5 million FCEV. Combining these two policies with infrastructure and fuel subsidies for 2030–2034 can result in 76 million FCEV on the road by 2050 representing more than 25% of the total car stock. Country specific incentives split of demand by distance or shift across modes of transport were not included in this study.
Cylinders and Tubes Used as Buffers in Filling Stations
Oct 2015
Publication
Buffers are key components for hydrogen filling stations that are currently being developed. Type 1 or composite cylinders are used for this application. The type used depends on many parameters including pressure level cost and space available for the filling station. No international standards exist for such high pressure vessels whereas many standards exist covering Types 123 and 4 used for transport of gas or on-board fuel tanks. It is suggested to use the cylinders approved for transport or on-board applications as buffers. This solution appears to be safe if at least one issue is solved. The main difference is that transport or on-board cylinders are cycled from a low pressure to a high pressure during service whereas buffers are cycled from a relatively high pressure (corresponding to the vehicle’s filling pressure) to the MAWP. Another difference is that buffers are cycled many times per day. For standards developers requesting to systematically verify that buffers pass millions of cycles at low pressure amplitude would be impractical. Several standards and codes give formulae to estimate the number of shallow cycles when number of deep cycles are known. In this paper we describe tests performed on all types of composite cylinders to verify or determine the appropriate formulae.
Thermal Efficiency of On-site, Small-scale Hydrogen Production Technologies using Liquid Hydrocarbon Fuels in Comparison to Electrolysis a Case Study in Norway
Oct 2018
Publication
The main goal of this study was to assess the energy efficiency of a small-scale on-site hydrogen production and dispensing plant for transport applications. The selected location was the city of Narvik in northern Norway where the hydrogen demand is expected to be 100 kg/day. The investigated technologies for on-site hydrogen generation starting from common liquid fossil fuels such as heavy naphtha and diesel were based on steam reforming and partial oxidation. Water electrolysis derived by renewable energy was also included in the comparison. The overall thermal efficiency of the hydrogen station was computed including compression and miscellaneous power consumption.
An Innovative and Comprehensive Approach for the Consequence Analysis of Liquid Hydrogen Vessel Explosions
Oct 2020
Publication
Hydrogen is one of the most suitable solutions to replace hydrocarbons in the future. Hydrogen consumption is expected to grow in the next years. Hydrogen liquefaction is one of the processes that allows for increase of hydrogen density and it is suggested when a large amount of substance must be stored or transported. Despite being a clean fuel its chemical and physical properties often arise concerns about the safety of the hydrogen technologies. A potentially critical scenario for the liquid hydrogen (LH2) tanks is the catastrophic rupture causing a consequent boiling liquid expanding vapour explosion (BLEVE) with consequent overpressure fragments projection and eventually a fireball. In this work all the BLEVE consequence typologies are evaluated through theoretical and analytical models. These models are validated with the experimental results provided by the BMW care manufacturer safety tests conducted during the 1990’s. After the validation the most suitable methods are selected to perform a blind prediction study of the forthcoming LH2 BLEVE experiments of the Safe Hydrogen fuel handling and Use for Efficient Implementation (SH2IFT) project. The models drawbacks together with the uncertainties and the knowledge gap in LH2 physical explosions are highlighted. Finally future works on the modelling activity of the LH2 BLEVE are suggested.
Direct Route from Ethanol to Pure Hydrogen through Autothermal Reforming in a Membrane Reactor: Experimental Demonstration, Reactor Modelling and Design
Nov 2020
Publication
This work reports the integration of thin (~3e4 mm thick) Pd-based membranes for H2 separation in a fluidized bed catalytic reactor for ethanol auto-thermal reforming. The performance of a fluidized bed membrane reactor has been investigated from an experimental and numerical point of view. The demonstration of the technology has been carried out over 50 h under reactive conditions using 5 thin Pd-based alumina-supported membranes and a 3 wt%Pt-10 wt%Ni catalyst deposited on a mixed CeO2/SiO2 support. The results have confirmed the feasibility of the concept in particular the capacity to reach a hydrogen recovery factor up to 70% while the operation at different fluidization regimes oxygen-to-ethanol and steam-to-ethanol ratios feed pressures and reactor temperatures have been studied. The most critical part of the system is the sealing of the membranes where most of the gas leakage was detected. A fluidized bed membrane reactor model for ethanol reforming has been developed and validated with the obtained experimental results. The model has been subsequently used to design a small reactor unit for domestic use showing that 0.45 m2 membrane area is needed to produce the amount of H2 required for a 5 kWe PEM fuel-cell based micro-CHP system.
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered based on a quasi-equilibrium approach through Gibbs free energy minimisation and including an innovative hot gas cleaning constituted by a combination of catalyst sorbents inside the gasification reactor catalysts in the freeboard and subsequent sorbent reactors by using Aspen Plus software. The gas cleaning chain simulates the raw syngas clean-up for several organic and inorganic contaminants i.e. toluene benzene naphthalene hydrogen sulphide hydrogen chloride and ammonia. The tar and inorganic contaminants final values achieved are under 1 g/Nm3 and 1 ppm respectively.
Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2
Jul 2024
Publication
In the energy transition from fossil fuels to renewables hydrogen is a realistic alternative to achieving the decarbonization target. However its chemical and physical properties make its storage and transport expensive. To ensure the cost-effective H2 usage as an energy vector other chemicals are getting attention as H2 carriers. Among them ammonia is the most promising candidate. The value chain of NH3 as a H2 carrier considering the long-distance ship transport includes NH3 synthesis and storage at the loading terminal NH3 storage at the unloading terminal and its cracking to release H2. NH3 synthesis and cracking are the cost drivers of the value chain. Also the NH3 cracking at large scale is not a mature technology and a significant effort has to be made in intensifying the process as much as possible. In this respect this work reviews the available technologies for NH3 cracking critically analyzing them in view of the scale up to the industrial level.
A CFD Analysis of Liquefied Gas Vessel Explosions
Dec 2021
Publication
Hydrogen is one of the most suitable candidates in replacing fossil fuels. However storage issues due to its very low density under ambient conditions are encountered in many applications. The liquefaction process can overcome such issues by increasing hydrogen’s density and thus enhancing its storage capacity. A boiling liquid expanding vapour explosion (BLEVE) is a phenomenon in liquefied gas storage systems. It is a physical explosion that might occur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boiling point at atmospheric pressure. Even though it is an atypical accident scenario (low probability) it should be always considered due to its high yield consequences. For all the above-mentioned reasons the BLEVE phenomenon for liquid hydrogen (LH2) vessels was studied using the CFD methodology. Firstly the CFD model was validated against a well-documented CO2 BLEVE experiment. Secondly hydrogen BLEVE cases were simulated based on tests that were conducted in the 1990s on LH2 tanks designed for automotive purposes. The parametric CFD analysis examined different filling degrees initial pressures and temperatures of the tank content with the aim of comprehending to what extent the initial conditions influence the blast wave. Good agreement was shown between the simulation outcomes and the LH2 bursting scenario tests results.
Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies
Oct 2020
Publication
A common sustainability issue arising in production systems is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas coal gasification water electrolysis via proton exchange membrane fuel cell (PEM) solid oxide electrolyzer cell (SOEC) biomass gasification and reforming and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope Water scarcity footprint (WSF) quantified using Available Water Remaining (AWARE) method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway identify the drivers of environmental impact quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment
Aug 2020
Publication
The feasibility and cost-effectiveness of hydrogen-based microgrids in facilities such as public buildings and small- and medium-sized enterprises provided by photovoltaic (PV) plants and characterized by low electric demand during weekends were investigated in this paper. Starting from the experience of the microgrid being built at the Renewable Energy Facility of Sardegna Ricerche (Italy) which among various energy production and storage systems includes a hydrogen storage system a modeling of the hydrogen-based microgrid was developed. The model was used to analyze the expected performance of the microgrid considering different load profiles and equipment sizes. Finally the microgrid cost-effectiveness was evaluated using a preliminary economic analysis. The results demonstrate that an effective design can be achieved with a PV system sized for an annual energy production 20% higher than the annual energy requested by the user and a hydrogen generator size 60% of the PV nominal power size. This configuration leads to a self-sufficiency rate of about 80% and without public grants a levelized cost of energy comparable with the cost of electricity in Italy can be achieved with a reduction of at least 25–40% of the current initial costs charged for the whole plant depending on the load profile shape.
The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport
Sep 2021
Publication
Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO2 emissions and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials innovative hull repair methods wind assisted propulsion engine efficiency waste heat electrification hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however non-technological ones like improved vessel navigation and allocation systems also show a great potential for the reduction of CO2 emissions and reduction of negative environmental impacts of waterborne transport.
No more items...