Norway
In the Green? Perceptions of Hydrogen Production Methods Among the Norwegian Public
Feb 2023
Publication
This article presents findings from a representative survey fielded through the Norwegian Citizen Panel examining public perceptions of hydrogen fuel and its different production methods. Although several countries including Norway have strategies to increase the production of hydrogen fuel our results indicate that hydrogen as an energy carrier and its different production methods are still unknown to a large part of the public. A common misunderstanding seems to be confusing ‘hydrogen fuel’ in general with environmentally friendly ‘green hydrogen’. Results from a survey experiment (N = 1906) show that production method is important for public acceptance. On a five-point acceptance scale respondents score on average 3.9 for ‘green’ hydrogen which is produced from renewable energy sources. The level of acceptance is significantly lower for ‘blue’ (3.2) and ‘grey’ (2.3) hydrogen when respondents are informed that these are produced from coal oil or natural gas. Public support for hydrogen fuel in general as well as the different production methods is also related to their level of worry about climate change gender and political affiliation. Widespread misunderstandings regarding ‘green’ hydrogen production could potentially fuel public resistance as new ‘blue’ or ‘grey’ projects develop. Our results indicate a need for clearer communication from the government and developers regarding production methods to avoid distrust and potential public backfire.
Effect of Relative Permeability Hysteresis on Reservoir Simulation of Underground Hydrogen Storage in an Offshore Aquifer
Mar 2023
Publication
Underground hydrogen storage (UHS) in porous media is proposed to balance seasonal fluctuations between demand and supply in an emerging hydrogen economy. Despite increasing focus on the topic worldwide the understanding of hydrogen flow in porous media is still not adequate. In particular relative permeability hys teresis and its impact on the storage performance require detailed investigations due to the cyclic nature of H2 injection and withdrawal. We focus our analysis on reservoir simulation of an offshore aquifer setting where we use history matched relative permeability to study the effect of hysteresis and gas type on the storage efficiency. We find that omission of relative permeability hysteresis overestimates the annual working gas capacity by 34 % and the recovered hydrogen volume by 85 %. The UHS performance is similar to natural gas storage when using hysteretic hydrogen relative permeability. Nitrogen relative permeability can be used to model the UHS when hysteresis is ignored but at the cost of the accuracy of the bottom-hole pressure predictions. Our results advance the understanding of the UHS reservoir modeling approaches.
Underground Hydrogen Storage in Caverns: Challenges of Impure Salt Stuctures
Oct 2023
Publication
Hydrogen is expected to play a key role in the future as a clean energy source that can mitigate global warming. It can also contribute significantly to reducing the imbalance between energy supply and demand posed by deploying renewable energy. However the infrastructure is not ready for the direct use of hydrogen and largescale storage facilities are needed to store the excess hydrogen production. Geological formations particularly salt caverns seem to be a practical option for this large-scale storage as there is already good experience storing hydrocarbons in caverns worldwide. Salt is known to be ductile impermeable and inert to natural gas. Some cases of hydrogen storage in salt caverns in the United States the United Kingdom and Germany reinforce the idea that salt caverns could be a viable option for underground hydrogen storage especially when the challenges and uncertainties associated with hydrogen storage in porous media are considered. However cavern con struction and management can be challenging when salt deposits are not completely pure and mixed with nonsoluble strata. This review summarises the challenges associated with hydrogen storage in salt caverns and suggests some potential mitigation strategies linked to geomechanical and geochemical interactions. The Zechstein salt group in Northern Europe seems to be a feasible geological site for hydrogen storage but the effect of salt impurity particularly at deep offshore sites such as in the Norwegian North Sea should be carefully analysed. It appears that mechanical integrity geochemical reactions hydrogen loss by halophilic bacteria leaching issues and potential hydrogen diffusion are among the major issues when the internal structure of the salt is not pure.
Decarbonizing Primary Steel Production : Techno-economic Assessment of a Hydrogen Based Green Steel Production Plant in Norway
Mar 2022
Publication
High electricity cost is the biggest challenge faced by the steel industry in transitioning to hydrogen based steelmaking. A steel plant in Norway could have access to cheap emission free electricity high-quality iron ore skilled manpower and the European market. An open-source model for conducting techno-economic assessment of a hydrogen based steel manufacturing plant operating in Norway has been developed in this work. Levelized cost of production (LCOP) for two plant configurations; one procuring electricity at a fixed price and the other procuring electricity from the day-ahead electricity markets with different electrolyzer capacity were analyzed. LCOP varied from $622/tls to $722/tls for the different plant configurations. Procuring electricity from the day-ahead electricity markets could reduce the LCOP by 15%. Increasing the electrolyzer capacity reduced the operational costs but increased the capital investments reducing the overall advantage. Sensitivity analysis revealed that electricity price and iron ore price are the major contributors to uncertainty for configurations with fixed electricity prices. For configurations with higher electrolyzer capacity changes in the iron ore price and parameters related to capital investment were found to affect the LCOP significantly.
Dynamic Process Modeling of Topside Systems for Evaluating Power Consumption and Possibilities of Using Wind Power
Dec 2022
Publication
Norwegian offshore wind farms may be able to supply power to offshore oil and gas platforms in the near future thanks to the expeditious development of offshore wind technology. This would result in a reduction in CO2 emissions from oil and gas offshore installations which are currently powered predominantly by gas turbines. The challenge with using wind power is that offshore oil and gas installations require a fairly constant and stable source of power whereas wind power typically exhibits significant fluctuations over time. The purpose of this study is to perform a technical feasibility evaluation of using wind power to supply an offshore oil and gas installation on the basis of dynamic process simulations. Throughout the study only the topside processing system is considered since it is the most energy-intensive part of an oil and gas facility. An offshore field on the Norwegian Continental Shelf is used as a case study. The results indicate that when the processing system operates in steady-state conditions it cannot be powered solely by wind energy and another power source is required to compensate for low wind power generation intervals. An alternative would be to store wind energy during periods of high generation (e.g. by producing hydrogen or ammonia) and use it during periods of low generation. Utilizing energy storage methods wind energy can be continuously used for longer periods of time and provide a suitable constant power source for the studied case. Higher constant power can also be provided by increasing the efficiency of energy recovery and storage processes. Alternatively these two technologies may be integrated with gas turbines if the required storage cannot be provided or higher power is required. It was estimated that the integration of wind energy could result in noticeable reductions in CO2 emissions for the case study. Additionally according to the results the production storage and reuse of hydrogen and ammonia on-site may be viable options for supplying power.
Pore-scale Dynamics for Underground Porous Media Hydrogen Storage
Mar 2022
Publication
Underground hydrogen storage (UHS) has been launched as a catalyst to the low-carbon energy transitions. The limited understanding of the subsurface processes is a major obstacle for rapid and widespread UHS implementation. We use microfluidics to experimentally describe pore-scale multiphase hydrogen flow in an aquifer storage scenario. In a series of drainage-imbibition experiments we report the effect of capillary number on hydrogen saturations displacement/trapping mechanisms dissolution kinetics and contact angle hysteresis. We find that the hydrogen saturation after injection (drainage) increases with increasing capillary number. During hydrogen withdrawal (imbibition) two distinct mechanisms control the displacement and residual trapping – I1 and I2 imbibition mechanisms respectively. Local hydrogen dissolution kinetics show dependency on injection rate and hydrogen cluster size. Dissolved global hydrogen concentration corresponds up to 28 % of reported hydrogen solubility indicating pore-scale non-equilibrium dissolution. Contact angles show hysteresis and vary between 17 and 56°. Our results provide key UHS experimental data to improve understanding of hydrogen multiphase flow behavior.
Effect of Anion Exchange Ionomer Content on Electrode Performance in AEM Water Electrolysis
Aug 2020
Publication
Anion exchange membrane water electrolysis (AEMWE) has acquired substantial consideration as a cost-effective hydrogen production technology. The anion ionomer content in the catalyst layers during hydrogen and oxygen evolution reaction (HER and OER) is of ultimate significance. Herein an in-situ half-cell analysis with reference electrodes was carried out for simultaneous potential measurements and identification of the influence of the anion exchange ionomer (AEI) content on anode and cathode performance. The measured half-cell potentials proved the influence of AEI content on the catalytic activity of HER and OER which was supported by the rotating disk electrode (RDE) measurements. Cathode overpotential of Ni/C was not negligible and more affected by the AEI content than anode with the optimized AEI content of 10 wt% while NiO anode OER overpotential was independent of the AEI content. For the same AEI content PGM catalysts showed higher electroactivity than Ni-based catalysts for HER and OER and the cathode catalyst's intrinsic activity is of high importance in the AEM electrolysis operation. Post-mortem analysis by SEM mapping of both AEI and catalyst distributions on the electrode surface showed the effect of AEI loading on the catalyst morphology which could be related to the electrode performance.
Modelling and Simulation of a Zero-emission Hybrid Power Plant for a Domestic Ferry
Jan 2021
Publication
This paper presents a simulation tool for marine hybrid power-plants equipped with polymer exchange membrane fuel cells and batteries. The virtual model through the combination of operational data and dynamically modelled subsystems can simulate power-plants of different sizes and configurations in order to analyze the response of different energy management strategies. The model aims to replicate the realistic behavior of the components included in the vessel's grid to asses if the hardware selected by the user is capable of delivering the power set-point requested by the energy management system. The model can then be used to optimize key factors such as hydrogen consumption. The case study presented in the paper demonstrates how the model can be used for the evaluation of a retrofitting operation replacing a diesel electric power-plant with fuel cells and batteries. The vessel taken into consideration is a domestic ferry operating car and passenger transport in Denmark. The vessel is outfitted with a diesel electric plant and an alternative hybrid power-plant is proposed. The hybrid configuration is tested using the model in a discrete time-domain.
Palladium (Pd) Membranes as Key Enabling Technology for Pre-combustion CO2 Capture and Hydrogen Production
Aug 2017
Publication
Palladium (Pd) membranes are a promising enabling technology for power generation and hydrogen production with CO2 capture. SINTEF has developed and patented a flexible technology to produce Pd-alloy membranes that significantly improves flux and thereby reduces material costs. Reinertsen AS and SINTEF aim to demonstrate the Pd membrane technology for H2 separation on a side stream of the Statoil Methanol Plant at Tjeldbergodden Norway. In the present article we present the upscaling of the membrane manufacturing process together with the membrane module and skid design and construction.
Pressure Peaking Phenomena: Unignited Hydrogen Releases in Confined Spaces – Large-scale Experiments
Sep 2020
Publication
The aim of this study was to validate a model for predicting overpressure arising from accidental hydrogen releases in areas with limited ventilation. Experiments were performed in a large-scale setup that included a steel-reinforced container of volume 14.9 m3 and variable ventilation areas and mass flow rates. The pressure peaking phenomenon characterized as transient overpressure with a characteristic peak in a vented enclosure was observed during all the experiments. The model description presented the relationship between the ventilation area mass flow rate enclosure volume and discharge coefficient. The experimental results were compared with two prediction models representing a perfect mix and the real mix. The perfect mix assumed that all the released hydrogen was well stirred inside the enclosure during the releases. The real mix prediction s used the hydrogen concentration and temperature data measured during experiments. The prediction results with both perfect mix and real mix showed possible hazards during unignited hydrogen releases.
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation transmission and storage including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture transport and storage infrastructure for conventional CCS and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.
Thermal Efficiency of On-site, Small-scale Hydrogen Production Technologies using Liquid Hydrocarbon Fuels in Comparison to Electrolysis a Case Study in Norway
Oct 2018
Publication
The main goal of this study was to assess the energy efficiency of a small-scale on-site hydrogen production and dispensing plant for transport applications. The selected location was the city of Narvik in northern Norway where the hydrogen demand is expected to be 100 kg/day. The investigated technologies for on-site hydrogen generation starting from common liquid fossil fuels such as heavy naphtha and diesel were based on steam reforming and partial oxidation. Water electrolysis derived by renewable energy was also included in the comparison. The overall thermal efficiency of the hydrogen station was computed including compression and miscellaneous power consumption.
An Innovative and Comprehensive Approach for the Consequence Analysis of Liquid Hydrogen Vessel Explosions
Oct 2020
Publication
Hydrogen is one of the most suitable solutions to replace hydrocarbons in the future. Hydrogen consumption is expected to grow in the next years. Hydrogen liquefaction is one of the processes that allows for increase of hydrogen density and it is suggested when a large amount of substance must be stored or transported. Despite being a clean fuel its chemical and physical properties often arise concerns about the safety of the hydrogen technologies. A potentially critical scenario for the liquid hydrogen (LH2) tanks is the catastrophic rupture causing a consequent boiling liquid expanding vapour explosion (BLEVE) with consequent overpressure fragments projection and eventually a fireball. In this work all the BLEVE consequence typologies are evaluated through theoretical and analytical models. These models are validated with the experimental results provided by the BMW care manufacturer safety tests conducted during the 1990’s. After the validation the most suitable methods are selected to perform a blind prediction study of the forthcoming LH2 BLEVE experiments of the Safe Hydrogen fuel handling and Use for Efficient Implementation (SH2IFT) project. The models drawbacks together with the uncertainties and the knowledge gap in LH2 physical explosions are highlighted. Finally future works on the modelling activity of the LH2 BLEVE are suggested.
Concept of Hydrogen Fired Gas Turbine Cycle with Exhaust Gas Recirculation: Assessment of Process Performance
Nov 2019
Publication
High hydrogen content fuels can be used in gas turbine for power generation with CO2 capture IGCC plants or with hydrogen from renewables. The challenge for the engine is the high reactive combustion properties making dilution necessary to mitigate NOx emissions at the expense of a significant energy cost. In the concept analysed in this study high Exhaust Gas Recirculation (EGR) rate is applied to the gas turbine to generate oxygen depleted air. As a result combustion temperature is inherently limited keeping NOx emissions low without the need for dilution or unsafe premixing. The concept is analysed by process simulation based on a reference IGCC plant with CO2 Capture. Results with dry and wet EGR options are presented as a function EGR rate. Efficiency performance is assessed against the reference power cycle with nitrogen dilution. All EGR options are shown to represent an efficiency improvement. Nitrogen dilution is found to have a 1.3% efficiency cost. Although all EGR options investigated offer an improvement dry EGR is considered as the preferred option despite the need for higher EGR rate as compared with the wet EGR. The efficiency gain is calculated to be of 1% compared with the reference case.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
A CFD Analysis of Liquefied Gas Vessel Explosions
Dec 2021
Publication
Hydrogen is one of the most suitable candidates in replacing fossil fuels. However storage issues due to its very low density under ambient conditions are encountered in many applications. The liquefaction process can overcome such issues by increasing hydrogen’s density and thus enhancing its storage capacity. A boiling liquid expanding vapour explosion (BLEVE) is a phenomenon in liquefied gas storage systems. It is a physical explosion that might occur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boiling point at atmospheric pressure. Even though it is an atypical accident scenario (low probability) it should be always considered due to its high yield consequences. For all the above-mentioned reasons the BLEVE phenomenon for liquid hydrogen (LH2) vessels was studied using the CFD methodology. Firstly the CFD model was validated against a well-documented CO2 BLEVE experiment. Secondly hydrogen BLEVE cases were simulated based on tests that were conducted in the 1990s on LH2 tanks designed for automotive purposes. The parametric CFD analysis examined different filling degrees initial pressures and temperatures of the tank content with the aim of comprehending to what extent the initial conditions influence the blast wave. Good agreement was shown between the simulation outcomes and the LH2 bursting scenario tests results.
Examining the Role of Safety in Communication Concerning Emerging Hydrogen Technologies by Selected Groups of Stakeholders
Sep 2021
Publication
Governments and other stakeholders actively promote and facilitate the development and deployment of hydrogen and fuel cell technologies. Various strategy documents and energy forecasts outline the environmental and societal benefits of the prospective hydrogen economy. At the same time the safety related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to conventional fuels. Severe accidents can have major impact on the development of energy technologies. The stakes will increase significantly as the use of hydrogen shifts from controlled environments in industrial facilities to the public domain and as the transport-related consumption extends from passenger cars and buses to trains ships and airplanes. Widespread deployment of hydrogen as an energy carrier in society will require massive investments. This implies commercial and political commitment involvement and influence on research priorities and decision-making. The legacy from accidents and the messages communicated by influential stakeholders impact not only how the public perceives hydrogen technologies but also governmental policies the development of regulations codes and standards (RCS) and ultimately the measures adopted for preventing and mitigating accidents. This paper explores whether and how selected aspects of safety are considered when distinct groups of stakeholders frame the hydrogen economy. We assess to what extent the communication is consistent with the current state-of-the-art in hydrogen safety and the contemporary strength of knowledge in risk assessments for hydrogen systems. The approach adopted entails semi-quantitative text analysis and close reading to highlight variations between diverse groups of stakeholders. The results indicate a bias in the framing of the safety-related aspects of the hydrogen economy towards procedural organisational and societal measures of risk reduction at the expense of well-known challenges and knowledge gaps associated with the implications of fundamental safety-related properties of hydrogen.
Petroleum Sector-Driven Roadmap for Future Hydrogen Economy
Nov 2021
Publication
In the climate change mitigation context based on the blue hydrogen concept a narrative frame is presented in this paper to build the argument for solving the energy trilemma which is the possibility of job loss and stranded asset accumulation with a sustainable energy solution in gas- and oil-rich regions especially for the Persian Gulf region. To this aim scientific evidence and multidimensional feasibility analysis have been employed for making the narrative around hydrogen clear in public and policy discourse so that choices towards acceleration of efforts can begin for paving the way for the future hydrogen economy and society. This can come from natural gas and petroleum-related skills technologies experience and infrastructure. In this way we present results using multidimensional feasibility analysis through STEEP and give examples of oil- and gas-producing countries to lead the transition action along the line of hydrogen-based economy in order to make quick moves towards cost effectiveness and sustainability through international cooperation. Lastly this article presents a viewpoint for some regional geopolitical cooperation building but needs a more full-scale assessment.
Boosting Carbon Efficiency of the Biomass to Liquid Process with Hydrogen from Power: The Effect of H2/CO Ratio to the Fischer-Tropsch Reactors on the Production and Power Consumption
Jun 2019
Publication
Carbon efficiency of a biomass to liquid process can be increased from ca. 30 to more than 90% by adding hydrogen generated from renewable power. The main reason is that in order to increase the H2/CO ratio after gasification to the value required for Fischer-Tropsch (FT) synthesis the water gas shift reaction step can be avoided; instead a reversed water gas shift reactor is introduced to convert produced CO2 to CO. Process simulations are done for a 46 t/h FT biofuel production unit. Previous results are confirmed and it is shown how the process can be further improved. The effect of changing the H2/CO ratio to the Fischer-Tropsch synthesis reactors is studied with the use of three different kinetic models. Keeping the CO conversion in the reactors constant at 55% the volume of the reactors decreases with increasing H2/CO ratio because the reaction rates increase with the partial pressure of hydrogen. Concurrently the production of C5+ products and the consumption of hydrogen increases. However the power required per extra produced liter fuel also increases pointing at optimum conditions at a H2/CO feed ratio significantly lower than 2. The trends are the same for all three kinetic models although one of the models is less sensitive to the hydrogen partial pressure. Finally excess renewable energy can be transformed to FT syncrude with an efficiency of 0.8–0.88 on energy basis.
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
Climate Change Impacts of E-fuels for Aviation in Europe Under Present-day Conditions and Future Policy Scenarios
Jan 2023
Publication
‘E-fuels’ or ‘synthetic fuels’ are hydrocarbon fuels synthesized from hydrogen (H2) and carbon dioxide (CO2) where H2 can be produced via electrolysis of water or steam reforming of natural gas and CO2 is captured from the combustion of a fossil or biogenic source or directly from the atmosphere. E-fuels are drop-in substitutes for fossil fuels but their climate change mitigation benefits are largely unclear. This study evaluates the climate change impacts of e-fuels for aviation by combining different sources of CO2 and H2 up to 2050 under two contrasting policy scenarios. The analysis includes different climate metrics and the effects of near-term climate forcers which are particularly relevant for the aviation sector. Results are produced for European average conditions and for Poland and Norway two countries with high and low emission intensity from their electricity production mix. E-fuels can either have higher or lower climate change impacts than fossil fuels depending on multiple factors such as in order of importance the electricity mix the origin of CO2 the technology for H2 production and the electrolyzer efficiency. The climate benefits are generally higher for e-fuels produced from CO2 of biogenic origin while e-fuels produced from CO2 from direct air capture or fossil fuel combustion require countries with clean electricity to outperform fossil fuels. Synthetic fuels produced from H2 derived from natural gas have higher impacts than fossil fuels even when coupled with carbon capture and storage if CO2 is sourced from fossil fuels or the atmosphere. Climate change impacts of e-fuels improve in the future and they can all achieve considerable climate change mitigation in 2050 relative to fossil jet fuel provided that strict climate policy measures are implemented to decarbonize the electricity sector. Under reduced policy efforts future climate impacts in 2050 of e-fuels from atmospheric or fossil CO2 are still higher than those of fossil jet fuels with an average European electricity mix. This study shows the conditions to maximize the climate change mitigation benefits of e-fuels which essentially depend on progressive decarbonization of the electricity sector and on reduced use of CO2 sourced from fossil fuels.
How Do Dissolved Gases Affect the Sonochemical Process of Hydrogen Production: An Overview of Thermodynamic and Mechanistic Effects – On the “Hot Spot Theory”
Dec 2020
Publication
Although most of researchers agree on the elementary reactions behind the sonolytic formation of molecular hydrogen (H2) from water namely the radical attack of H2O and H2O2 and the free radicals recombination several recent papers ignore the intervention of the dissolved gas molecules in the kinetic pathways of free radicals and hence may wrongly assess the effect of dissolved gases on the sonochemical production of hydrogen. One may fairly ask to which extent is it acceptable to ignore the role of the dissolved gas and its eventual decomposition inside the acoustic cavitation bubble? The present opinion paper discusses numerically the ways in which the nature of dissolved gas i.e. N2 O2 Ar and air may influence the kinetics of sonochemical hydrogen formation. The model evaluates the extent of direct physical effects i.e. dynamics of bubble oscillation and collapse events if any against indirect chemical effects i.e. the chemical reactions of free radicals formation and consequently hydrogen emergence it demonstrates the improvement in the sonochemical hydrogen production under argon and sheds light on several misinterpretations reported in earlier works due to wrong assumptions mainly related to initial conditions. The paper also highlights the role of dissolved gases in the nature of created cavitation and hence the eventual bubble population phenomena that may prevent the achievement of the sonochemical activity. This is particularly demonstrated experimentally using a 20 kHz Sinaptec transducer and a Photron SA 5 high speed camera in the case of CO2-saturated water where degassing bubbles are formed instead of transient cavitation.
Direct Numerical Simulation of Hydrogen Combustion at Auto-ignitive Conditions Ignition, Stability and Turbulent Reaction-front Velocity
Mar 2021
Publication
Direct Numerical Simulations (DNS) are performed to investigate the process of spontaneous ignition of hydrogen flames at laminar turbulent adiabatic and non-adiabatic conditions. Mixtures of hydrogen and vitiated air at temperatures representing gas-turbine reheat combustion are considered. Adiabatic spontaneous ignition processes are investigated first providing a quantitative characterization of stable and unstable flames. Results indicate that in hydrogen reheat combustion compressibility effects play a key role in flame stability and that unstable ignition and combustion are consistently encountered for reactant temperatures close to the mixture’s characteristic crossover temperature. Furthermore it is also found that the characterization of the adiabatic processes is also valid in the presence of non-adiabaticity due to wall heat-loss. Finally a quantitative characterization of the instantaneous fuel consumption rate within the reaction front is obtained and of its ability at auto-ignitive conditions to advance against the approaching turbulent flow of the reactants for a range of different turbulence intensities temperatures and pressure levels.
Hydrogen as a Maritime Fuel–Can Experiences with LNG Be Transferred to Hydrogen Systems?
Jul 2021
Publication
As the use of fossil fuels becomes more and more restricted there is a need for alternative fuels also at sea. For short sea distance travel purposes batteries may be a solution. However for longer distances when there is no possibility of recharging at sea batteries do not have sufficient capacity yet. Several projects have demonstrated the use of compressed hydrogen (CH2) as a fuel for road transport. The experience with hydrogen as a maritime fuel is very limited. In this paper the similarities and differences between liquefied hydrogen (LH2) and liquefied natural gas (LNG) as a maritime fuel will be discussed based on literature data of their properties and our system knowledge. The advantages and disadvantages of the two fuels will be examined with respect to use as a maritime fuel. Our objective is to discuss if and how hydrogen could replace fossil fuels on long distance sea voyages. Due to the low temperature of LH2 and wide flammability range in air these systems have more challenges related to storage and processing onboard than LNG. These factors result in higher investment costs. All this may also imply challenges for the LH2 supply chain.
Current Status of Automotive Fuel Cells for Sustainable Transport
May 2019
Publication
Automotive proton-exchange membrane fuel cells (PEMFCs) have finally reached a state of technological readiness where several major automotive companies are commercially leasing and selling fuel cell electric vehicles including Toyota Honda and Hyundai. These now claim vehicle speed and acceleration refueling time driving range and durability that rival conventional internal combustion engines and in most cases outperform battery electric vehicles. The residual challenges and areas of improvement which remain for PEMFCs are performance at high current density durability and cost. These are expected to be resolved over the coming decade while hydrogen infrastructure needs to become widely available. Here we briefly discuss the status of automotive PEMFCs misconceptions about the barriers that platinum usage creates and the remaining hurdles for the technology to become broadly accepted and implemented.
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications such as brake disks for windmills and trucks filtration systems in refineries and fossil power plants transfer rolls for hot-rolled steel strips and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i) alloy composition; (ii) microstructure; and (iii) number (type) of defects on the thermo-mechanical properties. Additionally environmental degradation of the alloys consisting of hydrogen embrittlement anodic or cathodic dissolution localized corrosion and oxidation resistance in different environments should be well known. Recently some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements environmental items and crystal structure on the deformation behavior of alloys. In this paper we will review the extensive work which has been done during the last decades to address each of the points mentioned above.
Rising To the Challenge of a Hydrogen Economy: The Outlook for Emerging Hydrogen Value Chains, From Production to Consumption
Jul 2021
Publication
For many a large-scale hydrogen economy is essential to a a clean energy future with three quarters of the more than 1100 senior energy professionals we surveyed saying Paris Agreement targets will not be possible without it.
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
The Effect of Hydrogen Enrichment, Flame-flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
Apr 2022
Publication
To maximise power density practical gas turbine combustion systems have several injectors which can lead to complex interactions between flames. However our knowledge about the effect of flame-flame interactions on the flame response the essential element to predict the stability of a combustor is still limited. The present study investigates the effect of hydrogen enrichment flame-flame interaction confinement and asymmetries on the linear and non-linear acoustic response of three premixed flames in a simple can combustor. A parametric study of the linear response characterised by the flame transfer function (FTF) is performed for swirling and non-swirling flames. Flame-flame interactions were achieved by changing the injector spacing and the level of hydrogen enrichment by power from 10 to 50%. It was found that the latter had the most significant effect on the flame response. Asymmetry effects were investigated by changing one of the flames by using a different bluff-body to alter both the flame shape and flow field. The global flame response showed that the asymmetric cases can be reconstructed using a superposition of the two symmetric cases where all three bluff-bodies and flames are the same. Overall the linear response characterised by the flame transfer function (FTF) showed that the effect of increasing the level of hydrogen enrichment is more pronounced than the effect of the injector spacing. Increasing hydrogen enrichment results in more compact flames which minimises flame-flame interactions. More compact flames increase the cut-off frequency which can lead to self-excited modes at higher frequencies. Finally the non-linear response was characterised by measuring the flame describing function (FDF) at a frequency close to a self-excited mode of the combustor for different injector spacings and levels of hydrogen enrichment. It is shown that increasing the hydrogen enrichment leads to higher saturation amplitude whereas the effect of injector spacing has a comparably smaller effect.
High-pressure PEM Water Electrolyser Performance Up to 180 Bar Differential Pressure
Feb 2024
Publication
Proton exchange membrane (PEM) electrolysers (PEMEL) are key for converting and storing excess renewable energy. PEMEL water electrolysis offers benefits over alkaline water electrolysers including a large dynamic range high responsiveness and high current densities and pressures. High operating pressures are important because it contributes to reduce the costs and energy-use related to downstream mechanical compression. In this work the performance of a high-pressure PEMEL system has been characterized up to 180 bar. The electrolyser stack has been characterized with respect to electrochemical performance net H2 production rate and water crossover and the operability and performance of the thermal- and gas management systems of the test bench has been assessed. The tests show that the voltage increase upon pressurization from 5 to 30 bar is 30 % smaller than expected but further pressurization reduces performance. The study confirms that highpressure PEMEL has higher energy consumption than state-of-the-art electrolyser systems with mechanical compressors. However there can be a business case for high-pressure PEMEL if the trade-off between stack efficiency and system efficiency is balanced.
Retrofitting Towards a Greener Marine Shipping Future: Reassembling Ship Fuels and Liquefied Natural Gas in Norway
Dec 2021
Publication
The reduction of greenhouse gas emissions has entered regulatory agendas in shipping. In Norway a debate has been ongoing for over a decade about whether liquefied natural gas (LNG) ship fuel enables or impedes the transition to a greener future for shipping. This paper explores the assembling of ship fuel before and after the introduction of a controversial carbon tax on LNG. It reconstructs how changes in the regulatory apparatus prompted the reworking of natural gas into a ship fuel yet later slowed down the development of LNG in a strategy to promote alternative zero-emission fuels such as hydrogen. Following ship fuel as socio-materiality in motion we find that fossil fuels are reworked into new modes of application as part of transition policies. Natural gas continues to be enacted as an “enabler of transition” in the context of shipping given that current government policies work to support the production of hydrogen from natural gas and carbon capture and storage (CCS). New modes of accounting for emissions reassemble existing fossil fuel materiality by means of CCS and fossil-based zero-emission fuels. We examine retrofit as a particular kind of reassembling and as a prism for studying the politics of fuel and the relation between transitions and existing infrastructures.
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Hydrogen-based Systems for Integration of Renewable Energy in Power Systems: Achievements and Perspectives
Jul 2021
Publication
This paper is a critical review of selected real-world energy storage systems based on hydrogen ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with short-term energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system.<br/>Therefore control systems and energy management strategies are important factors to achieve optimal results both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems new hybrid energy systems could be tailored to fit each situation and to reduce energy losses.
The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems
Dec 2021
Publication
An opportunity to decarbonise the offshore oil and gas sector lies in the integration of renewable energy sources with energy storage in a hybrid energy system (HES). Such concept enables maximising the exploitation of carbon-free renewable power while minimising the emissions associated with conventional power generation systems such as gas turbines. Offshore plants in addition to electrical and mechanical power also require process heat for their operation. Solutions that provide low-emission heat in parallel to power are necessary to reach a very high degree of decarbonisation. This paper investigates different options to supply process heat in offshore HES while the electric power is mostly covered by a wind turbine. All HES configurations include energy storage in the form of hydrogen tied to proton exchange membrane (PEM) electrolysers and fuel cells stacks. As a basis for comparison a standard configuration relying solely on a gas turbine and a waste heat recovery unit is considered. A HES combined with a waste heat recovery unit to supply heat proved efficient when low renewable power capacity is integrated but unable to deliver a total CO2 emission reduction higher than around 40%. Alternative configurations such as the utilization of gas-fired or electric heaters become more competitive at large installed renewable capacity approaching CO2 emission reductions of up to 80%.
Hydrogen Safety Strategies and Risk Management in Equinor
Sep 2021
Publication
Equinor has in recent years focused on low carbon technologies in addition to conventional oil & gas technologies. Clear strategic directions have been set to demonstrate Equinor’s commitment to longterm value creation that supports the Paris Agreement. This includes acceleration of decarbonization by establishing a well-functioning market for carbon capture transport and storage (CCS) as well as development of competitive hydrogen-based value chains and solutions. The specific properties of hydrogen must be taken into account in order to ensure safe design and operation of hydrogen systems as these properties differ substantially from those of natural gas and other conventional oil & gas products. Development projects need to consider and mitigate the increased possibility of high explosion pressures or detonation if hydrogen releases accumulate in enclosed or congested areas. On the other hand hydrogen’s buoyant properties can be exploited by locating potential leak points in the open to avoid gas accumulation thereby reducing the explosion risk. The purpose of this paper is to introduce Equinor’s hydrogen-based value chain projects and present our approach to ensure safe and effective designs. Safety strategies constitute the basis for Equinor’s safety and risk management. The safety strategies describe the connection between the hazards and risk profiles on one hand and the safety barrier elements and their needed performance on the other as input to safe design. The safety strategies also form the basis for safe operation. Measures to control the risk through practical designs follow from these strategies.
The Case for High-pressure PEM Water Electrolysis
Apr 2022
Publication
Hydrogen compression is a key part of the green hydrogen supply chain but mechanical compressors are prone to failure and add system complexity and cost. High-pressure water electrolysis can alleviate this problem through electrochemical compression of the gas internally in the electrolyzer and thereby eliminating the need for an external hydrogen compressor. In this work a detailed techno-economic assessment of high-pressure proton exchange membrane-based water electrolysis (PEMEL) systems was carried out. Electrolyzers operating at 80 200 350 and 700 bar were compared to state-of-the-art systems operating at 30 bar in combination with a mechanical compressor. The results show that it is possible to achieve economically viable solutions with high-pressure PEMEL-systems operating up to 200 bar. These pressure levels fit well with the requirements in existing and future industrial applications such as e-fuel production (30–120 bar) injection of hydrogen into natural gas grids (70 bar) hydrogen gas storage (≥200 bar) and ammonia production (200–300 bar). A sensitivity analysis also showed that if the cost of electricity is sufficiently low (
Large Scale Experiments and Model Validation of Pressure Peaking Phenomena-ignited Hydrogen Releases
Jan 2021
Publication
The Pressure Peaking Phenomena (PPP) is the effect of introducing a light gas into a vented volume of denser gas. This will result in a nonequilibrium pressure as the light gas pushes the dense gas out at the vent. Large scale experiments have been performed to produce relevant evidence. The results were used to validate an analytical model. Pressure and temperature were measured inside a constant volume while the mass flow and vent area were varied. The analytical model was based on the conservation of mass and energy. The results showed that increasing the mass flow rate the peak pressure increases and with increasing the ventilation area the peak pressure decreases. Peak pressure was measured above 45 kPa. Longer combustion time resulted in higher temperatures increasing an underpressure effect. The experimental results showed agreement with the analytical model results. The model predicts the pressures within reasonable limits of+/-2 kPa. The pressure peaking phenomena could be very relevant for hydrogen applications in enclosures with limited ventilation. This could include car garages ship hull compartments as well as compressor shielding. This work shows that the effect can be modeled and results can be used in design to reduce the consequences.
Experimental Study of Light Gas Dispersion in a Channel
Sep 2019
Publication
Usage of hydrogen as fuel gives rise to possible accidental risks due to leakage and dispersion. A risk from hydrogen leak is the formation of a large volume of the hydrogen-air mixture which could be ignited and leading up to a severe explosion. Prevention and control of formation and ignition of combustible hydrogen cloud necessitate sufficient knowledge of mechanisms of the hydrogen leak dispersion ignition and over-pressures generated during combustion. This paper aims to investigate the momentum-controlled jet the buoyancy-controlled wave and the parameters influencing hydrogen concentration distribution in an elongated space. It demonstrates experimental results and analysis from helium and hydrogen dispersion in a channel. A set of experiments were carried out for the release of helium and hydrogen jets in a 3 m long channel to record their concentrations in the cloud by concentration sensors at different horizontal and vertical positions. Flow visualization technique was applied using shadowgraph to image the mixing process next to the release point and the helium- hydrogen-air cloud shape at the middle of the channel. Moreover results were used for comparison of helium and hydrogen concentration gradients. The results of the experiments show that swift mixing occurs at higher flow rates smaller nozzle sizes and downward release direction. Higher concentration recorded in the channel with negative inclination. Results also confirmed that hydrogen/helium behavior pattern in the channel accords with mutual intrusion theory about gravity currents.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Identifying and Analysing Important Model Assumptions: Combining Techno-economic and Political Feasibility of Deep Decarbonisation Pathways in Norway
Mar 2024
Publication
Understanding the political feasibility of transition pathways is a key issue in energy transitions. Policy changes are a significant source of uncertainty in energy system optimisation modelling. Energy system models are nevertheless continuously being updated to reflect policy signals as realistically as possible. Using the concept of transition pathways as a starting point this cross-disciplinary study combines energy system optimization modelling with political feasibility of different transition pathways. This combination generates insights into key political decision points in the ongoing energy transition. Resting on actor support structure and political feasibility of four main pathway categories (electrification hydrogen biomass and energy efficiency) we identify critical model assumptions that are politically significant and impact model outcome. Then by replacing the critical assumptions with technical limitations we model a scenario that is unrestrained by assumptions about policy we identify areas where political choices are key to model outcomes. The combination of actor preferences and modelled energy system consequences enables the identification of future key decision points. We find that there is considerable support for electrification as the main pathway to net-zero. The implications of widespread electrification in terms of energy production and grid capacity lead us to identify challenging policy decisions with implications for the energy transition.
System-friendly Process Design: Optimizing Blue Hydrogen Production for Future Energy Systems
Aug 2022
Publication
While the effects of ongoing cost reductions in renewables batteries and electrolyzers on future energy systems have been extensively investigated the effects of significant advances in CO2 capture and storage (CCS) technologies have received much less attention. This research gap is addressed via a long-term (2050) energy system model loosely based on Germany yielding four main findings. First CCS-enabled pathways offer the greatest benefits in the hydrogen sector where hydrogen prices can be reduced by two-thirds relative to a scenario without CCS. Second advanced blue hydrogen technologies can reduce total system costs by 12% and enable negative CO2 emissions due to higher efficiencies and CO2 capture ratios. Third co-gasification of coal and biomass emerged as an important enabler of these promising results allowing efficient exploitation of limited biomass resources to achieve negative emissions and limit the dependence on imported natural gas. Finally CCS decarbonization pathways can practically and economically incorporate substantial shares of renewable energy to reduce fossil fuel dependence. Such diversification of primary energy inputs increases system resilience to the broad range of socio-techno-economic challenges facing the energy transition. In conclusion balanced blue-green pathways offer many benefits and deserve serious consideration in the global decarbonization effort.
Optimal Renewable Energy Distribution Between Gasifier and Electrolyzer for Syngas Generation in a Power and Biomass-to-Liquid Fuel Process
Jan 2022
Publication
By adding energy as hydrogen to the biomass-to-liquid (BtL) process several published studies have shown that carbon efficiency can be increased substantially. Hydrogen can be produced from renewable electrical energy through the electrolysis of water or steam. Adding high-temperature thermal energy to the gasifier will also increase the overall carbon efficiency. Here an economic criterion is applied to find the optimal distribution of adding electrical energy directly to the gasifier as opposed to the electrolysis unit. Three different technologies for electrolysis are applied: solid oxide steam electrolysis (SOEC) alkaline water electrolysis (AEL) and proton exchange membrane (PEM). It is shown that the addition of part of the renewable energy to the gasifier using electric heaters is always beneficial and that the electrolysis unit operating costs are a significant portion of the costs. With renewable electricity supplied at a cost of 50 USD/MWh and a capital cost of 1500 USD/kW installed SOEC the operating costs of electric heaters and SOEC account for more than 70% of the total costs. The energy efficiency of the electrolyzer is found to be more important than the capital cost. The optimal amount of energy added to the gasifier is about 37–39% of the energy in the biomass feed. A BtL process using renewable hydrogen imports at 2.5 USD/kg H2 or SOEC for hydrogen production at reduced electricity prices gives the best values for the economic objective.
Hydrogen Relative Permeability Hysteresis in Underground Storage
Aug 2022
Publication
Implementation of the hydrogen economy for emission reduction will require storage facilitiesand underground hydrogen storage (UHS) in porous media offers a readily available large-scale option. Lack ofstudies on multiphase hydrogen flow in porous media is one of the several barriers for accurate predictions ofUHS. This paper reports for the first time measurements of hysteresis in hydrogen-water relative permeabilityin a sandstone core under shallow storage conditions. We use the steady state technique to measure primarydrainage imbibition and secondary drainage relative permeabilities and extend laboratory measurements withnumerical history matching and capillary pressure measurements to cover the whole mobile saturation range.We observe that gas and water relative permeabilities show strong hysteresis and nitrogen as substitute forhydrogen in laboratory assessments should be used with care. Our results serve as calibrated input to field scalenumerical modeling of hydrogen injection and withdrawal processes during porous media UHS.
Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers
Dec 2018
Publication
In order to adopt water electrolyzers as a main hydrogen production system it is critical to develop inexpensive and earth-abundant catalysts. Currently both half-reactions in water splitting depend heavily on noble metal catalysts. This review discusses the proton exchange membrane (PEM) water electrolysis (WE) and the progress in replacing the noble-metal catalysts with earth-abundant ones. The efforts within this field for the discovery of efficient and stable earth-abundant catalysts (EACs) have increased exponentially the last few years. The development of EACs for the oxygen evolution reaction (OER) in acidic media is particularly important as the only stable and efficient catalysts until now are noble-metal oxides such as IrOx and RuOx. On the hydrogen evolution reaction (HER) side there is significant progress on EACs under acidic conditions but there are very few reports of these EACs employed in full PEM WE cells. These two main issues are reviewed and we conclude with prospects for innovation in EACs for the OER in acidic environments as well as with a critical assessment of the few full PEM WE cells assembled with EACs.
Effect of Mechanical Ventilation on Accidental Hydrogen Releases - Large Scale Experiments
Sep 2021
Publication
This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces like underground garages. The purpose was to find the mass flow rate limit hence the TPRD diameter limit that will not require a change in the ventilation system. The experiments were performed in a 40 ft ISO container in Norway and hydrogen gas was used in all experiments. The forced ventilation system was installed with a standard outlet 315 mm diameter. The ventilation parameters during the investigation were British Standard with 10 ACH and British Standard with 6 ACH. The hydrogen releases were obtained through 0.5 mm and 1 mm nozzle from different hydrogen reservoir pressures. Both types of mass flow: constant and blowdown were included in the experimental matrix. The analysis of hydrogen concentration of created hydrogen cloud in the container shows the influence of the forced ventilation on hydrogen releases together with TPRD diameter and reservoir pressure. The generated experimental data will be used to validate a CFD model in the next step.
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO2 Emissions
Jul 2022
Publication
Rapidly declining costs of renewable energy technologies have made solar and wind the cheapest sources of energy in many parts of the world. This has been seen primarily as enabling the rapid decarbonization of the electricity sector but low-cost low-carbon energy can have a great secondary impact by reducing the costs of energy-intensive decarbonization efforts in other areas. In this study we consider by way of an exemplary carbon capture and utilization cycle based on mature technologies the energy requirements of the “industrial carbon cycle” an emerging paradigm in which industrial CO2 emissions are captured and reprocessed into chemicals and fuels and we assess the impact of declining renewable energy costs on overall economics of these processes. In our exemplary process CO2 is captured from a cement production facility via an amine scrubbing process and combined with hydrogen produced by a solar-powered polymer electrolyte membrane using electrolysis to produce methanol. We show that solar heat and electricity generation costs currently realized in the Middle East lead to a large reduction in the cost of this process relative to baseline assumptions found in published literature and extrapolation of current energy price trends into the near future would bring costs down to the level of current fossil-fuel-based processes.
Carbon-negative Hydrogen from Biomass Using Gas Switching Integrated Gasification: Techno-economic Assessment
Sep 2022
Publication
Ambitious decarbonization pathways to limit the global temperature rise to well below 2 ◦C will require largescale CO2 removal from the atmosphere. One promising avenue for achieving this goal is hydrogen production from biomass with CO2 capture. The present study investigates the techno-economic prospects of a novel biomass-to-hydrogen process configuration based on the gas switching integrated gasification (GSIG) concept. GSIG applies the gas switching combustion principle to indirectly combust off-gas fuel from the pressure swing adsorption unit in tubular reactors integrated into the gasifier to improve efficiency and CO2 capture. In this study these efficiency gains facilitated a 5% reduction in the levelized cost of hydrogen (LCOH) relative to conventional O2-blown fluidized bed gasification with pre-combustion CO2 capture even though the larger and more complex gasifier cancelled out the capital cost savings from avoiding the air separation and CO2 capture units. The economic assessment also demonstrated that advanced gas treatment using a tar cracker instead of a direct water wash can further reduce the LCOH by 12% and that the CO2 prices in excess of 100 €/ton consistent with ambitious decarbonization pathways will make this negative-emission technology economically highly attractive. Based on these results further research into the GSIG concept to facilitate more efficient utilization of limited biomass resources can be recommended.
Explosive Phase Transition in LH2
Sep 2021
Publication
This paper describes two models for analysing and simulating the physical effects of explosive phase transition of liquid hydrogen (LH2) also known as cold BLEVE. The present work is based on theoretical and experimental work for liquefied CO2. A Rankine Hugoniot analysis for evaporation waves that was previously developed for CO2 is now extended to LH2. A CFD-method for simulating two-phase flow with mass transfer between the phases is presented and compared with the Rankine Hugoniot analysis results. The Rankine Hugoniot method uses real fluid equations of state suited for LH2 while the CFD method uses linear equations of state suited for shock capturing methods. The results show that there will be a blast from a catastrophic rupture of an LH2 vessel and that the blast waves will experience a slow decay due to the large positive pressure phase.
Exploring the Complexity of Hydrogen Perception and Acceptance Among Key Stakeholders in Norway
Nov 2022
Publication
This article explores the complexity of factors or mechanisms that can influence hydrogen stakeholder perception and acceptance in Norway. We systematically analyze 16 semi-structured in-depth interviews with industry stakeholders at local municipal regional and national levels of interest and authority in Norway. Four empirical dimensions are identified that highlight the need for whole system approaches in hydrogen technology research: (1) several challenges incentives and synergy effects influence the hydrogen transition; (2) transport preferences are influenced by combined needs and limitations; (3) levels of knowledge and societal trust determinant to perceptions of risk and acceptance; and (4) national and international hydrogen stakeholders are crucial to building incentives and securing commitment among key actors. Our findings imply that project management planners engineers and policymakers need to apply a whole system perspective and work across local regional and national levels before proceeding with large-scale development and implementation of the hydrogen supply chain.
No more items...