United States
H-Mat Hydrogen Compatibility of Polymers and Elastomers
Sep 2019
Publication
The H2@Scale program of the U.S. Department of Energy (DOE) Fuel Cell Technologies Office is supporting work on the hydrogen compatibility of polymers to improve the durability and reliability of materials for hydrogen infrastructure. The hydrogen compatibility program (H-Mat) seeks “to address the challenges of hydrogen degradation by elucidating the mechanisms of hydrogen-materials interactions with the goal of providing science-based strategies to design materials (micro)structures and morphology with improved resistance to hydrogen degradation.” This research has found hydrogen and pressure interactions with model rubber-material compounds demonstrating volume change and compression-set differences in the materials. The research leverages state-of-the-art capabilities of the DOE national labs. The materials were investigated using helium-ion microscopy which revealed significant morphological changes in the plasticizer incorporating compounds after exposure as evidenced by time-of-flight secondary ion mass spectrometry. Additional studies using transmission electron microscopy and nuclear magnetic resonance revealed that nanosized inclusions developed after gas decompression in rubber- and plasticizer-only materials; this is an indication of void formation at the nanometer level.
Experimental Investigation of Nozzle Aspect Ratio Effects on Under Expanded Hydrogen Jet Release Characteristics
Sep 2013
Publication
Most experimental investigations of underexpanded hydrogen jets have been limited to circular nozzles in an attempt to better understand the fundamental jet-exit flow physics and model this behaviour with pseudo source models. However realistic compressed storage leak exit geometries are not always expected to be circular. In the present study jet dispersion characteristics from rectangular slot nozzles with aspect ratios from 2 to 8 were investigated and compared with an equivalent circular nozzle. Schlieren imaging was used to observe the jet-exit shock structure while quantitative Planar Laser Rayleigh Scattering was used to measure downstream dispersion characteristics. These results provide physical insight and much needed model validation data for model development.
An Assessment on the Quantification of Hydrogen Releases Through Oxygen Displacement Using Oxygen
Sep 2013
Publication
Contrary to several reports in the recent literature the use of oxygen sensors for indirectly monitoring ambient hydrogen concentration has serious drawbacks. This method is based on the assumption that a hydrogen release will displace oxygen which is quantified using oxygen sensors. Despite its shortcomings the draft Hydrogen Vehicle Global Technical Regulation lists this method as a means to monitor hydrogen leaks to verify vehicle fuel system integrity. Experimental evaluations that were designed to impartially compare the ability of commercial oxygen and hydrogen sensors to reliably measure and report hydrogen concentration changes are presented. Numerous drawbacks are identified and discussed.
IPHE Regulations Codes and Standards Working Group-type IV COPV Round Robin Testing
Oct 2015
Publication
This manuscript presents the results of a multi-lateral international activity intended to understand how to execute a cycle stress test as specified in a chosen standard (GTR SAE ISO EIHP …). The purpose of this work was to establish a harmonized test method protocol to ensure that the same results would be achieved regardless of the testing facility. It was found that accurate temperature measurement of the working fluid is necessary to ensure the test conditions remain within the tolerances specified. Continuous operation is possible with adequate cooling of the working fluid but this becomes more demanding if the cycle frequency increases. Recommendations for future test system design and operation are presented.
Department of Energy Hydrogen Program Plan
Nov 2020
Publication
The Department of Energy (DOE) Hydrogen Program Plan (the Program Plan or Plan) outlines the strategic high-level focus areas of DOE’s Hydrogen Program (the Program). The term Hydrogen Program refers not to any single office within DOE but rather to the cohesive and coordinated effort of multiple offices that conduct research development and demonstration (RD&D) activities on hydrogen technologies. This terminology and the coordinated efforts on hydrogen among relevant DOE offices have been in place since 2004 and provide an inclusive and strategic view of how the Department coordinates activities on hydrogen across applications and sectors. This version of the Plan updates and expands upon previous versions including the Hydrogen Posture Plan and the DOE Hydrogen and Fuel Cells Program Plan and provides a coordinated high-level summary of hydrogen related activities across DOE.
The 2006 Hydrogen Posture Plan fulfilled the requirement in the Energy Policy Act of 2005 (EPACT 2005) that the Energy Secretary transmit to Congress a coordinated plan for DOE’s hydrogen and fuel cell activities. For historical context the original Posture Plan issued in 2004 outlined a coordinated plan for DOE and the U.S. Department of Transportation to meet the goals of the Hydrogen Fuel Initiative (HFI) and implement the 2002 National Hydrogen Energy Technology Roadmap. The HFI was launched in 2004 to accelerate research development and demonstration (RD&D) of hydrogen and fuel cell technologies for use in transportation electricity generation and portable power applications. The Roadmap provided a blueprint for the public and private efforts required to fulfill a long-term national vision for hydrogen energy as outlined in A National Vision of America’s Transition to a Hydrogen Economy—to 2030 and Beyond. Both the Roadmap and the Vision were developed out of meetings involving DOE industry academia non-profit organizations and other stakeholders. The Roadmap the Vision the Posture Plans the 2011 Program Plan and the results of key stakeholder workshops continue to form the underlying basis for this current edition of the Program Plan.
This edition of the Program Plan reflects the Department’s focus on conducting coordinated RD&D activities to enable the adoption of hydrogen technologies across multiple applications and sectors. It includes content from the various plans and documents developed by individual offices within DOE working on hydrogen-related activities including: the Office of Fossil Energy's Hydrogen Strategy: Enabling a Low Carbon Economy the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Cell Technologies Office Multi-year RD&D Plan the Office of Nuclear Energy’s Integrated Energy Systems 2020 Roadmap and the Office of Science’s Basic Research Needs for the Hydrogen Economy. Many of these documents are also in the process of updates and revisions and will be posted online.
Through this overarching document the reader will gain information on the key RD&D needs to enable the largescale use of hydrogen and related technologies—such as fuel cells and turbines—in the economy and how the Department’s various offices are addressing those needs. The Program will continue to periodically revise the Plan along with all program office RD&D plans to reflect technological progress programmatic changes policy decisions and updates based on stakeholder input and reviews.
The 2006 Hydrogen Posture Plan fulfilled the requirement in the Energy Policy Act of 2005 (EPACT 2005) that the Energy Secretary transmit to Congress a coordinated plan for DOE’s hydrogen and fuel cell activities. For historical context the original Posture Plan issued in 2004 outlined a coordinated plan for DOE and the U.S. Department of Transportation to meet the goals of the Hydrogen Fuel Initiative (HFI) and implement the 2002 National Hydrogen Energy Technology Roadmap. The HFI was launched in 2004 to accelerate research development and demonstration (RD&D) of hydrogen and fuel cell technologies for use in transportation electricity generation and portable power applications. The Roadmap provided a blueprint for the public and private efforts required to fulfill a long-term national vision for hydrogen energy as outlined in A National Vision of America’s Transition to a Hydrogen Economy—to 2030 and Beyond. Both the Roadmap and the Vision were developed out of meetings involving DOE industry academia non-profit organizations and other stakeholders. The Roadmap the Vision the Posture Plans the 2011 Program Plan and the results of key stakeholder workshops continue to form the underlying basis for this current edition of the Program Plan.
This edition of the Program Plan reflects the Department’s focus on conducting coordinated RD&D activities to enable the adoption of hydrogen technologies across multiple applications and sectors. It includes content from the various plans and documents developed by individual offices within DOE working on hydrogen-related activities including: the Office of Fossil Energy's Hydrogen Strategy: Enabling a Low Carbon Economy the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Cell Technologies Office Multi-year RD&D Plan the Office of Nuclear Energy’s Integrated Energy Systems 2020 Roadmap and the Office of Science’s Basic Research Needs for the Hydrogen Economy. Many of these documents are also in the process of updates and revisions and will be posted online.
Through this overarching document the reader will gain information on the key RD&D needs to enable the largescale use of hydrogen and related technologies—such as fuel cells and turbines—in the economy and how the Department’s various offices are addressing those needs. The Program will continue to periodically revise the Plan along with all program office RD&D plans to reflect technological progress programmatic changes policy decisions and updates based on stakeholder input and reviews.
Deploying Fuel Cell Systems, What Have We Learned
Sep 2013
Publication
The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial government and academic sectors to help advise the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office through its work in hydrogen safety codes and standards. The Panel's initiatives in reviewing safety plans conducting safety evaluations identifying safety-related technical data gaps and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration. The Panel's recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refuelling material handling equipment backup power for warehouses and telecommunication sites and portable power devices. This paper summarizes the work and learnings from the Panel's early efforts the transition to its current focus and the outcomes and conclusions from recent work on the deployment of hydrogen and fuel cell systems.
3D Risk Management for Hydrogen Installations (HY3DRM)
Oct 2015
Publication
This paper introduces the 3D risk management (3DRM) concept with particular emphasis on hydrogen installations (Hy3DRM). The 3DRM framework entails an integrated solution for risk management that combines a detailed site-specific 3D geometry model a computational fluid dynamics (CFD) tool for simulating flow-related accident scenarios methodology for frequency analysis and quantitative risk assessment (QRA) and state-of-the-art visualization techniques for risk communication and decision support. In order to reduce calculation time and to cover escalating accident scenarios involving structural collapse and projectiles the CFD-based consequence analysis can be complemented with empirical engineering models reduced order models or finite element analysis (FEA). The paper outlines the background for 3DRM and presents a proof-of-concept risk assessment for a hypothetical hydrogen filling station. The prototype focuses on dispersion fire and explosion scenarios resulting from loss of containment of gaseous hydrogen. The approach adopted here combines consequence assessments obtained with the CFD tool FLACS-Hydrogen from Gexcon and event frequencies estimated with the Hydrogen Risk Assessment Models (HyRAM) tool from Sandia to generate 3D risk contours for explosion pressure and radiation loads. For a given population density and set of harm criteria it is straightforward to extend the analysis to include personnel risk as well as risk-based design such as detector optimization. The discussion outlines main challenges and inherent limitations of the 3DRM concept as well as prospects for further development towards a fully integrated framework for risk management in organizations.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
Design of an Efficient, High Purity Hydrogen Generation Apparatus and Method for a Sustainable, Closed Clean Energy Cycle
Jul 2015
Publication
In this paper we present a detailed design study of a novel apparatus for safely generating hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The apparatus consists of a first pressure vessel filled with liquid H2O with an overpressure of nitrogen (N2) gas above the H2O reactant and a second pressure vessel that stores solid Na reactant. Hydrogen gas is generated above the solid Na when H2O reactant is introduced using a regulator that senses when the downstream pressure of H2 gas above the solid Na reactant has dropped below a threshold value. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant.
Hydrogen Systems Component Safety
Sep 2013
Publication
The deployment of hydrogen technologies particularly the deployment of hydrogen dispensing systems for passenger vehicles requires that hydrogen components perform reliably in environments where they have to meet the following performance parameters:
The paper will use incident frequency data from NREL’s Technology Validation project to more quantitatively identify safety concerns in hydrogen dispensing and storage systems.
- Perform safely where the consumer will be operating the dispensing equipment
- Dispense hydrogen at volumes comparable to gasoline dispensing stations in timeframes comparable to gasoline stations
- Deliver a fueling performance that is within the boundaries of consumer tolerance
- Perform with maintenance/incident frequencies comparable to gasoline dispensing systems
The paper will use incident frequency data from NREL’s Technology Validation project to more quantitatively identify safety concerns in hydrogen dispensing and storage systems.
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatter diffraction analysis indicated that the reduction in ductility by hydrogen pre-charging was associated with localized plasticity-assisted intergranular crack initiation. It should be noted as an important finding that hydrogen-assisted cracking of the metastable HEA occurred not through a brittle mechanism but through localized plastic deformation in both the austenite and ε-martensite phases.
Wide Area and Distributed Hydrogen Sensors
Sep 2009
Publication
Recent advances in optical sensors show promise for the development of new wide area monitoring and distributed optical network hydrogen detection systems. Optical hydrogen sensing technologies reviewed here are: 1) open path Raman scattering systems 2) back scattering from chemically treated solid polymer matrix optical fiber sensor cladding; and 3) schlieren and shearing interferometry imaging. Ultrasonic sensors for hydrogen release detection are also reviewed. The development status of these technologies and their demonstrated results in sensor path length low hydrogen concentration detection ability and response times are described and compared to the corresponding status of hydrogen spot sensor network technologies.
Statistical Analysis of Electrostatic Spark Ignition of Lean H2-O2-Ar Mixtures
Sep 2009
Publication
Determining the risk of accidental ignition of flammable mixtures is a topic of tremendous importance in industry and aviation safety. The concept of minimum ignition energy (MIE) has traditionally formed the basis for studying ignition hazards of fuels. In recent years however the viewpoint of ignition as a statistical phenomenon has formed the basis for studying ignition as this approach appears to be more consistent with the inherent variability in engineering test data. We have developed a very low energy capacitive spark ignition system to produce short sparks with fixed lengths of 1 to 2 mm. The ignition system is used to perform spark ignition tests in lean hydrogen oxygen-argon test mixtures over a range of spark energies. The test results are analyzed using statistical tools to obtain probability distributions for ignition versus spark energy demonstrating the statistical nature of ignition. The results also show that small changes in the hydrogen concentration lead to large changes in the ignition energy and dramatically different flame characteristics. A second low-energy spark ignition system is also developed to generate longer sparks with varying lengths up to 10 mm. A second set of ignition tests is performed in one of the test mixtures using a large range of park energies and lengths. The results are analyzed to obtain a probability distribution for ignition versus the spark energy per unit spark length. Preliminary results show that a single threshold MIE value does not exist and that the energy per unit length may be a more appropriate parameter for quantifying the risk of ignition.
Polymer Behaviour in High Pressure Hydrogen, Helium and Argon Environments as Applicable to the Hydrogen Infrastructure
Sep 2017
Publication
Polymers for O-rings valve seats gaskets and other sealing applications in the hydrogen infrastructure face extreme conditions of high-pressure H2 (0.1 to 100 MPa) during normal operation. To fill current knowledge gaps and to establish standard test methods for polymers in H2 environments these materials can be tested in laboratory scale H2 manifolds mimicking end use pressure and temperature conditions. Beyond the influence of high pressure H2 the selection of gases used for leak detection in the H2 test manifold their pressures and times of exposure gas types relative diffusion and permeation rates are all important influences on the polymers being tested. These effects can be studied ex-situ with post-exposure characterization. In a previous study four polymers (Viton A Buna N High Density Polyethylene (HDPE) and Polytetrafluoroethylene (PTFE)) commonly used in the H2 infrastructure were exposed to high-pressure H2 (100 MPa). The observed effects of H2 were consistent with typical polymer property-structure relationships; in particular H2 affected elastomers more than thermoplastics. However since high pressure He was used for purging and leak detection prior to filling with H2 a study of the influence of the purge gas on these polymers was considered necessary to isolate the effects of H2 from those of the purge gas. Therefore in this study Viton A Buna N and PTFE were exposed to the He purge procedure without the subsequent H2 exposure. Additionally six polymers Viton A Buna N PTFE Polyoxymethylene (POM) Polyamide 11 (Nylon) and Ethylenepropylenediene monomer rubber (EPDM) were subjected to high pressure Ar (100 MPa) followed by high pressure H2 (100 MPa) under the same static isothermal conditions to identify the effect of a purge gas with a significantly larger molecular size than He. Viton A and Buna N elastomers are more prone to irreversible changes as a result of H2 exposure from both Ar and He leak tests as indicated by influences on storage modulus extent of swelling and increased compression set. EPDM even though it is an elastomer is not as prone to high-pressure gas influences. The thermoplastics are generally less influenced by high pressure regardless of the gas type. Conclusions from these experiments will provide insight into the influence of purging processes and purge gases on the subsequent testing in high pressure gaseous H2. Control for the influence of purging on testing results is essential for the development of robust test methods for evaluating the effects of H2 and other high-pressure gases on the properties of polymers.
Advancing the Hydrogen Safety Knowledge Base
Sep 2013
Publication
The International Energy Agency's Hydrogen Implementing Agreement (IEA HIA) was established in 1977 to pursue collaborative hydrogen research and development and information exchange among its member countries. Information and knowledge dissemination is a key aspect of the work within IEA HIA tasks and case studies technical reports and presentations/publications often result from the collaborative efforts. The work conducted in hydrogen safety under Task 31 and its predecessor Task 19 can positively impact the objectives of national programs even in cases for which a specific task report is not published. The interactions within Task 31 illustrate how technology information and knowledge exchange among participating hydrogen safety experts serve the objectives intended by the IEA HIA.
Effect of Initial Turbulence on Vented Explosion Over Pressures from Lean Hydrogen-air Deflagrations
Sep 2013
Publication
To examine the effect of initial turbulence on vented explosions experiments were performed for lean hydrogen–air mixtures with hydrogen concentrations ranging from 12 to 15% vol. at elevated initial turbulence. As expected it was found that an increase in initial turbulence increased the overall flame propagation speed and this increased flame propagation speed translated into higher peak overpressures during the external explosion. The peak pressures generated by flame–acoustic interactions however did not vary significantly with initial turbulence. When flame speeds measurements were examined it was found that the burning velocity increased with flame radius as a power function of radius with a relatively constant exponent over the range of weak initial turbulence studied and did not vary systematically with initial turbulence. Instead the elevated initial turbulence increased the initial flame propagation velocities of the various mixtures. The initial turbulence thus appears to act primarily by generating higher initial flame wrinkling while having a minimal effect on the growth rate of the wrinkles. For practical purposes of modelling flame propagation and pressure generation in vented explosions the increase in burning velocity due to turbulence is suggested to be approximated by a single constant factor that increases the effective burning velocity of the mixture. When this approach is applied to a previously developed vent sizing correlation the correlation performs well for almost all of the peaks. It was found however that in certain situations this approach significantly under predicts the flame–acoustic peak. This suggests that further research may be necessary to better understand the influence of initial turbulence on the development of flame–acoustic peaks in vented explosions.
Compatibility and Suitability of Existing Steel Pipelines for Transport of Hydrogen and Hydrogen-natural Gas Blends
Sep 2017
Publication
Hydrogen is being considered as a pathway to decarbonize large energy systems and for utility-scale energy storage. As these applications grow transportation infrastructure that can accommodate large quantities of hydrogen will be needed. Many millions of tons of hydrogen are already consumed annually some of which is transported in dedicated hydrogen pipelines. The materials and operation of these hydrogen pipeline systems however are managed with more constraints than a conventional natural gas pipeline. Transitional strategies for deep decarbonization of energy systems include blending hydrogen into existing natural gas systems where the materials and operations may not have the same controls. This study explores the hydrogen compatibility of existing pipeline steels and the suitability of these steels in hydrogen pipeline systems. Representative fracture and fatigue properties of pipeline grade steels in gaseous hydrogen are summarized from the literature. These properties are then considered in idealized design life calculations to inform materials performance for a typical gas pipeline.
Effect of Hydrogen Concentration on Vented Explosion Overpressures from Lean Hydrogen–air Deflagrations
Sep 2011
Publication
Experimental data from vented explosion tests using lean hydrogen–air mixtures with concentrations from 12 to 19% vol. are presented. A 63.7-m3 chamber was used for the tests with a vent size of either 2.7 or 5.4 m2. The tests were focused on the effect of hydrogen concentration ignition location vent size and obstacles on the pressure development of a propagating flame in a vented enclosure. The dependence of the maximum pressure generated on the experimental parameters was analyzed. It was confirmed that the pressure maxima are caused by pressure transients controlled by the interplay of the maximum flame area the burning velocity and the overpressure generated outside of the chamber by an external explosion. A model proposed earlier to estimate the maximum pressure for each of the main pressure transients was evaluated for the various hydrogen concentrations. The effect of the Lewis number on the vented explosion overpressure is discussed.
Experimental Investigation of Spherical-flame Acceleration in Lean Hydrogen-air Mixtures
Oct 2015
Publication
Large-scale experiments examining spherical-flame acceleration in lean hydrogen-air mixtures were performed in a 64 m3 constant-pressure enclosure. Equivalence ratios ranging from 0.33 to 0.57 were examined using detailed front tracking for flame diameters up to 1.2 m through the use of a Background Oriented Schlieren (BOS) technique. From these measurements the critical radii for onset of instability for these mixtures on the order of 2–3 cm were obtained. In addition the laminar burning velocity and rate of flame acceleration as a function of radius were also measured.
Natural and Forced Ventilation of Buoyant Gas Released In a Full-Scale Garage, Comparison of Model Predictions and Experimental Data
Sep 2011
Publication
An increase in the number of hydrogen-fuelled applications in the marketplace will require a better understanding of the potential for fires and explosion associated with the unintended release of hydrogen within a structure. Predicting the temporally evolving hydrogen concentration in a structure with unknown release rates leak sizes and leak locations is a challenging task. A simple analytical model was developed to predict the natural and forced mixing and dispersion of a buoyant gas released in a partially enclosed compartment with vents at multiple levels. The model is based on determining the instantaneous compartment over-pressure that drives the flow through the vents and assumes that the helium released under the automobile mixes fully with the surrounding air. Model predictions were compared with data from a series of experiments conducted to measure the volume fraction of a buoyant gas (at 8 different locations) released under an automobile placed in the center of a full-scale garage (6.8 m × 5.4 m × 2.4 m). Helium was used as a surrogate gas for safety concerns. The rate of helium released under an automobile was scaled to represent 5 kg of hydrogen released over 4 h. CFD simulations were also performed to confirm the observed physical phenomena. Analytical model predictions for helium volume fraction compared favourably with measured experimental data for natural and forced ventilation. Parametric studies are presented to understand the effect of release rates vent size and location on the predicted volume fraction in the garage. Results demonstrate the applicability of the model to effectively and rapidly reduce the flammable concentration of hydrogen in a compartment through forced ventilation.
QRA Including Utility for Decision Support of H2 Infrastructure Licensing
Sep 2011
Publication
Rational decision making in land use planning and licensing of H2 infrastructure surrounded by other industrial activities and population should take account of individual and societal risks. QRA produces a risk matrix of potential consequences versus event probabilities that is shrouded in ambiguity and lacking transparency. NIMBY and conflict are lurking. To counter these issues risk analysts should therefore also determine the utilities of decision alternatives which describe desirability of benefits on a single scale. Rationally weighing risks versus benefits results in more transparent and defendable decisions. Example risk analyses of two types of refuelling stations and three hydrogen supply transportation types applying Influence Diagram/BBNs are worked out. Keywords: risk assessment influence diagram decision making land use planning
Lessons Learned from Safety Events
Sep 2011
Publication
The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety [1] [2]. Since 2009 continuing work has not only highlighted the value of safety lessons learned but enhanced how the database provides access to another safety knowledge tool Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learning’s from around the world. This paper updates recent progress highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting analyzing and using safety event information.
HYRAM: A Methodology and Toolkit for Quantitative Risk Assessment of Hydrogen Systems
Oct 2015
Publication
HyRAM is a methodology and accompanying software toolkit which is being developed to provide a platform for integration of state-of-the-art validated science and engineering models and data relevant to hydrogen safety. As such the HyRAM software toolkit establishes a standard methodology for conducting quantitative risk assessment (QRA) and consequence analysis relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates fast-running deterministic and probabilistic models for quantifying risk of accident scenarios for predicting physical effects and for characterizing the impact of hydrogen hazards (thermal effects from jet fires thermal and pressure effects from deflagrations and detonations). HyRAM incorporates generic probabilities for equipment failures for nine types of hydrogen system components generic probabilities for hydrogen ignition and probabilistic models for the impact of heat flux and pressure on humans and structures. These are combined with fast-running computationally and experimentally validated models of hydrogen release and flame behaviour. HyRAM can be extended in scope via user contributed models and data. The QRA approach in HyRAM can be used for multiple types of analyses including codes and standards development code compliance safety basis development and facility safety planning. This manuscript discusses the current status and vision for HyRAM.
Overview of the DOE Hydrogen Safety, Codes and Standards Program part 4- Hydrogen Sensors
Oct 2015
Publication
Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role sensors can perform several important functions including indication of unintended hydrogen releases activation of mitigation strategies to preclude the development of dangerous situations activation of alarm systems and communication to first responders and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office’s Safety and Codes Standards (SCS) program in particular which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory Los Alamos National Laboratory and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors including development of advance sensor platforms with exemplary performance development of sensor-related code and standards outreach to stakeholders on the role sensors play in facilitating deployment technology evaluation and support on the proper selection and use of sensors.
Validated Equivalent Source Model for an Under-expanded Hydrogen Jet
Oct 2015
Publication
As hydrogen fuel cell vehicles become more widely adopted by consumers the demand for refuelling stations increases. Most vehicles require high-pressure (either 350 or 700 bar) hydrogen and therefore the refuelling infrastructure must support these pressures. Fast running reduced order physical models of releases from high-pressure sources are needed so that quantitative risk assessment can guide the safety certification of these stations. A release from a high pressure source is choked at the release point forming the complex shock structures of an under-expanded jet before achieving a characteristic Gaussian pro le for velocity density mass fraction etc. downstream. Rather than using significant computational resources to resolve the shock structure an equivalent source model can be used to quickly and accurately describe the ow in terms of velocity diameter and thermodynamic state after the shock structure. In this work we present correlations for the equivalent boundary conditions of a subsonic jet as a high-pressure jet downstream of the shock structure. Schlieren images of under-expanded jets are used to show that the geometrical structure of under-expanded jets scale with the square root of the static to ambient pressure ratio. Correlations for an equivalent source model are given and these parameters are also found to scale with square root of the pressure ratio. We present our model as well as planar laser Rayleigh scattering validation data for static pressures up to 60 bar.
Overview of the DOE Hydrogen Safety, Codes and Standards Program Part 1- Regulations, Codes and Standards (RCS) for Hydrogen Technologies - An Historical Overview
Oct 2015
Publication
RCS for hydrogen technologies were first developed approximately sixty years ago when hydrogen was being sold as an industrial commodity. The advent of new hydrogen technologies such as Fuel Cell Electric Vehicles (FCEVs) created a need for new RCS. These RCS have been developed with extensive support from the US DOE. These new hydrogen technologies are approaching commercial deployment and this process will produce information on RCS field performance that will create more robust RCS.
Continuous Codes and Standards Improvement (CCSI)
Oct 2015
Publication
As of 2014 the majority of the Codes and Standards required to initially deploy hydrogen technologies infrastructure in the US have been promulgated1. These codes and standards will be field tested through their application to actual hydrogen technologies projects. CCSI is process of identifying code issues that arise during project deployment and then develop codes solutions to these issues. These solutions would typically be proposed amendments to codes and standards. The process is continuous because of technology and the state of safety knowledge develops there will be a need for monitoring the application of codes and standards and improving them based on information gathered during their application. This paper will discuss code issues that have surfaced through hydrogen technologies infrastructure project deployment and potential code changes that would address these issues. The issues that this paper will address include:
- Setback distances for bulk hydrogen storage
- Code mandated hazard analyses
- Sensor placement and communication
- The use of approved equipment
- System monitoring and maintenance requirements
Characteristic of Cryogenic Hydrogen Flames from High-aspect Ratio Nozzles
Sep 2019
Publication
Unintentional leaks at hydrogen fuelling stations have the potential to form hydrogen jet flames which pose a risk to people and infrastructure. The heat flux from these jet flames are often used to develop separation distances between hydrogen components and buildings lot-lines etc. The heat flux and visible flame length is well understood for releases from round nozzles but real unintended releases would be expected to be be higher aspect-ratio cracks. In this work we measured the visible flame length and heat-flux characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. We compare this data to flames of both cryogenic and compressed hydrogen from round nozzles. The aspect ratio of the release does not affect the flame length or heat flux significantly for a given mass flow under the range of conditions studied. The engineering correlations presented in this work that enable the prediction of flame length and heat flux can be used to assess risk at hydrogen fuelling stations with liquid hydrogen and develop science-based separation distances for these stations.
Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues
Mar 2013
Publication
The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest four deliver natural gas from Canada and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.
Enhancing Safety of Hydrogen Containment Components Through Materials Testing Under In-service Conditions
Oct 2015
Publication
The capabilities in the Hydrogen Effects on Materials Laboratory (HEML) at Sandia National Laboratories and the related materials testing activities that support standards development and technology deployment are reviewed. The specialized systems in the HEML allow testing of structural materials under in-service conditions such as hydrogen gas pressures up to 138 MPa temperatures from ambient to 203 K and cyclic mechanical loading. Examples of materials testing under hydrogen gas exposure featured in the HEML include stainless steels for fuel cell vehicle balance of plant components and Cr-Mo steels for stationary seamless pressure vessels.
Hydrogen Fuel-Cell Forklift Vehicle Releases In Enclosed Spaces
Sep 2011
Publication
Sandia National Laboratories has worked with stakeholders and original equipment manufacturers (OEMs) to develop scientific data that can be used to create risk-informed hydrogen codes and standards for the safe operation of indoor hydrogen fuel-cell forklifts. An important issue is the possibility of an accident inside a warehouse or other enclosed space where a release of hydrogen from the high-pressure gaseous storage tank could occur. For such scenarios computational fluid dynamics (CFD) simulations have been used to model the release and dispersion of gaseous hydrogen from the vehicle and to study the behavior of the ignitable hydrogen cloud inside the warehouse or enclosure. The overpressure arising as a result of ignition and subsequent deflagration of the hydrogen cloud within the warehouse has been studied for different ignition delay times and ignition locations. Both ventilated and unventilated warehouses have been considered in the analysis. Experiments have been performed in a scaled warehouse test facility and compared with simulations to validate the results of the computational analysis.
Experimental Investigation of Hydrogen Release and Ignition from Fuel Cell Powered Forklifts in Enclosed Spaces
Sep 2011
Publication
Due to rapid growth in the use of hydrogen powered fuel cell forklifts within warehouse enclosures Sandia National Laboratories has worked to develop scientific methods that support the creation of new hydrogen safety codes and standards for indoor refuelling operations. Based on industry stakeholder input conducted experiments were devised to assess the utility of modelling approaches used to analyze potential consequences from ignited hydrogen leaks in facilities certified according to existing code language. Release dispersion and combustion characteristics were measured within a scaled test facility located at SRI International's Corral Hollow Test Site. Moreover the impact of mitigation measures such as active/passive ventilation and pressure relief panels was investigated. Since it is impractical to experimentally evaluate all possible facility configurations and accident scenarios careful characterization of the experimental boundary conditions has been performed so that collected datasets can be used to validate computational modelling approaches.
Measurements of Effective Diffusion Coefficient of Helium and Hydrogen Through Gypsum
Sep 2011
Publication
An experimental apparatus which was based on the ¼-scale garage previously used for studying helium release and dispersion in our laboratory was used to obtain effective diffusion coefficients of helium and hydrogen (released as forming gas for safety reasons) through gypsum panel. Two types of gypsum panel were used in the experiments. Helium or forming gas was released into the enclosure from a Fischer burner1 located near the enclosure floor for a fixed duration and then terminated. Eight thermal-conductivity sensors mounted at different vertical locations above the enclosure floor were used to monitor the temporal and spatial gas concentrations. An electric fan was used inside the enclosure to mix the released gas to ensure a spatially uniform gas concentration to minimize stratification. The temporal variations of the pressure difference between the enclosure interior and the ambience were also measured. An analytical model was developed to extract the effective diffusion coefficients from the experimental data.
Introduction to Hydrogen Safety Engineering
Sep 2011
Publication
The viability and public acceptance of the hydrogen and fuel cell (HFC) systems and infrastructure depends on their robust safety engineering design education and training of the workforce regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the hydrogen safety engineering (HSE) profession. HSE is defined as an application of scientific and engineering principles to the protection of life property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of technical sub-systems for carrying out HSE. The approach is similar to British standard BS7974 for application of fire safety engineering to the design of buildings and expanded to reflect on specific for hydrogen safety related phenomena including but not limited to high pressure under-expanded leaks and dispersion spontaneous ignition of sudden hydrogen releases to air deflagrations and detonations etc. The HSE process includes three main steps. Firstly a qualitative design review is undertaken by a team that can incorporate owner hydrogen safety engineer architect representatives of authorities having jurisdiction e.g. fire services and other stakeholders. The team defines accident scenarios suggests trial safety designs and formulates acceptance criteria. Secondly a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering and validated models and tools. Finally the performance of a HFC system and/or infrastructure under the trial safety designs is assessed against predefined by the team acceptance criteria. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic comparative or combined probabilistic/deterministic.
Real World Hydrogen Technology Validation
Sep 2011
Publication
The Department of Energy the Department of Defense's Defense Logistics Agency and the Department of Transportation's Federal Transit Administration have funded learning demonstrations and early market deployments to provide insight into applications of hydrogen technologies on the road in the warehouse and as stationary power. NREL's analyses validate the technology in real-world applications reveal the status of the technology and facilitate the development of hydrogen and fuel cell technologies manufacturing and operations. This paper presents the maintenance safety and operation data of fuel cells in multiple applications with the reported incidents near misses and frequencies. NREL has analyzed records of more than 225000 kilograms of hydrogen that have been dispensed through more than 108000 hydrogen fills with an excellent safety record.
Thermal Hydrogen: An Emissions Free Hydrocarbon Economy
Apr 2017
Publication
Envisioned below is an energy system named Thermal Hydrogen developed to enable economy-wide decarbonization. Thermal Hydrogen is an energy system where electric and/or heat energy is used to split water (or CO2) for the utilization of both by-products: hydrogen as energy storage and pure oxygen as carbon abatement. Important advantages of chemical energy carriers are long term energy storage and extended range for electric vehicles. These minimize the need for the most capital intensive assets of a fully decarbonized energy economy: low carbon power plants and batteries. The pure oxygen pre-empts the gas separation process of “Carbon Capture and Sequestration” (CCS) and enables hydrocarbons to use simpler more efficient thermodynamic cycles. Thus the “externality” of water splitting pure oxygen is increasingly competitive hydrocarbons which happen to be emissions free. Methods for engineering economy-wide decarbonization are described below as well as the energy supply carrier and distribution options offered by the system.
Simulation of High-pressure Liquid Hydrogen Releases
Sep 2011
Publication
Sandia National Laboratories is working with stakeholders to develop scientific data for use by standards development organizations to create hydrogen codes and standards for the safe use of liquid hydrogen. Knowledge of the concentration field and flammability envelope for high-pressure hydrogen leaks is an issue of importance for the safe use of liquid hydrogen. Sandia National Laboratories is engaged in an experimental and analytical program to characterize and predict the behaviour of liquid hydrogen releases. This paper presents a model for computing hydrogen dilution distances for cold hydrogen releases. Model validation is presented for leaks of room temperature and 80 K high-pressure hydrogen gas. The model accounts for a series of transitions that occurs from a stagnate location in the tank to a point in the leak jet where the concentration of hydrogen in air at the jet centerline has dropped to 4% by volume. The leaking hydrogen is assumed to be a simple compressible substance with thermodynamic equilibrium between hydrogen vapor hydrogen liquid and air. For the multi-phase portions of the jet near the leak location the REFPROP equation of state models developed by NIST are used to account for the thermodynamics. Further downstream the jet develops into an atmospheric gas jet where the thermodynamics are described as a mixture of ideal gases (hydrogen–air mixture). Simulations are presented for dilution distances in under-expanded high-pressure leaks from the saturated vapor and saturated liquid portions of a liquid hydrogen storage tank at 10.34 barg (150 PSIG).
Comparison of NFPA and ISO Approaches for Evaluating Separation Distances
Sep 2011
Publication
The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk code and standard development organizations (SDOs) are utilizing risk-informed concepts in developing hydrogen codes and standards. Two SDOs the National Fire Protection Association (NFPA) and the International Organization for Standardization (ISO) through its Technical Committee (TC) 197 on hydrogen technologies have been developing standards for gaseous hydrogen facilities that specify the facilities have certain safety features use equipment made of material suitable for a hydrogen environment and have specified separation distances. Under Department of Energy funding Sandia National Laboratories (SNL) has been supporting efforts by both of these SDOs to develop the separation distances included in their respective standards. Important goals in these efforts are to use a defensible science-based approach to establish these requirements and to the extent possible harmonize the requirements. International harmonization of regulations codes and standards is critical for enabling global market penetration of hydrogen and fuel cell technologies.
Measurement of Fatigue Crack Growth Rates for Steels in Hydrogen Containment Components
Sep 2009
Publication
The objective of this work was to enable the safe design of hydrogen pressure vessels by measuring the fatigue crack growth rates of ASME code-qualified steels in high-pressure hydrogen gas. While a design framework has recently been established for high-pressure hydrogen vessels a material property database does not exist to support the design calculations. This study addresses such voids in the database by measuring the fatigue crack growth rates of three different heats of ASME SA-372 Grade J steel in 100 MPa hydrogen gas. Results showed that the fatigue crack growth rates were similar for all three steel heats although the highest-strength steel appeared to exhibit the highest growth rates. Hydrogen accelerated the fatigue crack growth rates of the steels by as much as two orders of magnitude relative to anticipated crack growth rates in inert environments. Despite such dramatic effects of hydrogen on the fatigue crack growth rates measurement of these properties enables reliable definition of the design life of steel hydrogen containment vessels.
Using Hydrogen Safety Best Practices and Learning From Safety Events
Sep 2009
Publication
A best practice is a technique or methodology that has reliably led to a desired result. A wealth of experience regarding the safe use and handling of hydrogen exists as a result of an extensive history in a wide variety of industrial and aerospace settings. Hydrogen Safety Best Practices (www.h2bestpractices.org) captures this vast knowledge base and makes it publicly available to those working with hydrogen and related systems including those just starting to work with hydrogen. This online manual is organized under a number of hierarchical technical content categories. References including publications and other online links that deal with the safety aspects of hydrogen are compiled for easy access. This paper discusses the development of Hydrogen Safety Best Practices as a safety knowledge tool the nature of its technical content and the steps taken to enhance its value and usefulness. Specific safety event examples are provided to illustrate the link between technical content in the online best practices manual and a companion safety knowledge tool Hydrogen Incident Reporting and Lessons Learned (www.h2incidents.org) which encourages the sharing of lessons learned and other safety event information.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Study of Hydrogen Diffusion and Deflagration in a Closed System
Sep 2007
Publication
A total of 12 ventilation experiments with various combinations of hydrogen release rates and ventilation speeds were performed in order to study how ventilation speed and release rate effect the hydrogen concentration in a closed system. The experiential facility was constructed out of steel plates and beams in the shape of a rectangular enclosure. The volume of the test facility was about 60m3. The front face of the enclosure was covered by a plastic film in order to allow visible and infrared cameras to capture images of the flame. The inlet and outlet vents were located on the lower front face and the upper backside panel respectively. Hydrogen gas was released toward the ceiling from the center of the floor. The hydrogen gas was released at constant rate in each test. The hydrogen release rate ranged from 0.002 m3/s to 0.02 m3/s. Ventilation speeds were 0.1 0.2 and 0.4 m3/s respectively. Ignition was attempted at the end of the hydrogen release by using multiple continuous spark ignition modules on the ceiling and next to the release point. Time evolution of hydrogen concentration was measured using evacuated sample bottles. Overpressure and impulse inside and outside the facility were also measured. The mixture was ignited by a spark ignition module mounted on the ceiling in eight of eleven tests. In the other three tests the mixture was ignited by spark ignition modules mounted next to the nozzle. Overpressures generated by the hydrogen deflagration in most of these tests were low and represented a small risk to people or property. The primary risk associated with the hydrogen deflagrations studied in these tests was from the fire. The maximum concentration is proportional to the ratio of the hydrogen release rate to the ventilation speed within the range of parameters tested. Therefore a required ventilation speed can be estimated from the assumed hydrogen leak rate within the experimental conditions described in this paper.
Predictions of Solid-State Hydrogen Storage System Contamination Processes
Sep 2009
Publication
Solid state materials such as metal and chemical hydrides have been proposed and developed for high energy density automotive hydrogen storage applications. As these materials are implemented into hydrogen storage systems developers must understand their behavior during accident scenarios or contaminated refueling events. An ability to predict thermal and chemical processes during contamination allows for the design of safe and effective hydrogen storage systems along with the development of appropriate codes and standards. A model for the transport of gases within an arbitrary-geometry reactive metal hydride bed (alane -AlH3) is presented in this paper. We have coupled appropriate Knudsen-regime permeability models for flow through packed beds with the fundamental heat transfer and chemical kinetic processes occurring at the particle level. Using experimental measurement to determine and validate model parameters we have developed a robust numerical model that can be utilized to predict processes in arbitrary scaled-up geometries during scenarios such as breach-in-tank or contaminated refueling. Results are presented that indicate the progression of a reaction front through a compacted alane bed as a result of a leaky fitting. The rate of this progression can be limited by; 1) restricting the flow of reactants into the bed through densification and 2) maximizing the rate of heat removal from the bed.
Risk-Informed Separation Distances For Hydrogen Refuelling Stations
Sep 2007
Publication
The development of an infrastructure for the future hydrogen economy will require the simultaneous development of a set of codes and standards. As part of the U.S. Department of Energy Hydrogen Fuel Cells & Infrastructure Technologies Program Sandia National Laboratories is developing the technical basis for assessing the safety of hydrogen-based systems for use in the development/modification of relevant codes and standards. This work includes experimentation and modelling to understand the fluid mechanics and dispersion of hydrogen for different release scenarios including investigations of hydrogen combustion and subsequent heat transfer from hydrogen flames. The resulting technical information is incorporated into engineering models that are used for assessment of different hydrogen release scenarios and for input into quantitative risk assessments (QRA) of hydrogen facilities. The QRAs are used to identify and quantify scenarios for the unintended release of hydrogen and to identify the significant risk contributors at different types of hydrogen facilities. The results of the QRAs are one input into a risk-informed codes and standards development process that can also include other considerations by the code and standard developers. This paper describes an application of QRA methods to help establish one key code requirement: the minimum separation distances between a hydrogen refuelling station and other facilities and the public at large. An example application of the risk-informed approach has been performed to illustrate its utility and to identify key parameters that can influence the resulting selection of separation distances. Important parameters that were identified include the selected consequence measures and risk criteria facility operating parameters (e.g. pressure and volume) and the availability of mitigation features (e.g. automatic leak detection and isolation). The results also indicate the sensitivity of the results to key modelling assumptions and the component leakage rates used in the QRA models.
Modeling of Sudden Hydrogen Expansion from Cryogenic Pressure Vessel Failure
Sep 2011
Publication
We have modelled sudden hydrogen expansion from a cryogenic pressure vessel. This model considers real gas equations of state single and two-phase flow and the specific “vessel within vessel” geometry of cryogenic vessels. The model can solve sudden hydrogen expansion for initial pressures up to 1210 bar and for initial temperatures ranging from 27 to 400 K. For practical reasons our study focuses on hydrogen release from 345 bar with temperatures between 62 K and 300 K. The pressure vessel internal volume is 151 L. The results indicate that cryogenic pressure vessels may offer a safety advantage with respect to compressed hydrogen vessels because i) the vacuum jacket protects the pressure vessel from environmental damage ii) hydrogen when released discharges first into an intermediate chamber before reaching the outside environment and iii) working temperature is typically much lower and thus the hydrogen has less energy. Results indicate that key expansion parameters such as pressure rate of energy release and thrust are all considerably lower for a cryogenic vessel within vessel geometry as compared to ambient temperature compressed gas vessels. Future work will focus on taking advantage of these favourable conditions to attempt fail-safe cryogenic vessel designs that do not harm people or property even after catastrophic failure of the inner pressure vessel.
Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications
Jan 2022
Publication
This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs) battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). However there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed acceleration and roadway grade as input variables. The mode accurately estimates energy consumption generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation respectively. Furthermore this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation respectively. The results demonstrate that transportation engineers policy makers automakers and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.
A Study of Barrier Walls for Mitigation of Unintended Releases of Hydrogen
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure wall deflection radiative heat flux and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers computations of the thermal radiation field around barriers predicted overpressure from ignition and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.
For a Successful Arrival of the Hydrogen Economy Improve Now the Confidence Level of Risk Assessments
Sep 2009
Publication
For large-scale distribution and use of energy carriers classified as hazardous material in many countries as a method to assist land use planning to grant licenses to design a safe installation and to operate it safely some form of risk analysis and assessment is applied. Despite many years of experience the methods have still their weaknesses even the most elaborated ones as e.g. shown by the large spread in results when different teams perform an analysis on a same plant as was done in EU projects. Because a fuel as hydrogen with its different properties will come new in the daily use of many people incidents may happen and risks will be discussed. HySafe and other groups take good preparatory action in this respect and work in the right direction as appears from various documents produced. However already a superficial examination of the results so far tells that further cooperative work is indispensable. To avoid criticism skepticism and frustration not only the positive findings should be described and general features of the methods but the community has also to give strong guidance with regard to the uncertainties. Scenario development appears to be very dependent on insight and experience of an individual analyst leak and ignition probability may vary over a wide range of values Computational Fluid Dynamics or CFD models may lead to very different result. The Standard Benchmark Exercise Problems SBEPs are a good start but shall produce guidelines or recommendations for CFD use or even perhaps certification of models. Where feasible narrowing of possible details of scenarios to the more probable ones taking into account historical incident data and schematizing in bowties more explicit use of confidence intervals on e.g. failure rates and ignition probability estimates will help. Further knowledge gaps should be defined.
Safety Considerations for Hydrogen Test Cells
Sep 2009
Publication
The properties of hydrogen compared to conventional fuels such as gasoline and diesel are substantially different requiring adaptations to the design and layout of test cells for hydrogen fuelled engines and vehicles. A comparison of hydrogen fuel properties versus conventional fuels in this paper provides identification of requirements that need to be adapted to design a safe test cell. Design examples of actual test cells are provided to showcase the differences in overall layout and ventilation safety features fuel supply and metering and emissions measurements. Details include requirements for ventilation patterns the necessity for engine fume hoods as well as hydrogen specific intake and exhaust design. The unique properties of hydrogen in particular the wide flammability limits and nonvisible flames also require additional safety features such as hydrogen sensors and flame cameras. A properly designed and implemented fuel supply system adds to the safety of the test cell by minimizing the amount of hydrogen that can be released. Apart from this the properties of hydrogen also require different fuel consumption measurement systems pressure levels of the fuel supply system additional ventilation lines strategically placed safety solenoids combined with appropriate operational procedures. The emissions measurement for hydrogen application has to be expanded to include the amount of unburned hydrogen in the exhaust as a measurement of completeness of combustion. This measurement can also be used as a safety feature to avoid creation of ignitable hydrogen-air mixtures in the engine exhaust. The considerations provided in this paper lead to the conclusion that hydrogen IC engines can be safely tested however properly designed test cell and safety features have to be included to mitigate the additional hazards related to the change in fuel characteristics.
Ignition Limits For Combustion of Unintended Hydrogen Releases- Experimental and Theoretical Results
Sep 2009
Publication
The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead integration of probability density functions (PDFs) of local fuel concentration within the quiescent flammability limits termed the flammability factor (FF) was shown to provide a better representation of ignition probability (PI). Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration) did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the FF approach to the prediction of ignition in hydrogen leak scenarios. The PI within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The FF is obtained through direct integration of local PDFs. A model was developed to predict the FF using a presumed PDF with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite PDF. By comparing the computed FF with the measured PI we have validated the flammability factor approach for application to ignition of hydrogen jets.
No more items...