Publications
Review and Meta-analysis of Recent Life Cycle Assessments of Hydrogen Production
Apr 2023
Publication
The world is facing an urgent global climate challenge and hydrogen (H2) is increasingly valued as a carbon-free energy carrier that can play a prominent role in decarbonising economies. However the environmental impact of the different methods for hydrogen production are sometimes overlooked. This work provides a comprehensive overview of the environmental impacts and costs of a diverse range of methods for producing hydrogen. Ninety nine life cycle assessments (LCAs) of hydrogen production published between 2015 and 2022 are categorised by geography production method energy source goal and scope and compared by data sources and methodology. A meta-analysis of methodological choices is used to identify a subset of mutually comparable studies whose results are then compared initially by global warming potential (GWP) then low-GWP scenarios are compared by other indicators. The results show that the lowest GWP is achieved by methods that are currently more expensive (~US $4–9/kg H2) compared to the dominant methods of producing hydrogen from fossil fuels (~US $1–2/kg H2). The research finds that data are currently limited for comparing environmental indicators other than GWP such as terrestrial acidification or freshwater eutrophication. Recommendations are made for future LCAs of hydrogen production.
Investigating the Future of Freight Transport Low Carbon Technologies Market Acceptance across Different Regions
Oct 2024
Publication
Fighting climate change has become a major task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore long term strategies all over the world have been set up to reduce on-road combustion emissions. In this context the road freight sector faces significant challenges in decarbonization driven by its limited availability of low-emission fuels and commercialized zero-emission vehicles compared with its high energy demand. In this work we develop the Mobility and Energy Transportation Analysis (META) Model a python-based optimization model to quantify the impact of transportation projected policies on freight transport by projecting conventional and alternative fuel technologies market acceptance as well as greenhouse gas (GHG) emissions. Along with introducing e-fuels as an alternative refueling option for conventional vehicles META investigates the market opportunities of Mobile Carbon Capture (MCC) until 2050. To accurately assess this technology a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. The novelty of this work comes from the detailed cost categories taken into consideration in the analysis including intangible costs associated with heavy-duty technologies such as recharging/refueling time cargo capacity limitations and consumer acceptance towards emerging technologies across different regions. Based on the study results the competitive total cost of ownership (TCO) and marginal abatement cost (MAC) values of MCC make it an economically promising alternative option to decarbonize the freight transport sector. Both in the KSA and EU MCC options could reach greater than 50% market shares of all ICE vehicle sales equivalent to a combined 35% of all new sales shares by 2035.
Economic Prospects of Taxis Powered by Hydrogen Fuel Cells in Palestine
Feb 2024
Publication
Recently major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study aimed to investigate the economic prospects of using hydrogen fuel cell technology in taxi fleets in Westbank. For this purpose a model that could predict the number of taxis was developed and the expected economic implications of using hydrogen fuel cell technology in taxi fleets were determined based on the expected future fuel consumption and future fuel cost. After analysis of the results it was concluded that a slight annual increase in the number of taxis in Palestine is expected in the future due to the government restrictions on issuing new taxi permits in order to get this sector organized. Furthermore using hydrogen fuel cells in taxi fleets is expected to become more and more feasible over time due to the expected future increase in oil price and the expected significant reduction in hydrogen cost as a result of the new technologies that are expected to be used in the production and handling of hydrogen.
A Model for Assessing the Potential Impact Radius of Hydrogen Pipelines Based on Jet Fire Radiation
Jan 2024
Publication
The accurate determination of the potential impact radius is crucial for the design and risk assessment of hydrogen pipelines. The existing methodologies employ a single point source model to estimate radiation and the potential impact radius. However these approaches overlook the jet fire shape resulting from high-pressure leaks leading to discrepancies between the calculated values and real-world incidents. This study proposes models that account for both the mass release rate while considering the pressure drop during hydrogen pipeline leakage and the radiation while incorporating the flame shape. The analysis encompasses 60 cases that are representative of hydrogen pipeline scenarios. A simplified model for the potential impact radius is subsequently correlated and its validity is confirmed through comparison with actual cases. The proposed model for the potential impact radius of hydrogen pipelines serves as a valuable reference for the enhancement of the precision of hydrogen pipeline design and risk assessment.
OIES Podcast - Hydrogen Pipelines vs. HVDC Lines
Nov 2023
Publication
In this podcast David Ledesma talks to Aliaksei Patonia and Veronika Lenivova about Hydrogen pipelines and high-voltage direct current (HVDC) transmission lines and how Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. The podcast discusses how advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending.
The podcast can be found on their website.
The podcast can be found on their website.
Subcooled Liquid Hydrogen Technology for Heavy-Duty Trucks
Jan 2024
Publication
Subcooled liquid hydrogen (sLH2) is an onboard storage as well as a hydrogen refueling technology that is currently being developed by Daimler Truck and Linde to boost the mileage of heavy-duty trucks while also improving performance and reducing the complexity of hydrogen refueling stations. In this article the key technical aspects advantages challenges and future developments of sLH2 at vehicle and infrastructure levels will be explored and highlighted.
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
Jul 2025
Publication
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data the research identified the storage requirements including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell representing the smallest and most basic commercially available units and included a sensitivity analysis. At the household level—represented by a singlefamily home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system decreasing the imbalance from 5.73 kWh to 4.42 kWh. However while it greatly improves self-consumption its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output.
Economic Modelling of Mixing Hydrogen with Natural Gas
Jan 2024
Publication
As global efforts intensify to transition toward cleaner and more sustainable energy sources the blending of hydrogen with natural gas emerges as a promising strategy to reduce carbon emissions and enhance energy security. This study employs a systematic approach to assess the economic viability of hydrogen blending considering factors such as gas costs and heat values. Various hydrogen blending scenarios are analyzed to determine the optimal blend ratios taking into account both technical feasibility and economic considerations. The study discusses potential economic benefits challenges and regulatory implications associated with the widespread adoption of hydrogen–natural gas mixtures. Furthermore the study explores the impact of this integration on existing natural gas infrastructure exploring the potential for enhanced energy storage and delivery. The findings of this research contribute valuable insights to policymakers industry stakeholders and researchers engaged in the ongoing energy transition by providing a nuanced understanding of the economic dimensions of hydrogen blending within the natural gas sector.
Underground Hydrogen Storage Safety: Experimental Study of Hydrogen Diffusion through Caprocks
Jan 2024
Publication
Underground Hydrogen Storage (UHS) provides a large-scale and safe solution to balance the fluctuations in energy production from renewable sources and energy consumption but requires a proper and detailed characterization of the candidate reservoirs. The scope of this study was to estimate the hydrogen diffusion coefficient for real caprock samples from two natural gas storage reservoirs that are candidates for underground hydrogen storage. A significant number of adsorption/desorption tests were carried out using a Dynamic Gravimetric Vapor/Gas Sorption System. A total of 15 samples were tested at the reservoir temperature of 45 °C and using both hydrogen and methane. For each sample two tests were performed with the same gas. Each test included four partial pressure steps of sorption alternated with desorption. After applying overshooting and buoyancy corrections the data were then interpreted using the early time approximation of the solution to the diffusion equation. Each interpretable partial pressure step provided a value of the diffusion coefficient. In total more than 90 estimations of the diffusion coefficient out of 120 partial pressure steps were available allowing a thorough comparison between the diffusion of hydrogen and methane: hydrogen in the range of 1 × 10−10 m2 /s to 6 × 10−8 m2 /s and methane in the range of 9 × 10−10 m2 /s to 2 × 10−8 m2 /s. The diffusion coefficients measured on wet samples are 2 times lower compared to those measured on dry samples. Hysteresis in hydrogen adsorption/desorption was also observed.
Microfluidic Storage Capacity and Residual Trapping During Cyclic Injections: Implications for Underground Storage
Apr 2023
Publication
Long-term and large-scale H2 storage is vital for a sustainable H2 economy. Research in underground H2 storage (UHS) in porous media is emerging but the understanding of H2 reconnection and recovery mechanisms under cyclic loading is not yet adequate. This paper reports a qualitative and quantitative investigation of H2 reconnection and recovery mechanisms in repeated injection-withdrawal cycles. Here we use microfluidics to experimentally investigate up to 5 cycles of H2 injection and withdrawal under a range of injection rates at shallow reservoir storage conditions. We find that H2 storage capacities increase with increasing injection rate and range between ~10% and 60%. The residual H2 saturation is in the same range between cycles (30e40%) but its distribution in the pore space visually appears to be hysteretic. In most cases the residually trapped H2 reconnects in the subsequent injection cycle predominantly in proximity to the large pore clusters. Our results provide valuable experimental data to advance the understanding of multiple H2 injection cycles in UHS schemes.
Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering
Apr 2024
Publication
The main results highlighted in this article underline the critical significance of hydrogen technologies in the move towards carbon neutrality. This research focuses on several key areas including the production storage safety and usage of hydrogen alongside innovative approaches for assessing hydrogen purity and production-related technologies. This study emphasizes the vital role of hydrogen storage technology for the future utilization of hydrogen as an energy carrier and the advancement of technologies that facilitate effective safe and cost-efficient hydrogen storage. Furthermore bibliometric analysis has been instrumental in identifying primary research fields such as hydrogen storage hydrogen production efficient electrocatalysts rotary engines utilizing hydrogen as fuel and underground hydrogen storage. Each domain is essential for realizing a sustainable hydrogen economy reflecting the significant research and development efforts in hydrogen technologies. Recent trends have shown an increased interest in underground hydrogen storage as a method to enhance energy security and assist in the transition towards sustainable energy systems. This research delves into the technical economic and environmental facets of employing geological formations for large-scale seasonal and long-term hydrogen storage. Ultimately the development of hydrogen technologies is deemed crucial for meeting sustainable development goals particularly in terms of addressing climate change and reducing greenhouse gas emissions. Hydrogen serves as an energy carrier that could substantially lessen reliance on fossil fuels while encouraging the adoption of renewable energy sources aiding in the decarbonization of transport industry and energy production sectors. This in turn supports worldwide efforts to curb global warming and achieve carbon neutrality.
Populating the Hydrogen Component Reliability Database (HYCRED) with Incident Data from Hydrogen Dispensing
Sep 2023
Publication
Safety risk and reliability issues are vital to ensure the continuous and profitable operation of hydrogen technologies. Quantitative risk assessment (QRA) has been used to enable the safe deployment of engineering systems especially hydrogen fueling stations. However QRA studies require reliability data which are essential to collect to make the studies as realistic and relevant as possible. These data are currently lacking and data from other industries such as oil and gas are used in hydrogen system QRAs. This may lead to inaccurate results since hydrogen fueling stations have differences in physical properties system design and operational parameters when compared to other fueling stations thus necessitating new data sources are necessary to capture the effects of these differences. To address this gap we developed a structure for a hydrogen component reliability database (HyCReD) [1] which could be used to generate reliability data to be used in QRA studies. In this paper we demonstrate populating the HyCReD database with information extracted from new narrative reports on hydrogen fueling station incidents specifically focused on the dispensing processes. We analyze five new events and demonstrate the feasibility of populating the database and types of meaningful insights that can be obtained at this stage.
Decarbonizing Combustion with Hydrogen Blended Fuels: An Exploratory Study of Impact of Hydrogen on Hydrocarbon Autoignition
Jan 2024
Publication
Blending hydrogen to existing fuel mix represents a major opportunity for decarbonisation. One important consideration for this application is the chemical interaction between hydrogen and hydrocarbon fuels arising from their different combustion chemistries and varying considerably with combustion processes. This paper conducted an exploratory study of hydrogen’s impact on autoignition in several combustion processes where hydrogen is used as a blending component or the main fuel. Case studies are presented for spark ignition engines (H2/natural gas) compression ignition engines (H2/diesel) moderate or intense low-oxygen dilution (MILD) combustors (H2/natural gas) and rotational detonation engines (H2/natural gas). Autoignition reactivity as a function of the hydrogen blending level is investigated numerically using the ignition delay iso-contours and state-of-the-art kinetic models at time scales representative of each application. The results revealed drastically different impact of hydrogen blending on autoignition due to different reaction temperature pressure and time scale involved in these applications leaving hydrocarbon interacting with hydrogen at different ignition branches where the negative pressure/temperature dependency of oxidation kinetics could take place. The resulted non-linear and at times non-monotonic behaviours indicate a rich topic for combustion chemistry and also demonstrates ignition delay iso-contour as a useful tool to scope autoignition reactivity for a wide range of applications.
Towards Energy Freedom: Exploring Sustainable Solutions for Energy Independence and Self-sufficiency using Integrated Renewable Energy-driven Hydrogen System
Jan 2024
Publication
n the pursuit of sustainable energy solutions the integration of renewable energy sources and hydrogen technologies has emerged as a promising avenue. This paper introduces the Integrated Renewable Energy-Driven Hydrogen System as a holistic approach to achieve energy independence and self-sufficiency. Seamlessly integrating renewable energy sources hydrogen production storage and utilization this system enables diverse applications across various sectors. By harnessing solar and/or wind energy the Integrated Renewable EnergyDriven Hydrogen System optimizes energy generation distribution and storage. Employing a systematic methodology the paper thoroughly examines the advantages of this integrated system over other alternatives emphasizing its zero greenhouse gas emissions versatility energy resilience and potential for large-scale hydrogen production. Thus the proposed system sets our study apart offering a distinct and efficient alternative compared to conventional approaches. Recent advancements and challenges in hydrogen energy are also discussed highlighting increasing public awareness and technological progress. Findings reveal a payback period ranging from 2.8 to 6.7 years depending on the renewable energy configuration emphasizing the economic attractiveness and potential return on investment. This research significantly contributes to the ongoing discourse on renewable energy integration and underscores the viability of the Integrated Renewable EnergyDriven Hydrogen System as a transformative solution for achieving energy independence. The employed model is innovative and transferable to other contexts.
Modelling Underground Hydrogen Storage: A State-of-the-art Review of Fundamental Approaches and Findings
Dec 2023
Publication
This review presents a state-of-the-art of geochemical geomechanical and hydrodynamic modelling studies in the Underground Hydrogen Storage (UHS) domain. Geochemical modelling assessed the reactivity of hydrogen and res pective fluctuations in hydrogen losses using kinetic reaction rates rock mineralogy brine salinity and the integration of hydrogen redox reactions. Existing geomechanics studies offer an array of coupled hydromechanical models suggesting a decline in rock failure during the withdrawal phase in aquifers compared to injection phase. Hydrodynamic modelling evaluations indicate the critical importance of relative permeability hysteresis in determining the UHS performance. Solubility and diffusion of hydrogen gas appear to have minimal impact on UHS. Injection and production rates cushion gas deployment and reservoir heterogeneity however significantly affect the UHS performance stressing the need for thorough modelling and experimental studies. Most of the current UHS modelling efforts focus on assessing the hydrodynamic aspects which are crucial for understanding the viability and safety of UHS. In contrast the lesser-explored geochemical and geomechanical considerations point to potential research gaps. A variety of modelling software tools such as CMG Eclipse COMSOL and PHREEQC evaluated those UHS underlying effects along with a few recent applications of datadriven-based Machine Learning (ML) techniques for enhanced accuracy. This review identified several unresolved challenges in UHS modelling: pronounced lack of expansive datasets leading to a gap between model predictions and their practical reliability; need robust methodologies capable of capturing natural subsurface heterogeneity while upscaling from precise laboratory data to field-scale conditions; demanding intensive computational resources and novel strategies to enhance simulation efficiency; and a gap in addressing geological uncertainties in subsurface environments suggesting that methodologies from oil reservoir simulations could be adapted for UHS. This comprehensive review offers a critical synthesis of the prevailing approaches challenges and research gaps in the domain of UHS thus providing a valuable reference document for further modelling efforts facilitating the informed advancements in this critical domain towards the realization of sustainable energy solutions.
Techno-economic Feasibility of Distributed Waste-to-hydrogen Systems to Support Green Transport in Glasgow
Mar 2022
Publication
Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock hydrogen production reactors and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included inter alia direct cost data on construction maintenance operations infrastructure and storage along with indirect cost data comprising environmental impacts and externalities cost of pollution carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development.
Parametric Study and Optimization of Hydrogen Production Systems Based on Solar/Wind Hybrid Renewable Energies: A Case Study in Kuqa, China
Jan 2024
Publication
Based on the concept of sustainable development to promote the development and application of renewable energy and enhance the capacity of renewable energy consumption this paper studies the design and optimization of renewable energy hydrogen production systems. For this paper six different scenarios for grid-connected and off-grid renewable energy hydrogen production systems were designed and analyzed economically and technically and the optimal grid-connected and off-grid systems were selected. Subsequently the optimal system solution was optimized by analyzing the impact of the load data and component capacity on the grid dependency of the grid-connected hydrogen production system and the excess power rate of the off-grid hydrogen production system. Based on the simulation results the most matched load data and component capacity of different systems after optimization were determined. The grid-supplied power of the optimized grid-connected hydrogen production system decreased by 3347 kWh and the excess power rate of the off-grid hydrogen production system decreased from 38.6% to 10.3% resulting in a significant improvement in the technical and economic performance of the system.
Industrial and Academic Collaboration Strategies on Hydrogen Fuel Cell Technology Development in Malaysia
Nov 2013
Publication
Hydrogen fuel cells are electrochemical power generators of high conversion efficiency and incredibly clean operation. Throughout the world the growth of fuel cell research and application has been very rapid in the last ten years where successful pilot projects on many areas have been implemented. In Malaysia approximately RM40 million has been granted to academic research institutions for fuel cell study and development. Recently Malaysia saw the emergence of its first hydrogen fuel cell developer signaling the readiness of the industrial sector to be involved in marketing the potential of fuel cells. Focusing mainly on Polymer Electrolyte Membrane fuel cell technology this paper demonstrates the efforts by Malaysian institutions both industrial and academic to promote hydrogen fuel cell education training application R&D as well as technology transfer. Emphasis is given to the existing collaboration between G-Energy Technologies and UniversitiTeknologi MARA that culminates with the successful application of a locally developed fuel cell system for a single-seated vehicle. Briefs on the potential of realizing a large-scale utilization of this clean technology into Malaysia’s mainstream power industry domestic consumers and energy consuming industries is also discussed. Key challenges are also identified where pilot projects government policy and infrastructural development is central to strengthen the prospect of hydrogen fuel cell implementation in Malaysia.
Economic and Environmental Assessment of Different Hydrogen Production and Transportation Modes
Apr 2024
Publication
Hydrogen is widely considered as the energy carrier of the future but the rather high energy losses for its production are often neglected. The major current hydrogen production technology is steam methane reforming of fossil gas but there is a growing interest in producing hydrogen sustainably from water using electrolysis. This article examines four main hydrogen production chains and two transportation options (pipeline and ship) from North Africa to Europe analyzing the costs and environmental impacts of each. The core objective is to determine the most promising hydrogen provision method and location from an economic and ecological point of view including the required transport. An important finding of this analysis is that both options importing green hydrogen and producing it in Europe may be relevant for a decarbonized energy system. The emphasis should be on green hydrogen to achieve carbon emission reductions. If blue hydrogen is also considered attention should be paid to the often-neglected methane emissions upstream.
Deflagrations of Non-uniform Hydrogen/Air Clouds in a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces.<br/>Hydrogen vehicles typically have a Thermally activated Pressure Release Device (TPRD) providing protection to the on-board storage of the vehicle. Upon activation the content of the vessel is released in a blowdown. The release of this hydrogen gas poses a significant hazard of ignition. The consequences of such an ignition could also be compounded by confinement or congestion.<br/>HSE undertook a series of experiments investigating the consequences of these events by releasing hydrogen into a tunnel and causing ignitions. A sub-section of these tests involved steel structures providing congestion in the tunnel. The mass of hydrogen released into the tunnel prior to ignition was varied by storage pressure (up to 59 MPa) release diameter and ignition delay. The ignition delays were set based on the expected worst-case predicted by pre-simulation models. To assess the consequences overpressure measurements were made down the tunnel walls and for the tests with congestion at the face and rear of the congestion structures. The flame arrival time was also measured using exposed-tip thermocouples resulting in an estimate for flame speed down the tunnel. The measured overpressure and flame extent results are presented and compared against overpressure levels of concern.
No more items...