Publications
A Review of Techno-economic Data for Road Transportation Fuels
May 2019
Publication
Worldwide the road transport sector typically arises as one of the main sources of air pollutants due to its high energy intensity and the use of fossil fuels. Thus governments and social agents work on the development and prospective planning of decarbonisation strategies oriented towards sustainable transport. In this regard the increase in the use of alternative fuels is the recurrent approach to energy planning e.g. through the promotion of electric vehicles biofuels natural gas liquefied petroleum gas etc. However there is a lack of comprehensive information on the techno-economic performance of production pathways for alternative fuels. The acquisition of robust techno-economic data is still a challenge for energy planners modellers analysts and policy-makers when building their prospective models to support decision-making processes. Hence this article aims to fill this gap through a deep literature review including the most representative production routes for a wide range of road transportation fuels. This led to the development of datasets including investment costs operating and maintenance costs and transformation efficiencies for more than 40 production pathways. The techno-economic data presented in this work are expected to be especially useful to those energy actors interested in performing long-term studies on the transition to a sustainable transport system.
UK Hydrogen Economy: Debate Pack
Dec 2020
Publication
A Westminster Hall debate on the UK hydrogen economy has been scheduled for Thursday 17 December 2020 at 3.00pm. The debate will be led by Alexander Stafford MP. This House of Commons Library debate pack provides background information and press and parliamentary coverage of the issues.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.
The Global Status of CCS 2020: Vital to Achieve Net Zero
Dec 2020
Publication
The Global Status of CCS Report 2020 demonstrates the vital role of carbon capture and storage technologies (CCS) in reducing emissions to net-zero by 2050 as well as documenting the current status and important milestones for the technology over the past 12 months.<br/>The report provides detailed information on and analyses of the global CCS facility pipeline international policy perspectives CO2 storage and the CCS legal and regulatory environment.<br/>In addition four regional updates provide further detail about CCS progress across the Americas Europe Asia Pacific and the Gulf Cooperation Council States and a Technology section provides updates on key innovations and applications of CCS.
Power-to-fuels Via Solid-oxide Electrolyzer: Operating Window and Techno-economics
May 2019
Publication
Power-to-fuel systems via solid-oxide electrolysis are promising for storing excess renewable electricity by efficient electrolysis of steam (or co-electrolysis of steam and CO2) into hydrogen (or syngas) which can be further converted into synthetic fuels with plant-wise thermal integration. Electrolysis stack performance and durability determine the system design performance and long-term operating strategy; thus solid-oxide electrolyzer based power-to-fuels were investigated from the stack to system levels. At the stack level the data from a 6000-h stack testing under laboratory isothermal conditions were used to calibrate a quasi-2D model which enables to predict practical isothermal stack performance with reasonable accuracy. Feasible stack operating windows meeting various design specifications (e.g. specific syngas composition) were further generated to support the selection of operating points. At the system level with the chosen similar stack operating points various power-to-fuel systems including power-to-hydrogen power-to-methane power-to-methanol (dimethyl ether) and power-to-gasoline were compared techno-economically considering system-level heat integration. Several operating strategies of the stack were compared to address the increase in stack temperature due to degradation. The modeling results show that the system efficiency for producing H2 methane methanol/dimethyl ether and gasoline decreases sequentially from 94% (power-to-H2) to 64% (power-to-gasoline) based on a higher heating value. Co-electrolysis which allows better heat integration can improve the efficiency of the systems with less exothermic fuel-synthesis processes (e.g. methanol/dimethyl ether) but offers limited advantages for power-to-methane and power-to-gasoline systems. In a likely future scenario where the growing amount of electricity from renewable sources results in increasing periods of a negative electricity price solid oxide electrolyser based power-to-fuel systems are highly suitable for levelling the price fluctuations in an economic way.
Interfacial Confinement of Ni-V2O3 in Molten Salts for Enhanced Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3.electrodes consisting of nanostrip-like V2O3.perpendicularly anchored on Ni meshes are herein constructed via the electrochemical reduction of soluble NaVO3 in molten salts for enhanced electrocatalytic hydrogen evolution. Such a special configuration in morphology and composition creates a well confined interface between Ni and V2O3. Experimental and Density-Functional-Theory results confirm that the synergy between Ni and V2O3.accelerates the dissociation of H2O for forming hydrogen intermediates and enhances the combination of H* for generating H2.
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Options for Multilateral Initiatives to Close the Global 2030 Climate Ambition and Action Gap - Policy Field Synthetic E-fuels
Jan 2021
Publication
Achieving the goals of the Paris Agreement requires increased global climate action especially towards the production and use of synthetic e-fuels. This paper focuses on aviation and maritime transport and the role of green hydrogen for indirect electrification of industry sectors. Based on a sound analysis of existing multilateral cooperation the paper proposes four potential initiatives to increase climate ambition of the G20 countries in the respective policy field: a Sustainable e-Kerosene Alliance a Sustainable e-fuel Alliance for Maritime Shipping a Hard-to-Abate Sector Partnership and a Global Supply-demand-partnership.
The full report can be found here on the Umweltbundesamt website
The full report can be found here on the Umweltbundesamt website
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
Effect of the Strain Rate on the Fracture Behaviour of High Pressure Pre-Charged Samples
Dec 2018
Publication
The aim of this work is to study the effect of the displacement rate on the hydrogen embrittlement of two different structural steels grades used in energetic applications. With this purpose samples were pre-charged with gaseous hydrogen at 19.5 MPa and 450 °C for 21 h. Then fracture tests of the pre-charged specimens were performed using different displacement rates. It is showed that the lower is the displacement rate and the largest is the steel strength the strongest is the reduction of the fracture toughness due to the presence of internal hydrogen.
Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads
Apr 2022
Publication
Energy requirements push the shipping industry towards more energy-efficient ships while environmental regulations influence the development of environmentally friendly ships by replacing fossil fuels with alternatives. Current mathematical models for ship energy efficiency which set the analysis boundaries at the level of the ship power system are not able to consider alternative fuels as a powering option. In this paper the energy efficiency and emissions index are formulated for ships with alternative power systems considering three different impacts on the environment (global warming acidification and eutrophication) and realistic fuel pathways and workloads. Besides diesel applications of alternative powering options such as electricity methanol liquefied natural gas hydrogen and ammonia are considered. By extending the analysis boundaries from the ship power system to the complete fuel cycle it is possible to compare different ships within the considered fleet or a whole shipping sector from the viewpoint of energy efficiency and environmental friendliness. The applicability of the model is illustrated on the Croatian ro-ro passenger fleet. A technical measure of implementation of alternative fuels in combination with an operational measure of speed reduction results in an even greater emissions reduction and an increase in energy efficiency. Analysis of the impact of voluntary speed reduction for ships with different power systems resulted in the identification of the optimal combination of alternative fuel and speed reduction by a specific percentage from the ship design speed.
Hydrogen Jet Structure in Presence of Forced Co-, Counter- and Cross-flow Ventilation
Sep 2021
Publication
This paper presents results of experimental investigations on unignited horizontal hydrogen jets in air in presence of co- cross- and counter-flow. Hydrogen concentration distributions are obtained as functions of distance to the hydrogen release nozzle. The H2-jet variables are two nozzle diameters 1 mm and 4 mm and two H2-jet mass flow rates 1 g/s up to 5 g/s. A propeller fan is used to provide forced ventilation compared to the case with no ventilation three different airflow velocities up to 5 m/s were studied systematically. It was found that any forced ventilation in co- cross- and counter-flow direction reduces the size of the burnable mixture cloud of the H2-jet compared to a free jet in quiescent air.
The Role of κ-Carbides as Hydrogen Traps in High-Mn Steels
Jul 2017
Publication
Since the addition of Al to high-Mn steels is known to reduce their sensitivity to hydrogen-induced delayed fracture we investigate possible trapping effects connected to the presence of Al in the grain interior employing density-functional theory (DFT). The role of Al-based precipitates is also investigated to understand the relevance of short-range ordering effects. So-called E21-Fe3AlC κ-carbides are frequently observed in Fe-Mn-Al-C alloys. Since H tends to occupy the same positions as C in these precipitates the interaction and competition between both interstitials is also investigated via DFT-based simulations. While the individual H–H/C–H chemical interactions are generally repulsive the tendency of interstitials to increase the lattice parameter can yield a net increase of the trapping capability. An increased Mn content is shown to enhance H trapping due to attractive short-range interactions. Favorable short-range ordering is expected to occur at the interface between an Fe matrix and the E21-Fe3AlC κ-carbides which is identified as a particularly attractive trapping site for H. At the same time accumulation of H at sites of this type is observed to yield decohesion of this interface thereby promoting fracture formation. The interplay of these effects evident in the trapping energies at various locations and dependent on the H concentration can be expressed mathematically resulting in a term that describes the hydrogen embrittlement
Environmental Sustainability of Renewable Hydrogen in Comparison with Conventional Cooking Fuels
Jun 2018
Publication
Hydrogen could be used as a ‘cleaner’ cooking fuel particularly in communities that rely on biomass and fossil fuels to reduce local pollution and related health effects. However hydrogen must be produced using sustainable feedstocks and energy sources to ensure that local impacts are not reduced at the expense of other impacts generated elsewhere in the life cycle. To this end this paper evaluates life cycle environmental impacts of renewable hydrogen produced in a proton-exchange membrane electrolyser using solar energy. The aim of the study is to find out if hydrogen produced in this system and used as a cooking fuel is environmentally sustainable in comparison with conventional cooking fuels typically used in developing countries such as liquefied petroleum gas (LPG) charcoal and firewood. The results suggest that hydrogen would reduce the climate change impact by 2.5–14 times to 0.04 kg CO2 eq./MJ compared to firewood (0.10 kg CO2 eq./MJ) and LPG (0.57 kg CO2 eq./MJ). Some other impacts would also be lower by 6%–35 times including depletion of fossil fuels summer smog and health effects from emissions of particulates both locally and across the rest of the life cycle. However some other impacts would increase by 6%–6.7 times such as depletion of metals and freshwater and marine ecotoxicity. These are mainly due to the solar photovoltaic panels used to generate power for the electrolyser. In terms of the local impacts the study suggests that hydrogen would reduce local pollution and related health impacts by 8%–35 times. However LPG is still environmentally a better option than hydrogen for most of the impacts both at the point of use and on a life cycle basis.
The UK Carbon Capture, Usage and Storage (CCUS) Deployment Pathway: An Action Plan
Nov 2018
Publication
CCUS has economy-wide qualities which could be very valuable to delivering clean industrial growth. It could deliver tangible results in tackling some of the biggest challenges we face in decarbonising our economy contributing to industrial competitiveness and generating new economic opportunities – a key part of our modern Industrial Strategy.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports
Nov 2015
Publication
CeO2- ZrO2- and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2 which showed the best performance in the stability test also produced the highest H2 yield above 600 °C followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM XPS and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.
The Role of Hydrogen in Achieving Net Zero: Parliamentary Inquiry
Mar 2021
Publication
A key component of the Government's recently announced ‘Ten Point Plan for a Green Industrial Revolution’ is 'Driving the Growth of Low Carbon Hydrogen'. The plan outlined a range of measures to support the development and adoption of hydrogen including a £240 million 'Net Zero Hydrogen Fund'. Noting this and the further £81 million allocated for hydrogen heating trials in the 2020 Spending Review the House of Commons Science and Technology Committee is today launching a new inquiry into the role of hydrogen in achieving Net Zero.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Hydrogen Valleys. Insights Into the Emerging Hydrogen Economies Around the World
Jun 2021
Publication
Clean hydrogen is universally considered an important energy vector in the global efforts to limit greenhouse gas emissions to the "well below 2 °C scenario" as agreed by more than 190 states in the 2015 Paris Agreement. Hydrogen Valleys – regional ecosystems that link hydrogen production transportation and various end uses such as mobility or industrial feedstock – are important steps towards enabling the development of a new hydrogen economy.<br/><br/>This report has been issued during the setup of the "Mission Innovation Hydrogen Valley Platform" which was commissioned by the European Union and developed by the Fuel Cells and Hydrogen Joint Undertaking. The global information sharing platform to date already features 30+ global Hydrogen Valleys with a cumulative investment volume of more than EUR 30 billion. The projects provide a first-of-its kind look into the global Hydrogen Valley project landscape its success factors and remaining barriers. This report summarizes the findings and presents identified best practices for successful project development as well as recommendations for policymakers on how to provide a favourable policy environment that paves the way to reach the Hydrogen Valleys' full potential as enablers of the global hydrogen economy.
Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel
Dec 2018
Publication
The effects of hot stamping (HS) and tempering on the hydrogen embrittlement (HE) behavior of a low-carbon boron-alloyed steel were studied by using slow strain rate tensile (SSRT) tests on notched sheet specimens. It was found that an additional significant hydrogen desorption peak at round 65–80 °C appeared after hydrogen-charging the corresponding hydrogen concentration (CHr) of the HS specimen was higher than that of the directed quenched (DQ) specimen and subsequent low-temperature tempering gave rise to a decrease of CHr. The DQ specimen exhibited a comparatively high HE susceptibility while tempering treatment at 100 °C could notably alleviate it by a relative decrease of ~24% at no expanse of strength and ductility. The HS specimen demonstrated much lower HE susceptibility compared with the DQ specimen and tempering at 200 °C could further alleviate its HE susceptibility. SEM analysis of fractured SSRT surfaces revealed that the DQ specimen showed a mixed transgranular-intergranular fracture while the HS and low-temperature tempered specimens exhibited a predominant quasi-cleavage transgranular fracture. Based on the obtained results we propose that a modified HS process coupled with low-temperature tempering treatment is a promising and feasible approach to ensure a low HE susceptibility for high-strength automobile parts made of this type of steel.
Hydrogen for Transport Prospective Australian Use Cases
Oct 2019
Publication
The Australian transport sector is under increasing pressure to reduce carbon emissions whilst also managing a fuel supply chain that relies heavily on foreign import partners.
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
When and How to Regulate Hydrogen Networks?
Feb 2021
Publication
This European Green Deal Regulatory White Paper provides the views of Europe’s energy regulators represented by ACER and CEER on when and how to regulate the hydrogen networks in the future.
With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
To realise the European Green Deal's ambitions for hydrogen the right regulatory framework must be created to facilitate a hydrogen economy in a cost-effective way.
European energy regulators (ACER and CEER) have published a set of recommendations on when and how to regulate pure hydrogen networks. The need and scope of hydrogen network regulation will depend on its structure and evolution.
This paper is the first in our new series of ACER-CEER European Green Deal Regulatory White Papers. This hydrogen paper examines:
The aim is to deepen understanding on the regulatory aspects of Green Deal issues and to assist the European Commission in assessing various options as part of the preparations for legislation on hydrogen and energy system integration. With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
The Full report can be found on the ACER website
With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
To realise the European Green Deal's ambitions for hydrogen the right regulatory framework must be created to facilitate a hydrogen economy in a cost-effective way.
European energy regulators (ACER and CEER) have published a set of recommendations on when and how to regulate pure hydrogen networks. The need and scope of hydrogen network regulation will depend on its structure and evolution.
This paper is the first in our new series of ACER-CEER European Green Deal Regulatory White Papers. This hydrogen paper examines:
- The circumstances under which regulating hydrogen networks is needed;
- How to treat existing hydrogen network infrastructure;
- How to address regulatory challenges related to the repurposing of gas infrastructure for dedicated hydrogen transport.
The aim is to deepen understanding on the regulatory aspects of Green Deal issues and to assist the European Commission in assessing various options as part of the preparations for legislation on hydrogen and energy system integration. With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
The Full report can be found on the ACER website
No more items...